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ABSTRACT Rain streaks impede image feature extraction, hindering the performance of computer vision
algorithms such as pedestrian and lane detection in adverse weather conditions. Image deraining is crucial for
enhancing reliability of such algorithms. However, detail and texture information of objects in background
areas are often lost during the deraining process due to their structural similarity with rain streaks. To remove
rain streaks effectively while preserving image details, we propose a novel layer decomposition learning
network (LDLNet) to separate rain streaks and object details in rainy images. LDLNet consists of two parts:
the discriminative group feature split (DGFS) and the group feature merging (GFM). DGFS utilizes sparse
residual attention modules (SRAM) to capture spatial contextual features of rainy images, enhancing the
network’s ability to understand the complex relationships between rain streaks and object details. In addition,
DGFS employs the bottom-up intergroup feature fusion (BIFF) approach to aggregate multi-scale context
information from continuous SRAMs, facilitating the decomposition of rainy images into discriminative
feature groups. Subsequently, GFM integrates these feature groups by concatenating them, preserving the
interdependent characteristics of clean backgrounds and rain layers. Experimental results reveal that the
proposed approach achieves superior rain removal and detail preservation in both synthetic datasets and
real-world rainy images compared to the state-of-the-art rain removal models.

INDEX TERMS Computer vision, deep learning, image deraining, image detail maintenance.

I. INTRODUCTION
The visual quality of images is degraded when captured in
rainy weather. As shown in Fig. 1(a), rain streaks obscure the
view and prevent the detection of details. As these rain streaks
hinder visual feature extraction, they adversely affect the
performance of computer vision algorithms including object

The associate editor coordinating the review of this manuscript and

approving it for publication was Andrea F. Abate .

detection and image recognition. For outdoor vision systems
such as visual surveillance and autonomous vehicles, it is
essential to remove rain streaks and preserve object details
from input rain images. Rain removal, also referred to as
image deraining, aims to remove rain streaks from input rain
images and produce high-quality images with details (e.g.,
edges and texture patterns).

The problem is nontrivial as rain streaks appear in
various directions and shapes in a rain image and objects
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FIGURE 1. Single image deraining visualizations with rain streak and
object detail. From (a)-(f): (a) Rain image, (b) RESCAN [21],
(c) DRD-Net [5], (d) Our proposed LDLNet, (e) Appearance of rain streaks
generated by the proposed method, and (f) Appearance of object details
generated by the proposed method.

affected can disappear or get blurred during the rain streak
removal. In contrast with rain removal in a video, where
temporal information leveraged from adjacent frames of the
video helps detect rain streaks [2], [11], [38], single-image
deraining is relatively more difficult, thus, it has attracted
considerable research attention recently. Rain streaks in
a single image were traditionally removed using bilateral
filter [20], low rank [3], sparse coding [23], and Gaussian
mixing model [22]. Methods based on deep learning have
been recently deployed for the task [7], [8], [10], [32],
[35]. Although the state-of-the-art (SOTA) methods achieve
notable results as in Figs. 1(b) and (c), there is still room for
improvement as rain removal and detail preservation have not
been solved simultaneously.

For perfect rain removal, it is crucial to separate features
of rain streaks and object details from input images.
To achieve this, we designed a novel layer decomposition
learning network (LDLNet) to split the features of rain
images into groups. The proposed network generates dif-
ferent image appearances, which contain discriminative and
complementary visual features of rain streaks and object
details, as shown in Figs. 1(e) and (f), respectively. Such a
feature decomposition learning eventually results in superior
performances in rain removal and image detail preservation,
as shown in Fig. 1(d).

A. DRAWBACKS OF CONVENTIONAL FEATURE
DECOMPOSITION MODELS
Several rain-removal models have been developed to separate
image features into different layers. The deep detail network
(DDN) [8] employs a guided filter to decompose the input
image in Fig. 2(a) into a low-frequency part and a high-
frequency one. The high-frequency part indicates the detail

FIGURE 2. Feature map visualizations of rain streak and detail layers
from different models. (a) Input rain image, (b) Ground truth, (c) Detail
layer from DDN [8], (d) Negative residual from DDN [8], (e) 5th level of
Laplacian pyramids from LPNet [9], (f) 5th level of reconstruction layer
from LPNet [9], (g) Rain streak feature from DRD-Net [5], (h) Detail repair
feature from DRD-Net [5], (i) Feature group of rain streaks from LDLNet,
and (j) Feature group of object details from LDLNet.

layer of the input image, as shown in Fig. 2(c). The detail
layer then becomes an input of the stacked layers in DDN
to estimate the negative residual which contains rain streak
information. However, the rain streaks are still unclear in
the negative residual, as shown in Fig. 2(d). In contrast,
lightweight pyramid network (LPNet) [9] extracts multi-scale
features using a pyramid-based image decomposition tech-
nique. The model produces a multi-resolution Laplacian
pyramid of the input image and generates a rain-free image
using a reconstruction layer. However, the object details and
rain streaks are not completely separated in the Laplacian
pyramid, as in Fig. 2(e), and the details of the woman’s
face are not visible from the image appearance of the
reconstruction layer as in Fig. 2(f); therefore, LPNet incurs
detail loss in rain-free images. To supplement the information
lost, DRD-Net [5] employs a detail repair network after
removing the rain streaks using a rain residual network.
However, the edges of objects remain in the rain streak layer,
as shown in Fig. 2(g), and the edges and rain streaks are
not well separated, as shown in 2(h). The proposed LDLNet
overcomes these limitations by decomposing discriminative
feature groups of rain images into semantic and discrimina-
tive layers. This discriminative layer decomposition results in
a clear separation of detail and rain streak layers, as shown in
Fig. 2(i) and (j), respectively.

B. THE PROPOSED DISCRIMINATIVE FEATURE GROUP
DECOMPOSITION APPROACH
The proposed LDLNet comprises two main components,
discriminative group feature split (DGFS) and group feature
merging (GFM) parts. DGFS aims to decompose rainy
images into discriminative feature groups, while GFM
merges them to facilitate image deraining. Three discrimina-
tive feature groups are designed based on the belief that image
deraining involves decomposing a rainy image into a clean
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FIGURE 3. A conceptual framework of LDLNet. In the framework, DGFS decomposes rainy images into discriminative feature groups and GFM merges
them while maintaining interdependent characteristics of rain layer and clean background for an image deraining.

background and a rain layer, each containing discriminative
feature groups. As shown in Fig. 3, each row corresponds to
a feature group, wherein the first group predicts rain streaks
from high-frequency features initialized by convolution
operations, the second group preserves intermediate features,
and the third one indicates object details by accumulating
complementary features through a bottom-up intergroup
feature fusion (BIFF) approach. The approach is employed
based on the idea that the clean background and the rain
layers are not entirely independent due to the presence of
objects sharing similar colors and shapes with rain, and
therefore their feature groups should be jointly learned
for better performance. Particularly, the BIFF approach
complementarily transfers feature information among sparse
residual attention modules (SRAMs) from low to high
levels to fuse the discriminative feature groups of a rainy
image. This approach allows for better utilization of feature
information, resulting in superior performance in single
image deraining.

In summary, the contributions of the paper are as follows:

• Introduction of LDLNet, a novel single-image deraining
framework employing DGFS and GFM components.
The proposed framework leverages layer decomposition
learning to effectively remove rain streaks while pre-
serving image details.

• Design of SRAM to capture spatial contextual features
of rainy images, enhancing the network’s ability to
understand the complex relationships between rain
streaks and object details.

• Implementation of the BIFF approach in DGFS to aggre-
gate multi-scale context information from continuous
SRAMs, facilitating the decomposition of rainy images
into discriminative feature groups.

• Integration of GFM to concatenate feature groups from
DGFS, thereby maintaining interdependent characteris-
tics of clean background and rain layer.

• Comprehensive performance evaluation of LDLNet
against state-of-the-art deraining models using different
datasets, demonstrating its superior performance on both
synthetic and real-world rainy images.

II. RELATED WORK
A. DEEP-LEARNING-BASED METHODS
Deep-learning-based methods have been adopted to remove
rain streaks, achieving significant results. DerainNet [7] uses
CNN-based non-linear mapping to transform a rainy image
into a clean one. The results were improved using a deep
detail network (DDN) [8] with a combination of ResNet [12]
and a global skip connection. However, those approaches
are not practical because they do not deal with various
directions, scales, and amounts of rain in the training datasets.
To this end, the multi-stream dense network (DID-MDN)
[35] determines rain information using a residual-aware rain-
density classifier. Joint rain detection and removal (JORDER)
[32] solves the lack of local contextual information without
loss of local detail by a dilated factor. The dual graph
convolutional network (DualGCN) [10] uses local spatial
patterns and global contextual information to effectively
remove rain. Furthermore, the multi-stage progressive image
restoration network (MPRNet) [34] recovers the degraded
inputs through information exchange between different
stages of a multi-stage architecture. The progressive coupled
network (PCNet) [18] extracts the hierarchical features of
multi-scale rain streaks and separates the rain-free content
and rain streaks progressively. Recently, a general U-shaped
Transformer (Uformer) [33] has been proposed leveraging the
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Transformer block to capture global dependencies through
window-based self-attention. Uformer employs U-shaped
encoder-decoder networks with skip connections to capture
multi-scale information hierarchically, making it suitable for
various image restoration tasks.

B. BATCH NORMALIZATION REMOVAL
Batch normalization (BN) [16] reduces the internal coverage
shift by standardizing data distribution. It is widely adopted
in deep-learning-based models because employing BN in
the training process stabilizes the model faster than the
one without BN. However, as BN limits the distribution of
values, it adversely affects rain streak removal because the
properties of rain streaks vary according to their intensity,
direction, brightness, and shape. The lightweight pyramid
of networks (LPNet) [9] decomposes the rainy image
using the Laplacian pyramid and predicts the clean image
using the Gaussian pyramid without BN. The recurrent SE
context aggregation network (RESCAN) [21] is designed to
deeply remove rain streaks through continuously deployed
networks. Also, BN is not used in RESCAN to remove
rain streaks with various directions, colors, and shapes.
Furthermore, excluding BN from the training process reduces
the required computing resources, and thus makes the process
faster.

C. ATTENTION MECHANISM
The efficiency of attention mechanisms in several com-
puter vision tasks including image classification [13], [43],
segmentation [6], [14], detection [31], denoising [1], [29],
super-resolution [4], [39], deblurring [27], [28], and restora-
tion [34] has been proven. Accordingly, recent deraining
methods employ attention to improve their performance.
The multi-scale progressive fusion network (MSPFN) [17]
obtains rain streak information in different scales by com-
bining an attention mechanism with the multi-scale pyramid
structure. The detail-recovery image deraining network
(DRD-Net) [5] utilizes two sub-networks for image deraining
and preservation of image detail. In DRD-Net, the rain
residual network effectively removes rain using an attention
mechanism, and then the detail repair network recovers
image details using spatial information obtained by a dilated
convolution.

III. RAIN FORMULATION
A simple rainy image including rain with the same direction
can be expressed by the following equation:

O = B+ R (1)

whereB is the imagewith a clean background andR is the rain
streak layer. Image deraining can be seen as a problem that
decomposes the rainy image O into the above two elements.
However, real-world rain streaks have irregular distributions.
If there is no wind, the rain falls perpendicularly to the
ground. Otherwise, it falls diagonally. Fast wind speed causes
the rain to scatter over a wider area, and this phenomenon

leads the rain to have an inconstant distribution, for which
the equation is as follows:

O = B+

S∑
i=1

Ri (2)

where Ri is i-th rain streak layer among S different
ones.

If the rain is heavy, the problem becomesmore complicated
because rain appearance is shaped by not only individual
rain streaks but also the accumulation and dispersion of rain
streaks in the atmosphere. Rain accumulation results in visual
effects similar to mist or fog. Owing to this phenomenon,
visibility decreases significantly. Since there are various cases
in real rain environments, the synthetic rainy images are
expressed as follows:

O = α(B+

S∑
i=1

Ri) + (1 − α)A, 0 ≤ α ≤ 1 (3)

where A is global atmospheric light and α is atmospheric
transmission [5], [32].

IV. PROPOSED METHODS
Our single image deraining method aims to remove rain
streaks and maintain image details through layer decomposi-
tion learning with BIFF approach. In this section, we explain
our proposed network and loss function.

A. OVERALL STRUCTURE
A typical phenomenon when removing rain is that parts of
objects in the input image become blurred and disappear
when the patterns of rain streaks and object details are
similar. To simultaneously achieve rain removal and image
detail maintenance, we aim to decompose feature groups
with different appearances in a rain image using a single
network rather than network separation as in DRD-Net [5].
The proposed LDLNet consists of two parts: DGFS and
GFM, as shown in Fig. 4(a). The first two convolutional layers
are interpreted as embedding to transform the rain image into
high-frequency feature maps. A novel SRAM is developed to
acquire spatial contextual information from high-frequency
feature maps based on dilated convolution and squeeze-and-
excitation attention. Such SRAMs are arranged continuously
in three rows of DGFS. The unique aspect of LDLNet is
the BIFF-based feature fusion in DGFS, where each SRAM
aggregates a feature group from not only the previous SRAM
in the same row but also the SRAM in the lower layer. This
layer decomposition learning facilitates the representation of
distinct feature groups for rain streaks and object details,
even when they share similar colors and shapes. As a result,
LDLNet achieves effective rain removal while preserving
image details.

In theGFMpart, three feature groups of DGFS are concate-
nated to accumulate feature information. Such concatenation
ensures that the distinct characteristics of each feature
group are preserved, thereby facilitating the generation
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FIGURE 4. Layer decomposition learning network (LDLNet). From (a)-(c): (a) Overall architecture, (b) Sparse residual attention module (SRAM),
(c) Sparse connected residual block (SCRB). In LDLNet, DGFS part generates discriminative and complementary feature groups by fusing features from
low to high levels based on BIFF approach, and GFM part aggregates the feature groups for rain removal.

of a high-quality residual image for rain streak removal.
A 1 × 1 convolution is used to reduce feature dimen-
sions. Afterward, residual learning is introduced into our
model to lower complexity. The last two convolutional
layers act as decoders to recover the RGB channel of
the color image. Eventually, LDLNet produces a clean
image by subtracting the simple and sparse residual image
from the rain image. Moreover, a novel loss function,
which also contributes to quality improvement of the
generated rain-free images, is developed in the proposed
network.

B. SPARSE RESIDUAL ATTENTION MODULE (SRAM)
Fig. 4(b) shows the structure of SRAM with a sparse con-
nected residual block (SCRB) and a squeeze-and-excitation
(SE) operation [13]. The proposed SCRB is simplified from
the residual dense block (RDB) [40] which hierarchically
extracts features and then connects the generated feature
maps in all layers by a densely connected convolution
layer. Although RDB utilizes sufficiently local features
and improves the flow of information, it suffers from
a large number of training parameters due to the dense
connections, i.e. a network with L layers requires L(L +

1)/2 connections. To reduce the feature duplication caused
by redundant connections in RDB [41], we design SCRB
which consists of minimal connections for initial information
preservation.

1) CONTEXTUAL INFORMATION EXTRACTION WITH SCRB
The proposed SCRB, located at the beginning of SRAM
j (j ≥ 1) in feature group i (i ≥ 1), receives two inputs FSRAM

i,j−1
and FSRAM

i−1,j , which represent the outputs of the previous
SRAM in the same feature group and the same order SRAM
in the lower feature group, respectively. The input features
are fused through convolution layers to form discriminative
and complementary feature groups, as shown in Fig. 4(c). The
output of the first convolution layer in the SCRB is:

L1i,j = ReLU(Convd3×3(F
SRAM
i,j−1 ) + Convd3×3(F

SRAM
i−1,j ))∥FSRAM

i,j−1 (4)

where ReLU denotes the rectified linear unit function,
Convd3×3 is a dilated convolution layer with 3×3 kernel size,
and ∥ denotes the concatenation function. Employing dilation
enables SRAM to obtain a large receptive field to increase
the size of the area exposed to the convolution kernel. The
contextual information provided by such a large receptive
field is essential for rain removal and image detail recovery,
as visually verified in Section V-C.

Noting that FSRAM
1,0 is the high-frequency features of the

input rainy image after two convolution layers. FSRAM
i,0 =

FSRAM
0,j = 0 (∀i > 1, ∀j ≥ 1) indicates that the first SRAM

in each feature group has only one input from the lower one,
except the first feature group. To minimize the number of
connections, the proposed block does not connect the outputs
of all convolution layers. It concatenates only the output of the
previous SRAM in the same feature group with the output of
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each layer. Let l denote the number of convolution layers in
each block, the output of layer k (1 < k ≤ l) is formulated as
follows:

Lki,j = ReLU(Convd3×3(L
k−1
i,j ))∥FSRAM

i,j−1 (5)

Lastly, SCRB deploys a 1× 1 convolution layer to control
the output information. The previous SRAM of the same
feature group is also added to preserve the information flow.
Consequently, SCRB of SRAM j in feature group i produces
the output as follows:

FSCRB
i,j = Conv1×1(L li,j) + FSRAM

i,j−1 (6)

where Conv1×1 represents the convolution with the kernel
size of 1 × 1. Experimental results reveal that SCRB
with minimum connections to prevent feature duplication
performs superior to RDB.

2) FEATURE BOOSTING WITH SE OPERATION
After applying SCRB to extract contextual information,
SRAM focuses on more important features through SE
operation which improves model performance without sig-
nificantly increasing computation costs. In the operation, the
feature channel with a relatively large amount of contextual
information is reinforced to derive only important features by
modeling the correlation between different feature channels.
SE operation in SRAM j of feature group i is mathematically
expressed as follows:

FSE
i,j = Sigmoid(FC(ReLU(FC(GAP(Tanh(FSCRB

i,j ))))))×Tanh(FSCRB
i,j ) (7)

where Sigmoid and Tanh denote sigmoid and hyperbolic
tangent functions, respectively. FC is a fully connected layer
and GAP is a global average pooling one. The SE operation
enables SRAM to extract spatial contextual information.
Eventually, the output of SRAM j in feature group i is
described as follows:

FSRAM
i,j = ReLU(FSE

i,j ) (8)

C. DISCRIMINATIVE GROUP FEATURE SPLIT AND GROUP
FEATURE MERGING PARTS
LDLNet preserves object details, which tend to fade or
disappear when the rain is removed from rainy images,
by generating discriminative and complementary visual
feature groups based on a bottom-up intergroup feature
fusion approach. In the DGFS part, SRAMs are arranged
in three groups to fuse spatial contextual information. The
discriminative feature information generated by SRAMs of
the lower feature group is forwarded to the ones of the
upper feature group as complementary features, as detailed
in Section IV-B. The output of the DGFS is formulated as
follows:

FDGFS
=


FSRAM
1,m

FSRAM
2,m

FSRAM
3,m

(9)

where m denotes the number of SRAMs in each group.

Recall that SRAM employs dilated convolutions to effi-
ciently mitigate resolution loss without increasing the kernel
size, which leads to a proportional growth in the number of
parameters. The dilation rates vary depending on the location
of SRAMs, as shown in Table 1. Particularly, SRAMi,1,
SRAMi,2, SRAMi,6, and SRAMi,7 share the same dilation
scale, while SRAMi,3, SRAMi,4, and SRAMi,5 use the
higher ones. The receptive field obtained by such dilated
convolutions increases gradually through the bottom-up inter-
group feature fusion approach. This accumulation of feature
information enables DGFS to decompose the rainy image
into three feature groups with different visual appearances.
Particularly, the lowest feature group predicts low-level
features, i.e., rain streaks, and the highest group captures
meaningful object details, as shown in Fig. 4(a). The rainy
image is decomposed into three feature groups naturally
during the forward pass because the underlying operations
primarily involve stacked convolutional layers.

In the GFM part, the three output feature groups of
DFGS are merged to preserve image information. The three
output feature groups are merged in GFM part to preserve
image information. Particularly, GFM concatenates features
from the last SRAM of each feature group and deploys a
1×1 convolution layer to control the output information. The
output of GFM part is formulated as follows:

FGFM
= Conv1×1(FSRAM

1,m ∥FSRAM
2,m ∥FSRAM

3,m ) (10)

Noting that BN is not used in training as it adversely affects
the robustness of the deraining model by limiting the variety
of rain distribution [5], [21]. The performance of the proposed
model is influenced by the dilation, the number of SRAMs,
and also the connections between SRAMs within DGFS.
These aspects are discussed in more detail in Section V-C.

D. LOSS FUNCTION
We use the Euclidean distance as the training loss to train the
model and formulate it as follows:

Losseuc =

√√√√ N∑
i=1

(Pi − Bi)2 + ϵ (11)

Pi is the predicted clean image from our LDLNet and
Bi is the ground truth, and N is the number of training
data samples for each iteration. We add ϵ to prevent the
training loss from becoming zero. However, the rain makes
the detail of the background blurred which tends to result
in blurred reconstruction. To improve the image detail
maintenance, we use the Laplacian operator [19], which is
widely usedwhen detecting object edges in image processing.
We additionally propose the edge loss between the predicted
clean image and ground truth using the Laplacian operator,
which is defined as

Lossedge =

√√√√ N∑
i=1

(Lap(Pi) − Lap(Bi))2 + ϵ (12)
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TABLE 1. The list of dilation scales of SRAM in each feature group (i ranges from 1 to 3).

where Lap(Pi) and Lap(Bi) are edge maps through the
Laplacian operator. Structural similarity index measure
(SSIM) loss is usually used in the reconstruction process,
therefore we include SSIM in training loss. It compares the
local region of pixels in the predicted image with the ground
truth. The similarity of each pixel and the global structure are
preserved simultaneously.

Lossssim = 1 −

N∑
i=1

SSIM(Pi,Bi) (13)

Since the maximum value of SSIM is 1, we define the
output by subtracting the SSIM value between two images
as SSIM loss. We minimize the three loss functions and the
overall loss function used to train LDLNet is formulated as
follows:

Losstotal = Losseuc + Lossedge + Lossssim (14)

It is important to note that the loss function is calculated
with three subsets of parameters corresponding to the three
feature groups. During backpropagation, parameters in each
group are supervised by the corresponding gradient from
the loss, as the gradient of other parameters is zero. Conse-
quently, the parameters in each group update accordingly to
minimize the overall loss, leading to effective learning and
feature extraction across all three groups.

V. PERFORMANCE EVALUATION
A. EXPERIMENT SETTINGS
Since it is difficult to obtain a pair consisting of a rainy
image and a clean one in the real world, we used multiple
synthetic datasets for training. The first group of datasets
consists of images with synthesized rain streaks. From
the Rain2600 [35], we randomly selected 300 heavy rainy
images, 300 medium rainy images, and 100 light rainy
images for training. Then, a total of 1200 images were
randomly picked from the dataset to form our first testing
set, which is Test1200. We divided Rain800 [36] into two
sets, 700 images for training and 100 images for testing,
named Test100. Similarly, we picked 100 and 12 images
in Rain100H and Rain12 [32] for training, respectively.
The testing sets Test100H, Test1000, and Test1400 are 100,
1000, and 1400 synthesized rainy images of Rain100H [32],
Rain1000 [35], and Rain1400 [8], respectively. Detailed
descriptions of the datasets used are shown in Table 2.
The second group of datasets was designed to simulate

the common occurrences of rain-streaks and raindrops
in real-world rainy scenarios. We used the RainDS [25]
dataset for this purpose, as described in Table 3. For
training, we randomly selected 1600 images from the dataset,

TABLE 2. Datasets of images with synthesized rain-streaks.

TABLE 3. Dataset of images with synthesized rain-streaks and raindrops.

including 300 images with only rain-streaks, 300 images with
only raindrops, and 1000 images with both raindrops and
rain-streaks. To evaluate the performance of our method on
the specific rain types, we randomly formed three testing sets
of RS200, RD200, and RDS200 from 200 rainy images each,
including only synthesized rain-streaks, only synthesized
raindrops, and both raindrops and rain-streaks, respectively.
We further experimented on real-world images downloaded
from the internet to evaluate the generalization ability.

We set the number of training epochs to 200. Each epoch
contained 161 iterations. To optimize the model, we used
the Adam optimizer and set the batch size to 10. The
initial learning rate was 0.01, which was divided by 2 after
every 15 epochs. From 120 epochs, the learning rate was
fixed. Each training image was randomly cropped to make
64 × 64 patches, on which flip and rotation were optionally
applied.We ran all experiments in the same environment with
the Nvidia RTX A6000 GPU.

Our performance evaluation employs four commonly used
metrics to measure image quality: Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSIM), Visual
Information Fidelity (VIF), and Feature Similarity (FSIM).
PSNR evaluates the quality of derained images by comparing
pixel-wise differences between them and ground truth
images [15]. SSIM measures the similarity between derained
images and ground truth images in terms of luminance,
contrast, and structure [30]. VIF [26] and FSIM [37] assess
the preservation of visual information and image features,
respectively. Thesemetrics offer complementary insights into
different aspects of image quality, enabling a comprehensive
evaluation of our proposed method’s performance compared
to state-of-the-art (SOTA) techniques. However, the quan-
titative evaluation is only available on synthesized rainy
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TABLE 4. Quantitative comparisons on synthesized rain-streak datasets. (Best results: red, second-best: blue).

TABLE 5. Quantitative comparisons on the synthesized rain-streak and raindrop dataset. (Best results: red, second-best: blue).

datasets, as ground truth does not exist for real rainy images.
We evaluated the real-world dataset from a visual perspective.

B. EXPERIMENT RESULTS AND DISCUSSION
We compared the proposed model with the most notable
single-image deraining models. All related models were
re-implemented from their published source codes and
retrained with the same training datasets and the envi-
ronments described in the related papers. The comparison
models are as follows:

• Deep CNN based method (DerainNet) [7]
• Deep detail network (DDN) [8]
• Density-aware deraining network (DID-MDN) [35]
• Lightweight pyramid of networks (LPNet) [9]
• Recurrent squeeze-and-excitation context aggregation

network (RESCAN) [21]
• Detail-recovery image deraining network (DRD-Net)

[5]
• Dual graph convolutional networks (DualGCN) [10]
• Multi-stage progressive image restoration network

(MPRNet) [34]
• Progressive coupled network (PCNet) [18]
• U-shaped Transformer (Uformer) [33]

The performance of LDLNet is quantitatively compared to
SOTAmethods on the two groups of synthesized rainy image
datasets. Table 4 shows the performance of themethods on the
first group of datasets, which includes only synthesized rain
streaks. The superior performances of the proposed model
on Test1000 and Test1400, in which the testing images are
different from training ones, reveal that LDLNet generalizes
the rain streak features and works well with new kinds of
images. In the case of Test1200, Test100, and Test100H, the
proposed model approaches the performance of RESCAN
when the testing and training images are similar. Table 5
shows the performance of the models on the second group
of datasets, which include both synthesized rain-streaks and
raindrops. LDLNet outperforms all SOTA models in all
testing sets of RS200, RD200, and RDS200.
We also evaluate the qualitative performance of the

deraining methods on the two groups of synthetic datasets.
On the synthesized rain-streak datasets, the proposed LDL-
Net removes the rain streaks better than other models,
as shown in the first three rows of Fig. 5. The synthetic
rainy images in the fourth and fifth rows of the figure imitate
the phenomenon of dark clouds, which block the sun-sight
and make the images darker in rainy circumstances. Other
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FIGURE 5. Qualitative comparisons of rain removal on synthesized rain-streak datasets.

FIGURE 6. Qualitative comparisons of rain removal on the synthesized rain-streak and raindrop dataset.

methods removed the rain well, but could not predict a proper
brightness in their outputs. Our de-rained images are closer
to the ground truth by satisfying both rain removal and
brightness improvement.

Due to the varying sizes, shapes, and intensities of
synthesized raindrops and rain streaks in the RainDS dataset,
rain removal becomes more challenging. Fig. 6 shows that
LDLNet effectively removes the rain from the images,
whether they have raindrops, rain streaks, or both. The

state-of-the-art models perform well when tested using
images with only synthesized rain streaks, as seen in the first
two rows of the figure. However, when tested using images
with synthesized raindrops, the compared models suffered
from removing raindrops completely, as demonstrated in the
last four rows of the figure. Their outputs contain raindrops,
while LDLNet produces rain-free images.

Rain removal is difficult because of not only rain varia-
tions, but also the existence of objects that have similar colors
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FIGURE 7. Comparisons of object details preservation after rain removal on synthesized rain-streak datasets.

and shapes as rain streaks or raindrops. Fig. 7 demonstrates
the object preservation abilities of the deraining models using
the first group of datasets. In the figure, the line of the
feathers in the bird’s wings is similar in color and shape to
the rain streaks. It results in either rain and feathers being
removed together, or rain cannot be completely removed to
maintain the line of the feathers. Thanks to decomposition
learning, LDLNet maintains more feather details than the
other methods. Both cases demonstrated in the figure reveal
that the proposed model neatly removes the rain and outputs

images closer to the ground truth. Parts of the pictures were
enlarged at the bottom of each image to confirm the details of
the output images. Besides rain streak removal, it is certified
that LDLNet also produces proper brightness and resolves the
detail loss problem in its outputs.

In the case of the second group of datasets, which includes
both synthesized rain-streaks and raindrops, three samples
with different types of rain are shown in Fig. 8 to illustrate
the object detail preservation after rain removal. For the
first sample image with the street sign and traffic sign, as it
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FIGURE 8. Comparisons of object details preservation after rain removal on the synthesized rain-streak and raindrop dataset.
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FIGURE 9. Qualitative comparisons of rain removal on real-world rainy images.
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contains only synthesized rain streaks, the deraining results
are consistent with those of previous experiments shown in
Fig. 7. LDLNet outputs a rain-free image and restores the
street name and traffic signs more similar to the ground truth.
When raindrops appear in the two other samples, even with
or without rain streaks, the proposed model outperforms the
other models in removing the rain and preserving the details
of the underlying objects. For example, in the second case
with only raindrops, LDLNet effectively removes the rain and
restores the crosswalk details, while some of the other models
struggle to remove the raindrops completely, leaving some
artifacts in the output images. In the last sample with both rain
streaks and raindrops, LDLNet again outperforms the other
models in removing the rain and preserving the details of the
underlying objects, such as the windows in the buildings.

To show the practicality of the proposed network, we eval-
uated its performance on real-world rainy images using the
trained model with the first group of datasets. Three samples
are illustrated in Fig. 9 for a quality comparison with recent
rain removal methods. In the first sample with trees, there
are some rain streaks remaining in the derained images using
the other methods, but not in the one of LDLNet. We use the
second and third samples to show that the proposed model
preserves object details even if the objects are similar to the
rain in the images. White letters in the second sample are
blurred in all derained images of other methods as their color
is similar to the rain. In the same manner, the white zipper
attached to the woman’s outer clothing and the string of the
hat are faded in the deraining results due to their shape and
color. In contrast, LDLNet only removes the rain streaks and
maintains the object details in both cases. The experiments
prove that our model produces realistic and reliable derained
images. Overall, the qualitative evaluation results align with
those of the quantitative evaluation in making the proposed
model a more robust and versatile deraining model compared
to other models.

The complexity and inference time of LDLNet are
compared with SOTA models in Table 6. The models are
sorted in ascending order based on their publication times,
which span from 2018 to 2022. The table highlights that
the proposed LDLNet has a lower number of parameters
compared to some of the compared models, such as DRD-Net
and Uformer, while still achieving superior performance
in terms of rain removal and object detail preservation.
This demonstrates the effectiveness of the decomposition
learning strategy employed in LDLNet, which allows for
better utilization of parameters in single image deraining.

C. ABLATION STUDY
We performed various ablation studies on the Test100 dataset
to verify the efficiency of the proposed LDLNet. The
performance of SCRB in DGFS part is first evaluated in a
comparison with RDB. Then, the contribution of GSM part
is verified. Finally, we studied the effects of SRAM module
by changing not only the number of modules but also the
connections between them.

TABLE 6. Complexity and inference time comparison of deraining models.

TABLE 7. Ablation study on different combinations in DGFS and GFM.

TABLE 8. Ablation study on different numbers of SRAMs.

FIGURE 10. Three different connection types used in DGFS: (a) C1 type
(b) C2 type (c) C3 type.

1) ABLATION STUDY ON DGFS AND GFM
RDB uses dense connections, which induces overlapping
features. To prevent this, SCRB with pruned connection
is used in DGFS. Table 7 shows that SCRB with pruned
connection has better performance than RDB. Combining SE,
which strengthens the correlation between feature channels,
with SCRB rather than RDB improves performance. The
concatenated connection of GFM preserves the informa-
tion of DGFS and its efficiency is demonstrated in the
table.

2) ABLATION STUDY ON SRAM
The experiment was conducted on the premise that the same
number of SRAMs exist in each feature group because con-
nections are consecutively placed between SRAMs located in
the same column in the DGFS. Ablation studies proceed only
when there are 3, 5, and 7 SRAMs in each feature group. For
example, if there are 3 SRAMs, a total of 9 SRAMs exist in
DGFS. Table 8 shows that the performance is improved as the
number of SRAMs increases.
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FIGURE 11. Feature map visualization: (a) Sample images (b) Feature maps using C1 type (c) Feature maps using C2 type (d) Feature maps using C3
type (e) Feature maps of all SRAMs in DGFS when C3 is used.

3) ABLATION STUDY ON CONNECTION BETWEEN SRAMS
The initial input and output of each module are concatenated
as in Attentive GAN [24], and features in which raindrops
and detail coexist are extracted in depth when as they pass
through the modules. However, we chose decomposition
rather than coexistence to discover details hidden by the
rain. For verification, we used three types of connections.
Fig. 10(a) shows the C1 type, where the initial input of
DGFS is inputted in each feature group. The architecture
of DGFS with C2 type contains the connections between
the final SRAM of the previous feature group and the first
SRAM of the next one as in Fig. 10(b). Finally, the C3
type containing the connection as in LDLNet is presented in
Fig. 10(c).

Feature map of the sample image from the Test100 dataset,
shown in Fig. 11(a), is visualized in this ablation study. When
C1 and C2 are used, the final outputs of each feature group
are shown in Fig. 11(b) and (c), respectively. Observably, the
feature layers are not well separated with either C1 or C2.
The proposed model with C3 creates better separation. Each
row in Fig. 11(d) visualizes five feature maps from the final
outputs of the three feature groups with C3 type. The feature
map of the first group contains rain streak features, while
the third feature group focuses on object details. Fig. 11(e)
illustrates the feature maps visualizing the output of all
SRAMs in the DGFS. By employing the BIFF approach,
DGFS decomposes the discriminative and complementary
features from the blended ones in the initial SRAM of each

TABLE 9. Ablation study on different connection types.

feature group. The feature map visualization indicates that
using C3 clearly separates discriminative features, which are
rain streak and object detail features. Table 9 quantitatively
reports that C3 rather than C1 and C2 is the effective
connection in terms of performance.

VI. CONCLUSION
We introduced LDLNet for single-image deraining. The
proposed framework decomposes rainy images into discrim-
inative and complementary feature groups representing rain
streaks and object details. This decomposition learning oper-
ates in the DGFS part using the novel BIFF approach, which
aggregates multi-scale context information from connected
SRAMs. The decomposed features are preserved through
concatenation in the GFM part, contributing to superior
quantitative performances of LDLNet in rain removal and
image detail preservation. Comparative experiments on both
synthesized and real datasets of rainy images demonstrate
that our proposed method outperforms the state-of-the-art
methods in terms of image quality.
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While LDLNet produces superior results in real-world
rainy images, there is still room for generality improve-
ment since it is trained primarily with synthetic datasets.
Additionally, it can extend to domains like stereo and
light field images, which feature dual views and abun-
dant 3D structure with texture information, respectively.
In these domains, leveraging the inherent characteristics of
stereo images and light field images could enhance rain
removal performance [42]. In future work, we plan to
employ contrastive learning with real-world rainy images
to enhance the robustness of the network and explore the
possibility of applying the proposed method to various image
modalities.
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