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ABSTRACT In this paper, a novel Two-Grid (T-G) algorithm is proposed and analyzed for semi-linear
interface problems in two dimension. To linearize the Immersed Finite Element Method (IFEM) equations,
a T-G method based on some Newton iteration approach and correction method is investigated. It is shown
that the algorithm can achieve asymptotically optimal approximation as long as the mesh sizes satisfy
H = O(h1/3) in Lp norm (for H1 norm, it even suffices to take H = O(h1/5)). As a result, solving such a
large class of nonlinear equation will not be much more difficult than solving one linearized equation.

INDEX TERMS Interface problem, coarse gird correction, immersed finite element method, nonlinear
problem, Newton iteration.

I. INTRODUCTION
Let � be a convex polygonal domain in R2 and �1 ⊂ �

be an open domain with C2 boundary 0 = ∂�1 ⊂ �. Let
�2 = �\�1. We consider the following semi-linear elliptic
interface problem:

−∇ · (β∇u) = f (x, u), x ∈ �. (1)

The system is subjected to the boundary condition:

u = 0, on ∂� (2)

and the homogeneous jump conditions on the interface,

[u] = 0,
[
β

∂u
∂n

]
= 0, across 0, (3)

where [v] is defined as the jump of v across the interface 0 by
[v](x) = v1(x) − v2(x), x ∈ 0, with vi = v|�i the restrictions
of v to �i, i = 1, 2, and n the unit outward normal to the
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boundary ∂�1. For ease of exposition, we assume that the
coefficient function β is positive and piecewise constant, i.e.,

β(x) = β1 for x ∈ �1; β(x) = β2 for x ∈ �2. (4)

The semi-linear interface problem (1)-(3) occurs fre-
quently as the involved partial differential equations used
to simulate many basic physical phenomenons, which have
applications in many physical and engineering problems,
such as fluid dynamics [1], [2], [3], seismo-acoustics [4], and
electromagnetics [5].

In this paper, we focus on speeding up the iterations
by using two-grid approaches [6], [7], [8]. There are lots
of literatures concerning about the interface problems by
different treatments, but, as far as we know, there are few
results about two-grid methods for semi-linear interface
problems by Finite Element Methods (FEMs) [9], [10] (or
Immersed Finite Element Methods (IFEMs) [11], [12]).
In [12], we present two efficient two-grid (T-G) algorithms.
It is of great theoretical interest that a further coarse grid
correction after the fine grid correction can actually improve
the accuracy. That is, we first solve a nonlinear problem by
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applying the Newton-like iteration on a (cheap) coarse grid
and then solve a linear elliptic system on a (expensive) fine
grid and solving onemore linear equation on the coarse space.
It is shown that the algorithm can achieve asymptotically
optimal approximation as long as the mesh sizes satisfy H =

O(h1/3) (for H1 norm, it even suffices to take H = O(h1/5)).
The remainder of the article is organized as follows:

Section II, we introduce the weak form and the IFE
approximation. Section III presents our novel two-grid
algorithm and gives its error estimates. Numerical tests are
presented in Section IV.

II. WEAK FORM AND IFEM
Let L2(�) be the set of square-integrable functions on�with
usual norm ∥ · ∥. Furthermore, let (·, ·) denote the L2 inner
product, scalar and vector, and ⟨·, ·⟩∂� present the L2(∂�)
inner product with norm ∥ · ∥∂�.

We shall also use the standard Sobolev spaceWm,p(�) with
a norm ∥ · ∥m,p given by ∥φ∥

p
m,p =

∑
|α|≤m ∥Dαφ∥

p
Lp(�)(1 ≤

p < ∞) and ∥φ∥m,∞ = max|α|≤m ess supx∈� |∂αu|, where
the multi index α = (α1, α2) and |α| = α1 + α2. For p = 2,
we defineHm(�) = Wm,2(�), ∥·∥m = ∥·∥m,2, ∥·∥ = ∥·∥0,2
and ∥ ·∥0,∞ = ∥·∥L∞ . We will also write f (x, ξ ) := f (ξ ) and
∂f (x, ξ )/∂ξ := f ′(ξ ) for simplicity.
For the analysis, we introduce the following space, for

r ≥ 1, 1 ≤ p < ∞,

W̃ r,p(�) := {u ∈ W 1,p(�) : u ∈ W r,p(�s), s = 1, 2}

equipped with the norm

∥u∥p
W̃ r,p(�)

:= ∥u∥pW r,p(�1)
+ ∥u∥pW r,p(�2)

, ∀u ∈ W̃ r,p(�).

For p = 2, we denote H̃ r (�) := W̃ r,2(�), equipped with the
norm

∥u∥2H̃ r (�) := ∥u∥2H r (�1) + ∥u∥2H r (�2), ∀u ∈ H̃ r (�).

The weak form for the semi-linear interface problem
(1) - (3) reads: find u ∈ Hh satisfies,

ah(u, v) = (f (u), v), ∀v ∈ Vh, (5)

where

ah(u, v) =

∑
T∈Th

(∫
T

β∇u · ∇vdx −

∫
∂T

β∇u · nvds
)

,

∀u, v ∈ Hh(�), (6)

where Hh(�) := {v| v|T ∈ H1(T ), ∀T ∈ Th} and Hh(�) is
equiped with the broken H1 semi-norm, which is ∥v∥1,h :=(∑

T∈Th |
√

β∇v|2
L2(T )

)1/2
.

Next, we construct an immersed finite element space
Vh(�) ⊂ Hh(�). First, on each element K ∈ Th, we let

Vh(K ) = span{φj(x), 1 ≤ j ≤ 3, x ∈ K },

where φj, 1 ≤ j ≤ 3 are standard linear nodal basis functions
if K is a non-interface element; otherwise, if K is an interface
element, φj, 1 ≤ j ≤ 3 are piecewise linear basis functions

discussed in [13] and [14]. Then, we can define the immersed
finite element space over the whole solution domain � as
follows:

Vh(�) = {v|v satisfies conditions (I) - (III) given below}

(I) v|K ∈ Vh(K ), ∀K ∈ Th;
(II) v is continuous at every mesh point X ∈ Nh;
(III) v|∂� = 0.
Now, we propose the IFE approximation: find uh ∈ Vh(�)

satisfies the following equation,

ah(uh, φ) = (f (uh), φ), ∀φ ∈ Vh. (7)

Throughout this paper, we assume the nonlinear term
f (x, u) has second order derivative with respect to its second
argument u. Here, we don’t need the nonlinear term such the
condition

|f ′(u)| ≤ C|u| and |f ′′(u)| ≤ C, ∀u ∈ R. (8)

We only need the following weaker assumptions on the
nonlinear term f (x, u).
Assumption 2.1: Assume f (x, u) : � × R → R is

a Carathéodory function, which satisfies the barrier-sign
conditions in its second argument: there exist constants
α, β ∈ R with α ≤ β, such that{

f (x, u) ≥ 0, if u ≥ β,

f (x, u) ≤ 0, if u ≤ α,
a.e. in �.

This assumption guarantees the L∞ boundedness of the
weak solution u and the numerical solution uh solved
by (5) and (7), respectively. That is to say there exists some
u1, u2 ∈ R, u1 < u2, we have u1 ≤ u, uh ≤ u2.
In order to give nonlinearity some local Lipschitz prop-
erty, we introduce the following additional hypothetical
conditions.
Assumption 2.2: Assume f (u) is locally monotone,

namely, f ′(u) ≥ 0, for any u ∈ [u1, u2].
Assumption 2.1 and Assumption 2.2 ensure the boundness

of f ′(u) and f ′′(u), for any u between u1 and u2. Then,
the error estimates of IFE solution derive by (7) can be
established [12].
Lemma 2.1: Let u ∈ H1

0 (�) ∩ W̃ 3,p(�) (2 ≤ p < ∞)
and uh ∈ Vh be the solution to problem (1)-(3) and the
IFE equations (7), respectively. Then, for some positive
constant C ,

∥u− uh∥1,h ≤ Ch∥u∥H̃3(�), (9)

and

∥u− uh∥Lp(�) ≤ Ch2∥u∥W̃ 3,p(�). (10)

III. T-G ALGORITHM AND ERROR ESTIMATES
In this section, we will present the novel Coarse grid
Correction Two-Grid (CC T-G) method and error analysis.
The fundamental ingredient in this scheme is another
immersed FE space VH (H ≫ h) defined on a coarser
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quasi-uniform triangulation of �. Setting AH (v, φ) =

ah(v, φ)− (f ′(uH )v, φ). Then, we present the CC T-G method
which has three steps as follows.
Algorithm 3.1: Step 1: On the coarse grid TH , compute

uH ∈ VH satisfing the following nonlinear system,

aH (uH , vH ) = (f (uH ), vH ), ∀vH ∈ VH . (11)

Step 2: On the fine grid Th, compute Uh ∈ Vh to satisfy the
following linear system:

AH (Uh, vh) = (f (uH ) − f ′(uH )uH , vh), ∀vh ∈ Vh. (12)

Step 3: On the coarse grid TH , solve the following linear
system for eH ∈ VH :

AH (eH , vH ) =
1
2

(
f ′′(uH )(Uh − uH )2, vH

)
, ∀vH ∈ VH .

(13)

Set uh = Uh + eH .
The new feature of the above Algorithm 3.1 mainly lies in

step 3 where a further coarse grid correction is performed.
Corresponding to the form AH (·, ·), we define a projection:
Hh(�) 7→ VH by

AH (φ,QHv) = AH (φ, v), ∀φ ∈ VH , v ∈ Hh(�).

By the interpolation properties of IFE functions [13], [14]
and the coercivity of ah(·, ·) [12], it can be easily shown that
there exists H0 > 0, if H ≤ H0, QH is well defined and
satisfies

∥w−QHw∥+H∥w−QHw∥1,h ≤ C(H0)H∥w∥1,h, ∀w ∈ Hh.

(14)

Lemma 3.1: For any χ ∈ Vh,

AH (uh, χ)=
(
f (uH ) − f ′(uH )uH +

1
2
f ′′(uH )(Uh − uH )2, χ

)
+

1
2

(
f ′′(uH )(Uh − uH )2,QHχ − χ

)
. (15)

Proof: By the definition of QH and eH ,

AH (eH , χ)=AH (eH ,QHχ )=
1
2

(
f ′′(uH )(Uh − uH )2,QHχ

)
.

Summarize (12) and (13), (15) can be easily derived.
Then, we introduce the theoretical result for two-step

T-G solution, which has been obtained (see reference [12],
Lemma 5.1).
Lemma 3.2: Let uh ∈ Vh be the solution to (7) on Th and

Uh ∈ Vh be the approximated solution obtained by (12). Then
we have the following estimate

∥uh − Uh∥1,h ≤ CH4
∥u∥W̃ 3,4(�), (16)

for some positive constant C .
The estimate in Lemma 3.2 is already quite remarkable

because of the high power on the coarse mesh size H . But
more remarkable estimates will be seen in the next lemma.

Lemma 3.3: Let uh ∈ Vh be the solutions of (7) on
Th, and uh ∈ Vh the approximated solution obtained by
Algorithm 3.1. Then we have the following estimate

∥uh − uh∥1,h ≤ CH5
∥u∥W̃ 3,4(�), (17)

for some positive constant C .
Proof: By the definition of uh and the Taylor expansion,

we have

ah(uh, ζ ) − (f ′(uH )uh, ζ ) =

(
f (uH ) − f ′(uH )uH

+
1
2
f ′′(uH )(uh − uH )2, ζ

)
+

(
O(uh − uH )3, ζ

)
,

which, together with (15) gives that for any ζ ∈ Vh

AH (uh − uh, ζ ) =
1
2

(
f ′′(uH )((uh − uH )2 − (Uh − uH )2), ζ

)
+

1
2

(
f ′′(uH )(Uh − uH )2, ζ − QH ζ

)
+

(
O(uh − uH )3, ζ

)
. (18)

By the Hölder inequality and the well known Sobolev
inequality,(

(uh − uH )2 − (Uh − uH )2, ζ
)

≤ ∥(uh − Uh)(uh − uH + Uh − uH )∥0, 65
∥ζ∥0,6

≤ ∥uh − Uh∥0,3∥uh − uH + Uh − uH∥0,2∥ζ∥0,6

≤ ∥uh − Uh∥1,h(∥uh − uH∥ + ∥Uh − uH∥)∥ζ∥0,6.

(19)

It follows from the convergence result (10) and Lemma 3.2,(
(uh − uH )2 − (Uh − uH )2, ζ

)
≤ CH6

∥u∥W̃ 3,4(�)∥u∥W̃ 3,2(�)∥ζ∥1,h. (20)

By the Schwarz inequality, (14) and Lemma 3.2,
1
2

(
f ′′(uH )(Uh − uH )2, ζ − QH ζ

)
≤ C∥Uh − uH∥

2
0,4∥ζ − QH ζ∥

≤ CH5
∥u∥2W̃ 3,4(�)∥ζ∥1,h, (21)

where we have used (14) in the last step.
By Hölder inequality(

O(uh − uH )3, ζ
)

≤ ∥(uh − uH )3∥0, 43
∥ζ∥0,4

≤ ∥uh − uH∥
3
0,4∥ζ∥1,h

≤ CH6
∥u∥3W̃ 3,4(�)∥ζ∥1,h. (22)

Then, Lemma 3.3 follows immediately from (20), (21)
and (22). This completes the proof.
From (9), Lemma 3.3 and the triangle inequality, we can

easily get the following theorem.
Theorem 3.1: Let u ∈ H1

0 (�) ∩ W̃ 3,4(�) be the solution
of (5), and uh ∈ Vh be the solution of Algorithm 3.1. We have
the following estimate

∥u− uh∥1,h ≤ C(h+ H5)∥u∥W̃ 3,4(�), (23)

for some positive constant C .
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FIGURE 1. Log-log errors of IFE solutions in L2 norm (above) and
H1 norm (below) for different diffusion coefficient ratios.

Next, we derive the Lp(2 ≤ p < ∞) norm error estimate
of uh − uh.
Lemma 3.4: Let uh ∈ Vh be the solution to (7) on Th

and uh ∈ Vh be the approximated solution obtained by
Algorithm 3.1. Then we have the following estimate

∥uh − uh∥Lp(�) ≤ CH6
∥u∥W̃ 3,4(�), (24)

for 2 ≤ p < ∞ and some positive constant C .
Proof: To derive the estimate in Lp(�) norm, we use a

duality argument by considering the auxiliary problem: find
µ ∈ H̃2(�) such that

−∇ · (β∇µ) − f ′(uH )µ = uh − uh, in �, (25)

with the same conditions as (2)-(3). Given 2 ≤ p < ∞,
set q = p/(p − 1) ∈ (1, 2]. By the regularity of the weak
solution u, there exists H0 > 0, and C(H0), if H ≤ H0,
we know that [8]

∥µ∥H̃2(�) ≤ C(H0)
∥∥∥uh − uh

∥∥∥
Lq(�)

, (26)

where we have used the regularity assumption(formula (27)
in [12]) of the auxiliary problem.

FIGURE 2. Log-log errors of T-G IFE solutions in L2 norm (above) and
H1 norm (below) for different diffusion coefficient ratios, h = H2.

Along with (25), let us also introduce the IFE approxima-
tion: find µh ∈ Vh satisfying

ah(µh, vh) −

(
f ′(uH )µh, vh

)
=

(
uh − uh, vh

)
, ∀vh ∈ Vh.

(27)

Then, multiplying vh = uh − uh to both sides of (25),
we have(
uh − uh, uh − uh

)
= ah(µ, uh − uh) −

(
f ′(uH )µ, uh − uh

)
= ah(µ − µh, uh − uh) −

(
f ′(uH )(µ − µh), uh − uh

)
+ ah(µh, uh − uh) −

(
f ′(uH )µh, uh − uh

)
=: K1 + K2 + K3 + K4. (28)

By continuity of ah(·, ·), we have

|K1 + K2| ≲ M (1 + ∥f ∥1,∞)∥µ − µh∥1,h∥uh − uh∥1,h
≤ ChH5

∥µ∥H̃2(�)∥u∥W̃ 3,4

≤ CH6
∥u∥W̃ 3,4∥uh − uh∥Lq(�), (29)

where we have used Lemma 3.3 and (26) in the last step.
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FIGURE 3. Log-log errors of CC T-G IFE solutions in L2 norm (above) and
H1 norm (below) for different diffusion coefficient ratios, h = H2.

For |K3+K4|, combining (18), (20), (21) and (22), we have

AH (uh − uh, ζ ) ≲ H6
∥u∥W̃ 2,4(�)∥ζ∥1,h

+ H4
∥u∥W̃ 3,4(�)∥(I − QH )ζ∥.

It follows

|K3 + K4| ≤ CH6
∥u∥W̃ 3,4(�)∥µh∥1,h

+ H4
∥u∥W̃ 3,4(�)∥(I − QH )µh∥

≤ CH6
∥u∥W̃ 3,4(�)∥µh∥1,h

+ H4
∥u∥W̃ 3,4(�)(∥(I − QH )µ∥

+ H∥µ − µh∥1,h)

≤ CH6
∥u∥W̃ 3,4(�)

∥∥∥uh − uh
∥∥∥
Lq(�)

. (30)

Then, Lemma 3.4 follows immediately from the error
estimates for Ki, with i = 1, 2, 3, 4. This finishes the proof of
Lemma 3.4.
Finally, we can easily obtain the followingLp (2 ≤ p < ∞)

norm error estimate of Algorithm 3.1.
Theorem 3.2: Let u ∈ H1

0 (�) ∩ W̃ 3,4(�) be the solution
of (5), and uh ∈ Vh be the solution of Algorithm 3.1. Then,
We have ∥∥∥u− uh

∥∥∥
Lp(�)

≤ C(h2 + H6)∥u∥W̃ 3,4(�), (31)

for some positive constant C .

FIGURE 4. Log-log errors of T-G IFE solutions in L2 norm (above) and H1

norm (below) for different diffusion coefficient ratios, h = H3.

Proof: The theorem can be easily proved by the
error estimates of IFE solutions in Lp norm (10), (24) in
Lemma 3.4, and the triangle inequality.

According to Theorem 3.1 and Theorem 3.2, it suffices
to take H = O(h1/3), while guaranteeing the optimal (or
nearly optimal) approximation for the discretization uh in
both H1 and Lp norm, and for H1 norm, it even suffices to
take H = O(h1/5).

IV. NUMERICAL EXPERIMENTS
In this section, we present numerical results to verify the
effectiveness and robustness of our proposed scheme. All
the experiments are computed with double precision and
are performed on a desktop computer with a Intel Core
i7-9700 CPU, 3.00 GHz, and 8 GB memory. We consider
solving the following test semi-linear equations:

−∇ · (βi∇ui) + u3i = fi, in �i, i = 1, 2, (32)

where the boundary condition and interface jump are
subjected to (2)-(3).
Example 4.1: In this example, take the domain � =

(−1, 1)× (−1, 1), the interface 0 being the circle centered at
(0, 0) with radius r0, so that�1 = {(x, y) ∈ R2

|x2+y2 < r20 },
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FIGURE 5. Log-log errors of CC T-G IFE solutions in L2 norm (above) and
H1 norm (below) for different diffusion coefficient ratios, h = H3.

�2 = �\�1. For the exact solution, we choose

u =

{
rα/β1, (x, y) ∈ �1,

rα/β2 + (1/β1 − 1/β2)rα
0 , otherwise,

(33)

where r =
√
x2 + y2, α = 3, r0 = 0.5, and fi is suitably

chosen such the exact solution.
First, we verify that the IFE solutions have optimal

convergence orders in both L2 norm and semi-H1 norm. For
convergence orders in L3 and L4 norms, we have observed
the similar behavior. In Figure 1, we display log-log errors
of IFE solutions with various diffusion coefficients ratios,
which illustrate that the IFE solutions of semi-linear interface
problems (1)-(3) have second order convergence in L2 norm
and first order convergence in semi-H1 norm.
For the relationship h = H2, log-log errors of T-G

IFE solutions and CC T-G IFE solutions with different
diffusion coefficient ratios are given in Figure 2 and Figure 3,
seperately. We know that both the T-G IFEM and CC T-G
IFEM have optimal convergence rate in L2 and semi-H1

norms with the coarse grid mesh size H = h1/2.
Log-log Errors of T-G IFEM and CC T-G IFEM with

H = h1/3 are shown in Figure 4 and Figure 5. We know that
both T-G IFEM and CC T-G IFEM have optimal convergence
orders, which are consistent with our theoretical results.

FIGURE 6. A comparison of computing time for IFEM on single grid, T-G
IFEM, and CC T-G IFEM with h = H2 (above) and h = H3 (below).

However, errors of T-G IFEM in L2 norm are bigger than the
errors of CC T-G IFE solutions.

For h = H4, we compute IFEM solution by Newton
method on mesh size h = 1/256. The errors in L2 norm and
semi-H1 norm are 4.017e−06 and 2.510e−03, respectively.
By contrast with Table 1, we find that CC T-G IFEM is more
robust than T-G IFEM. In semi-H1 norm, the errors of T-G
IFEM and CC T-G IFEM are consistent with that of IFEM
on single grid. For L2 norm, the errors of T-G IFEM and CC
T-G IFEM is bigger than the errors on single grid. The three
step coarse grid correction T-G IFEM has smaller errors than
two-step T-G IFEM. The similar behavior has been derived
for different diffusion coefficients. It should be pointed out

TABLE 1. Error of T-G IFEM and CC T-G IFEM, with fixed fine grid mesh
size h = 1/256, β1 : β2 = 1 : 104.
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that the smaller of the mesh size, the advantage of CC T-G
IFEM is more obvious.

To verify the convergence order of T-G IFEMwith h = H5,
we compute the IFE solutions on mesh size h = 1/243. The
errors on L2 norm and semi-H1 norm with β1 : β2 = 1 : 104

are 4.432e− 06 and 2.510e− 03, respectively. From Table 2,
we know that |u − uh|1,h has the convergence accuracy as
IFE solutions. But for T-G IFEM with h = H5, |u − Uh|1,h
has been increased at the sixth place after the decimal point.
Thus, we verify the CC T-G IFEM have optimal convergence
accuracy in H1 norm with H = h1/5. Moreover, we show the
computing time of IFEM on single grid, T-G IFEM, and CC
T-G IFEM in Figure 6. T-G IFEMs have greatly saved the
calculation time and the third correction step expends little
computational cost. In a word, the CC T-G IFEM can greatly
improve computation accuracy by adding a small calculation
cost.

TABLE 2. Error of T-G IFEM and CC T-G IFEM, with fixed fine grid mesh
size h = 1/243, β1 : β2 = 1 : 104.

V. CONCLUSION
In this paper, we present a novel two-grid algorithm for
semi-linear elliptic interface problems solved by IFEM.
Optimal error estimates of the coarse grid correction two-grid
solution in bothH1 and Lp norm are derived. It shows that the
same accuracy of the IFE solutions are obtained by using the
relationship h = O(H3) (it even suffices to take h = O(H5)
for H1 norm) between the fine grid and the coarse grid.
The key ingredient of the two-grid method is that we use
the correction technique on the coarse grid. Furthermore,
we know that a very coarse grid space is sufficient for
nonlinear problem that are dominated by linear part. In our
future work, we will consider two-grid algorithms for more
complex system.
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