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ABSTRACT This article proposes an enhancement to estimate unmodeled dynamics within the simplified
dynamic model of a quadcopter by integrating three key methodologies: Nonlinear Model Predictive Control
(NMPC), aMomentumObserver Dynamics (MOD), and an adaptive control law. Termed as Adaptive NMPC
with MOD, this integrated approach leverages NMPC, implemented using the CasADi framework, for real-
time decision-making, while the momentum observer facilitates system state estimation and uncertainty
mitigation. Simultaneously, the adaptive control law adjusts parameters to estimate errors in unmodeled
dynamics. Through digital twin and Model in Loop (MiL) simulations, the effectiveness of this framework
is demonstrated. Specifically, the study focuses on the simplified quadcopter model, acknowledging often
overlooked inherent dynamics resulting from the simplification by not considering the nonlinearities induced
by the drone’s attitude angles. Addressing these unmodeled dynamics is critical, and the Adaptive NMPC
with MOD method emerges as a robust solution, showcasing its potential across various scenarios.

INDEX TERMS NMPC, adaptive control, disturbance estimation, UAV dynamics, momentum observer,
CasADi.

I. INTRODUCTION
S everal recent studies have demonstrated interest in devel-
oping advanced control algorithms for various applications
using unmanned aerial vehicles (UAV) due to their extensive
range of applications in different areas of compliance, such
as transportation and logistics, civil, maintenance, security,
and even military applications [1], [2]. One of the primary
uses of UAVs is in executing specific tasks such as following
a desired trajectory, position, and path tracking [3]. Thus,
it becomes necessary to program UAVs to follow a predeter-
mined path or to reach a specific location. This capability is
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crucial in many applications, such as surveying large areas of
land or delivering goods to a particular destination that may
be far away from the control center or pilot’s location [4].
Another significant area of interest is visual servo control
[5]. It involves using visual feedback information to control
the motion of the UAV. This technology proves useful when
the drone needs to interact with its environment, such as
in search and rescue operations and when capturing aerial
photos or videos [6]. It is also useful to detect points of
interest like gates to pass through, where tools using computer
vision and artificial intelligence have provided significant
development [7]. Obstacle avoidance control using artificial
intelligence is also a critical area of focus [8]. It uses AI
algorithms to enable the UAV to detect and avoid obstacles.
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This technique is particularly important in ensuring the safety
and reliability of UAV operations, especially in complex and
unpredictable environments [9]. Finally, formation control
of multiple UAVs is another exciting area of research [10].
This area involves coordinating the movement of a group of
UAVs to work together to achieve a common goal. Therefore,
it has potential applications in several areas, such as swarm
robotics, where a group of robots work together to perform
tasks that would be difficult or impossible for a single
robot to accomplish [11]. On the other hand, one of the
main challenges that come when working with UAVs in real
environments is the presence of external disturbances. Most
controller design approaches do not consider uncertainties
in mathematical models [12] in either partially structured
or unstructured spaces. These uncertainties can generate
external disturbances such as noise, communication delays,
wear and tear, flight system failures, and variation of the
payloadmass [13], [14]. These factors can significantly affect
the performance and reliability of the UAV. Furthermore, the
internal dynamics of the robot change at every instant of time
due to the desired task. This means that the control system
may no longer be effective, and the dynamic parameters must
be updated despite the uncertainties to which the system
may be subjected [15]. One solution is the use of adaptive
control. It is a method used in automatic control systems
that allows the controller to adapt to unknown or changing
conditions [16]. This makes it an ideal option for UAVs,
as it enables the control system to adjust to changes in the
machine’s internal dynamics during the execution of desired
tasks [17].

A. RELATED WORK
The development of UAV has had significant advancements
with the integration of Model Predictive Control (MPC) to
improve tracking performance in UAVs [18], in particular its
variants Nonlinear Model Predictive Control (NMPC), and
Adaptive Nonlinear Predictive Control, enhancing trajectory
tracking, energy optimization, and safety, while focusing on
a Moment Observer-Based approach to further improve the
results of the models proposed.

NMPC, as a variant of MPC, is mainly used due to its
accuracy and computational efficiency in trajectory tracking,
offering substantial improvements over baseline feedback
controllers [19]. Its application extends to sophisticated tasks
such as obstacle avoidance [20], showcasing MPC’s capa-
bility in allowing navigation through dynamic environments.
The technology also proves adaptable across various UAV
types, from fixed-wing to quadrotors, addressing challenges
from precision landing [21] to agile flight [22].
Regarding safety and reliability in UAV deployment,

NMPC provides practical strategies for collision avoid-
ance [23], [24] and dynamic obstacle negotiation [25], [26].
It is important to also remark how NMPC allows stable
and accurate control during visual-based tasks [27]. The
methodology facilitates coordinated maneuvers, which is

evident in studies on multi-UAV encirclement [28] and
formation control [29] emphasizing its utility in complex
operational scenarios, where fault-tolerant control provides
a robust solution for handling faults and disturbances [30].

NMPCs also provide a solution to the energy effi-
ciency concern, with reduced consumption in quad-rotor
systems [31] and highlighting the importance of real-time
implementation efficiency [32]. Computational burden may
also decrease thanks to effective control performance through
simulations and experiments with NMPC [18]. Additionally,
system identification and collision avoidance integrated
within NMPC frameworks [33] allow safety during flight
without losing performance. Lastly, MPC-based naviga-
tion [34] and explicit MPC approaches [35] further validate
the model’s adaptability and effectiveness in real-world
applications such as constrained environments, underscoring
its potential to enhance UAV operational capabilities across
various conditions and tasks.

Other control strategies derived from Model Predictive
Control, such as adaptive and robust control frameworks
and nonlinear and fuzzy logic approaches, are summarized,
aiming at improving trajectory tracking, attitude stabilization,
obstacle avoidance, and payload transportation in unmanned
aerial vehicles (UAVs) and multi-rotor systems. Path tracking
and several Adaptive Model Predictive Control (ANMPC)
techniques applied in quadrotors have resulted in high pre-
cision in several tasks, like carrying unknown payloads [36],
or following desired trajectories and stabilizing attitudes
under dynamic conditions [37], enhancing the path tracking
capabilities of autonomous systems [38]. These methodolo-
gies are improved by incorporating advanced algorithms like
the Laguerre-based Adaptive MPC, or robust and nonlinear
MPC strategies, which offer significant improvements in
control accuracy and robustness against disturbances and
uncertainties [39], [40] and also in cases that the model
requires to adapt it to varying linear parameters.

Moreover, obstacle avoidance and mission planning for
aerial platforms have been addressed through adaptive model
predictive control strategies and differential evolution-based
distributed MPC, facilitating safer and more efficient
aerial operations, particularly in complex environments like
autonomous ship landing [10], [15]. Integrating active dis-
turbance rejection and backstepping-based adaptive control
further emphasizes the focus on ensuring performance and
enhancing stability against external perturbations [41]. This
approach extends to autonomous load transporting systems,
where adaptive control and model reference adaptive control
techniques are pivotal in coordinating flight formations and
managing load transportation with high stability and accu-
racy [42]. Another examination of nonlinear and adaptive
intelligent control techniques and their application in various
control systems, include quadrupedal robots and unmanned
rotorcrafts, showcasing their versatility and effectiveness
across different platforms [43], [44], [45]. It is worth
noting that all presented works underscore the importance
of performance, precision, and payload optimization in
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aerial systems through the development of robust adaptive
control strategies and nonlinear model predictive path
tracking approaches. These innovations not only enhance
the control and maneuverability of UAVs but also ensure
their adaptability to diverse and challenging operational
scenarios [46], [47]. The next paragraph will focus on the
approach of Observer-Based models as an additional tool to
further improve the control system of UAVs using combined
control methods.

Observer-based models choose one or more variables
to analyze in order to control the effects of uncertainties
or disturbances as an ‘‘observer’’ like outside the model.
As this work focuses on a Momentum-Observer model,
this subsection will showcase works that have researched
this area in UAVs and other kinds of robots. Regarding
Momentum-Observed Based (MOB) models, [48] introduces
a MOB algorithm using LSTM for collision detection,
learning model uncertainties without a precise dynamics
model. This approach, validated on a real robot, improves
traditionalMOBmethods by better handlingmodel errors and
friction effects. Another work proposes a Nonlinear Extended
State Momentum Observer (NESMO) for sensor-less colli-
sion detection in robots under model uncertainties [49]. This
paper presents NESMO for sensor less collision detection,
addressing sensitivity and noise immunity challenges in
current methods. Utilizing a fractional power function and
time-varying damping ratio, NESMO improves monitor-
ing bandwidth and noise immunity, with a novel TVT
to distinguish collision signals from disturbances, proven
effective on a 6-DOF robot. Finally, [50] reveals an SMO
model for collaborative robots, leveraging sliding mode
control for high-accuracy, minimal-delay collision detection
without joint acceleration measurement, enhancing safety
and reliability in human-robot interactions.

B. MAIN CONTRIBUTIONS
The paper presents the following contributions in the
field. Primarily, it introduces a cutting-edge approach by
integrating adaptive laws with a MOD, thus significantly
enhancing the controller’s adaptability and precision in
response to dynamic system changes. This fusion not only
amplifies the robustness of the control strategy but also
creates opportunities for real-time adjustments in the face of
uncertainties or varying operating conditions. Additionally,
the paper delves into the challenging task of estimating
perturbation dynamics in the simplifiedUAV dynamicmodel,
offering a comprehensive comparative analysis of various
identification methods. By doing so, it provides valuable
insights into effective techniques for addressing unknown or
uncertain system models, thereby advancing the state-of-the-
art in system identification and control methodologies.

C. OUTLINE
The article is structured into chapters to present its content
systematically. It begins with an introduction emphasizing

the importance of accurately modeling dynamics in UAV
frameworks. Chapters 2 and 3 explore the background of
the topic, focusing on the kinematic and dynamic model of
quadcopter. Chapters 4 through 7 present the formulation
of Nonlinear Model Predictive Control, Adaptive MPC
Controller, MPC with Dynamic Moment Observer, and
Adaptive MPC with Moment Observer. Chapter 8, the results
section, provides a detailed analysis of the case study,
including a comparison of the experimental framework and
the control laws utilized. Finally, Chapter 9 presents the
conclusions drawn from the study

II. KINEMATIC MODEL
Figure 1 shows the quadcopter platform, where the
world-fixed inertial frame is represented by ⟨I⟩ with the
following unit vectors

{
Ix , Iy, Iz

}
and the body-fixed frame

attached to quadcopter movements is defined by ⟨B⟩ with the
unit vectors

{
Bx ,By,Bz

}
, where the center of mass (CoM) is

aligned.

FIGURE 1. UAV reference frame DJI Matrice 100.

This work considers that it is enabled to rotate only in
yaw (ψ) defined in the vertical axis Bz and does not consider
the rotational movements of Pich and roll because the angles
on the horizontal axis Bx and By are relatively small in
flights that are not agile. In addition, the multirotor’s low-
level controller ensures stable hovering flight. The position
and orientation of quadcopter is define by:


ηx = ηx0 + a cos(ψ) − b sin(ψ)
ηy = ηy0 + a sin(ψ) + b cos(ψ)
ηz = ηz0 + c
ηψ = ψ,

(1)

and defined vectorially by η =
[
ηx ηy ηz ηψ

]⊺
∈

R4 respect to the frame ⟨I⟩, where the values (ηx0 , ηy0 , ηz0 )
are the locations of the center of mass and (a, b, c) values
define the displacement of the point of interest measured
from the CoM. The evolution of the point of interest over
time represents the instantaneous kinematics of the quadrotor,
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expressed in matrix form is:
η̇x
η̇y
η̇z
η̇ψ

 =


cos(ψ) − sin(ψ) 0 −ρ1
sin(ψ) cos(ψ) 0 ρ2

0 0 1 0
0 0 0 1



νl
νm
νn
νω

 (2)

where ν =
[
νl νm νn νω

]⊺
∈ R4 define the linear (νl, νm, νn)

and angular (νω) velocities in ⟨B⟩ frame; the expressions ρ1 =

a sin(ψ) + b cos(ψ) and ρ2 = a cos(ψ) − b sin(ψ) represent
the additional behavior considering the displacement of the
point of interest. Equation (2) is expressed in the compact
form as:

η̇(t) = J(ψ(t))ν(t), (3)

where J(ψ(t)) ∈ R4×4 is the Jacobian matrix which allows
the linear mapping between the control maneuverability
velocities ν to the evolution of the point of interest η̇.

III. DYNAMIC MODEL
Most unmanned aerial vehicles (UAVs) used in development
are equipped with low-level PID controllers within their
motors. These controllers adjust the voltages required for
attitude and altitude control based on reference speeds [51].
This setup effectively leverages the advantages offered by
software development kits (SDKs) provided by commercial
drone manufacturers for developers and researcher.

The dynamic model (4) presented in [33] expresses a sim-
plified dynamic model ν̇(t) = f(ξ , ν(t),µ(t)), considering
linear and rotational velocities as the input signals of the
system.

µl
µm
µn
µω

 =


ξ1 0 0 ξ2
0 ξ3 0 ξ4
0 0 ξ5 0
bξ6 aξ7 0 ξ8(a2 + b2) + ξ9



ν̇l
ν̇m
ν̇n
ν̇ω



+


ξ10 ωξ11 0 aωξ12
ωξ13 ξ14 0 bωξ15
0 0 ξ16 0

aωξ17 bωξ18 0 ξ19



νl
νm
νn
νω

 (4)

To simplify the notation, the dynamic model of the UAV
can be written in its compact form as:

µn(t) = Mn(ξ , a, b)ν̇(t) + Cn(ξ , ν, a, b)ν(t), (5)

where Mn(ξ , a, b) ∈ R4×4 is a positive definite matrix,
which define the mass and inertia matrix of the quadcopter;
Cn(ξ , ν, a, b) ∈ R4×4 is the Coriolis and Centripetal
matrix; µ =

[
µl µm µn µω

]⊺
∈ R4 are the reference

maneuverability velocities; and ν̇ =
[
ν̇l ν̇m ν̇n ν̇ω

]⊺
∈

R4 are the accelerations generated in the system. The
dynamic model presented in (5) can be represented as a
regressor matrix of the system Yn and the vector of dynamic
parameters ξ ,

Mn(ξ , a, b)ν̇(t) + Cn(ξ , ν, a, b)ν(t) = Yn(ν̇, ν, a, b)ξ , (6)

where, the vector ξ =
[
ξ1 ξ2 .. ξp

]⊺
∈ Rp, with p = 19,

is the vector of unknown dynamic parameters represented

TABLE 1. Valores de ξ .

in Table 1, encompassing the internal dynamics of the
quadrotor. These parameters constitute a combination of
values associated with the physical, mechanical, electri-
cal, and aerodynamic phenomena influencing the robotic
system.

However, (6) does not consider the unmodeled dynamics
inherent in the simplified model and the incidence of external
perturbations that may change the internal configuration
of the UAV, so that an uncertainty velocities term Sτ u is
introduced:

µT (t) = Mn(ξ , a, b)ν̇(t) + Cn(ν, ξ , a, b)ν(t) + Sτ u, (7)

where µT = µn + µext represents the total velocities
applied on the platform and it is the sum of the nominal
active velocities µn, and the external perturbation velocities
µext ∈ R4.

IV. MPC CONTROLLER
This section describes the formulation of the optimal control
problem to plan the trajectory tracking over a finite prediction
horizon l ∈ [t, t + N ], as shown in Figure 2. The prediction
of the generalized nonlinear kinematic-dynamical system is
defined as:

ẋ(t) = Ax(t) + Bµ(t),

A =

[
04×4 J(ψ)
04×4 −M−1

n Cn

]
, B =

[
04×4
M−1

n

]
, (8)

where x(t) =
[
η⊺ ν⊺

]⊺
∈ X and µ(t) ∈ U are the state and

input to the system; and ẋ(t) =
[
η̇⊺ ν̇⊺]⊺. An intermediate

cost function ℓt is defined as:

ℓt (η̃,µ) =
1
2
(η̃⊺(t)Qη̃(t) + µ⊺(t)Rµ(t)). (9)

At the last instant of time the final prediction cost function
ℓf is defined as:

ℓf (η̃) =
1
2
η̃⊺(N )Qη̃(N ). (10)

where Q and R are positive definite design gain matri-
ces for the error and input system, respectively. The
NMPC is defined as the solution to the optimal control
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FIGURE 2. Nominal NMPC general scheme.

FIGURE 3. Adaptive NMPC general scheme.

problem (OCP):

min
η̃(.),µ(.)

ℓf (η̃(N )) +

∫ N

t
ℓt (η̃(t),µ(t))dt (11a)

subject to: ẋ = f(x(t),µ(t)) (11b)

x(0) = x0 (11c)

ν ∈ [νmin, νmax] (11d)

µ(t) ∈ U ∀t ∈ [0,N − 1] (11e)

x(t) ∈ X ∀t ∈ [0,N ] (11f)

where the NOCP (11a) is solved considering the initial
conditions (11c) and translated into a nonlinear program-
ming formulation (NLP) using the direct multiple shooting
method [52]. (11b) define the system dynamics considered
as a constraint. Equations (11d) to (11e) and (11f) define the
input and state constraints, respectively.

V. ADAPTIVE NMPC CONTROLLER
Figure 3 shows the general scheme for solving the trajectory
tracking problem as the direct sum of the optimal control
actions generated by the NMPC subject to the constraints
and the estimation of the unmodeled dynamics that have an
adaptive compensation character against the perturbations to
which the quadrotor may be subjected.

Due to the changes in the internal dynamics and the effect
of the uncertainties that affect the quadrotor dynamic model,
velocity errors ν̃ = µc − ν are generated, which are the
difference between the velocities of the optimal controller and
the actual velocities of the robot. The dynamic model (7) can
be rewritten in the regressor matrix form:

µT (t) = Yn(ν̇, ν)ξn + Yu(ν̇, ν)ξu. (12)

From here onwards, the subscript ‘n’ refers to the
nominal dynamic model obtained by offline identification.
The subscript ‘u’ refers to the dynamics not modeled in
the simplified dynamic model which includes the unknown
external disturbances. Considering the error between the
approximate uncertainty model and the real uncertainty, it is
obtained:

Yu(ν̇, ν)ξ̂u ≈ Yu(ν̇, ν)ξu + Yu(ν̇, ν)ξ̃u, (13)

where, ξ̂ and ξ are the estimated and real dynamics
parameters, respectively, whereas ξ̃ = ξ̂ − ξ is the vector
of parameter error. In order to estimate the uncertainties
in the dynamic parameters and the non-modeled dynamics,
the NMPC output is assumed to produce an optimal input
µc(t) ≈ Yn(ν̇, ν)ξn, and the following Adaptive Non Linear
MPC is proposed:

µT (t) = µc(t) + Yu(ν̇r , νr )ξ̂u (14)

= µc(t) + µ̂u(t). (15)

The adaptable component Yu(ν̇r , νr )ξ̂u =: µ̂u(t) serves
two purposes by providing an estimation of the disturbance
and generating the necessary adjustments in the system’s
dynamics. Also, the following parameter-updating law is
proposed:

Yu(υ̇r ,υr )ξ̂u = M̂u(ξ )ν̇r + Ĉu(ξ )νr + Krσ , (16)
˙̂
ξu = 0−1Y⊺

u σ . (17)

where, the undesirable steady-state position errors are
constrained to lie on a sliding surface σ = ν̃ + 3η̃, where
3 is a constant diagonal gain matrix of velocity errors. Here,
νr = σ + ν represents the modified reference velocity.
To demonstrate the tracking error global convergence, the

following Lyapunov candidate function is considered,

V =
1
2
σ⊺Muσ +

1
2
ξ̃

⊺
0ξ̃ , (18)

where 0 ∈ Rp×p is a positive definite diagonal matrix.
From (18), the time derivative of the Lyapunov candidate
along the system’s trajectories is,

V̇ = −σ⊺[µu − Muν̇r − Cuνr ] + ξ̃
⊺
0

˙̃
ξ . (19)

From equations (16), (17), and (19), and considering that
˙̃
ξ =

˙̂
ξ due to the parameters are scalar values, then,

V̇ = −σ⊺[M̃uν̇r + C̃uνr + Krσ ] + ξ̃
⊺
0

˙̃
ξ (20)

= −σ⊺Krσ + ξ̃
⊺
[0 ˙̂

ξ − Y⊺
u σ ] (21)

= −σ⊺Krσ ≤ 0. (22)

The expression (22). indicates that the output errors
approach the sliding surface over time.

σ = ν̃ + 3η̃ = 0. (23)

Furthermore, the expression (23) suggests that the sliding
surface σ approaches zero, indicating the system’s conver-
gence towards an equilibrium state. However, to affirm that
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the system attains a stable state where both the steady-state
velocity error ν̃ and the steady-state position error η̃ converge
to zero, it is necessary to demonstrate the vanishing of the
steady-state velocity error as well. This can be accomplished
by substituting the desired velocity νd with a virtual
‘reference velocity’ νr [53]:

νr = νd + 3η̃, (24)

it is defined that,

σ = ν̃r = νr − ν

The control law and adaptation law become,

µ̂u(t) = M̂u(ξ )ν̇d + Ĉu(ξ )νd + Kr ν̃, (25)

with,

˙̂
ξu = 0−1Y⊺

u ν̃. (26)

Once more, global convergence of the tracking can be
demonstrated by employing the Lyapunov function:

V =
1
2
ν̃⊺Muν̃ +

1
2
ξ̃

⊺
0ξ̃ , (27)

Similarly, in the previous demonstration, instead of (18),
the result obtained is,

V̇ = −ν̃⊺Kr ν̃ ≤ 0 (28)

The expression (28) suggests that the steady-state velocity
error of the aircraft is zero. Consequently, this implies that
η̃ → 0 as t → ∞. The adaptive controller designed for
the perturbations defined by equations (16) and (17) achieves
global asymptotic stability and ensures zero steady-state error
for UAV positions.

VI. MPC WITH MOMENTUM OBSERVER DYNAMICS
The generalized momentum of the platform p ∈ R4 is:

p = Mnν. (29)

From model in (5) the time temporaly evolution of p is
written as

ṗ = µτ + Ṁnν − Cnν (30)

= µτ + C⊺
n ν, (31)

where the property Ṁn = Cn + C⊺
n is used. As presented

in [54], from (30), the dynamics of the momentum observer
is deduced

˙̂p = µ + µ̂ext + C⊺
n ν (32)

˙̂µext = Ko(ṗ − ˙̂p), (33)

where µ̂ext is the external perturbation velocity estimation,
and Ko is the positive diagonal gain matrix of the observer.
The resulting output from the observer is the estimation of

FIGURE 4. MOD-NMPC general scheme.

external disturbance, which is obtained by integrating (33) as
follows,

µ̂ext = Ko

(
p(t) −

∫ t

t0
(µn + µ̂ext + C⊺

n ν)dt − p(0)
)
.

(34)

Themonitored signal µ̂ext , is also referred to as the residual
vector. Ideally, this vector, resembling an abstract sensor,
allows the momentum observer to function like a virtual
sensor, detecting external velocities across the entirety of the
UAV’s structure.

The dynamic relationship between the external velocities
µext and µ̂ext is expressed as:

˙̂µext = Ko(µext − µ̂ext ) (35)

This equation represents a first-order, low-pass, stable,
linear, and decoupled estimation of the external forces, with
the property µ̂ext ≈ µext as Ko approaches infinity.
Figure 4 shows the general scheme for solving the

trajectory tracking problem as the direct sum of the optimal
control actions generated by the NMPC subject to the
constraints and the estimation of the unmodeled dynamics
that have an adaptive compensation character against the
perturbations to which the quadrotor may be subjected.

The combination of Momentum Observer Dynamics and
NMPC, called MOD-NMPC, is defined as:

min
η̃(.),µ(.)

∫ N

t
ℓt (η̃(t),µ(t))dt + ℓf (η̃(N )) (36a)

subject to: ẋ = f(x(t),µn(t), µ̂ext (t)) (36b)

x(0) = x0 (36c)

ν ∈ [νmin, νmax] (36d)

µ(t) ∈ U ∀t ∈ [0,N − 1] (36e)

x(t) ∈ X ∀t ∈ [0,N ] (36f)

Inwhich it is considered that the estimated disturbance µ̂ext
at time t remains the same throughout the horizon [t, t +N ].

VII. ADAPTIVE NMPC WITH MOD SCHEME
We suppose that the Momentum Observer Dynamic is
designed such that the difference ∥µext − µ̂ext∥ is minimized;
however, there exists a residual error µ̃ext such that:

µ̂ext ≈ µext + µ̃ext (37)
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FIGURE 5. Adaptive NMPC with MOD general scheme.

FIGURE 6. Digital twin of DJI matrice 100.

Figure 5 shows the general scheme that this work
proposes as combination of adaptive control with NMPC
and Momentum Observer Dynamics to generate a control
action that minimizes, adapts, and estimates the external
disturbances acting on the aircraft body, using control law 38.

µn(t) ≈ µc(t) + µ̂u(t) − µ̂ext (t) (38)

≈ µc(t) + Yu(ν̇r , νr )ξ̂u − µ̂ext (39)

If the error remains minimal, the observer term µ̂ext
approaches the actual uncertainty Yu(ν̇, ν)ξu, then µ̂u(t) ≈

µ̃ext . Without consistently stimulating references, this sug-
gests that µ̂u(t) ̸≈ µ̂ext (t). Nevertheless, it does indicate
that the NMPC dynamics roughly approach the genuine
dynamics.

VIII. RESULT
The proposed controllers in this article are evaluated and val-
idated through simulation experiments applied to the digital
twin of the quadcopter DJI Matrice 100 quadrotor, utilizing
a dynamic model identified within a real experimentation
framework [19]. This analysis compares the proposals in a
MiL framework [55] using the robotics simulation software
Webots [56], as shown in Figure 6.
The experiment involves testing four baseline scenarios by

applying perturbations:

1) Nominal NMPC

2) Adaptive NMPC

3) MOD-NMPC

4) Adaptive NMPC with MOD

Achieving ideal results is possible by using an NMPC
problem that is fully aware of the disturbances applied
to the model. The main goal of this work is to precisely
estimate unmodeled dynamics and leverage them to enhance
the robustness of the NMPC. All methods employ the same
intermediate and final cost function, fine-tuned in terms of
gain matrices to attain optimal performance in the nominal
case.

In order to evaluate the runtime performance of the
advanced control algorithm, the experiments are performed
on a single ground station PC (Intel i7-8850H, 2.6 GHz,
hexa-core 64-bit), with the loop control running at 30 Hz,
this means a time horizon of 1s whit N = 30. The OCP
solver is based in IPOPMultiple Shooting algorithm provided
by CasADi [57]. The communication between the node
controller and the UAV node is facilitated through ROS.

1) EXPERIMENTAL SETUP
For the implementation of the simulated experiments, the
following constraints, initial conditions, and gain matrices
are established for the proposed controller. Considering that
the maximum velocity of the desired trajectory is reached
when the derivative of the function is at its peak, it is inferred
that µmax =

[
4 4 4 0.5

]⊺ [ms ]; µmin = −µmax ; η0 =[
0 0 1 0

]⊺ [m]; Moreover, ν0 =
[
0 0 0 0

]⊺ [ms ]; weight
matrix for cost function Q = 1.5I4×4 and R = diag[1 1 1 1];
weight matrix for adaptive law � = 2I4×4, 3 = 0.2I4×4 and
0 = diag[1 1 1 1].
When a perturbation appears, the robot’s acceleration is

described by the following differential equation,

ν̇ = Mn(ξ , a, b)−1[−Cn(ξ , ν, a, b)ν + Sτ u + µ] (40)
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TABLE 2. Desired trajectory for experiments.

FIGURE 7. Nominal NMPC experiment results.

The perturbation, denoted by Sτ u =
[
τux τuy τuz τuψ

]⊺
∈

R4, is described by the function as follows:

τux (t) =



0 t < 5 ∨ t > 25
2 5 ≤ t < 10
0.5 10 ≤ t < 15
−1.8 15 ≤ t < 20
1.5 20 ≤ t < 25

τuy (t) = 2 sin(0.1 t) + 1.5 cos(0.06t)

τuz (t) = 2 sin(0.05t) + 2 cos(−0.025t)

τuψ (t) = 1.5sign(0.2 sin(0.04t) + 3 cos(−0.04 t)) (41)

The main objective of the controller proposed in this work
is to track the reference trajectory defined in Table 2 over the
frame ⟨I⟩ during the incidence of disturbances not considered
in the dynamic model.

A. NOMINAL NMPC EXPERIMENT
The evaluation is conducted with consideration to pertur-
bation functions acting as external signals modifying the
system dynamics. The results depicted in Figures 7.a and 7.b
illustrate that the NMPC with nominal model alone is not
robust enough against perturbations. In Figures 7.c and 7.d,
the error and control actions are observed respectively.
This highlights the necessity of integrating adaptive control
mechanisms, such as MOD, to enhance the system’s error in
real-world scenarios.

Figure 8 shows that the duration to solve the optimal
control problem for the NMPC consistently falls below
5.2 ms for a 1-second horizon. It is recognized that
computational performance is contingent upon the hardware
employed, suggesting scalability with a more robust ground
station PC.

FIGURE 8. MPC solver execution time.

FIGURE 9. Adaptive NMPC experiment results.

FIGURE 10. Adaptive law disturbance estimation results.

B. ADAPTIVE NMPC EXPERIMENT
Figure 9.a and 9.b depict the obtained behavior closely
aligned with the desired trajectory. This is because the errors
observed in Figure 9.c converge to zero, and the control
actions in Figure 9.d are bounded.

In Figure 10, a comparison is presented between the
components of disturbances generated by (41) and those
estimated by the adaptation law with NMPC. The illustration
vividly demonstrates the algorithm’s exceptional capability to
approximate the disturbances introduced to the aircraft. This
observation underscores the effectiveness of the adaptive con-
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FIGURE 11. MOD-NMPC experiment results.

FIGURE 12. MOD disturbance estimation results.

trol mechanism in mitigating external disturbances, thereby
enhancing the system’s overall robustness and performance.

C. MOD-NMPC EXPERIMENT
Figure 11.a and Figure 11.b illustrate the aircraft’s behavior
resulting from the implementation of MOD-NMPC as
outlined in (36). The outcomes demonstrate that the proposed
controller effectively mitigates perturbations affecting the
system, even when they are highly agile. This is evident in
how the errors remain bounded, as depicted in Figure 11.c,
along with the control actions shown in Figure 11.d.
Consequently, the quadrotor maintains its desired trajectory
even in the presence of unknown disturbances.

Figure 12 depicts the comparison between estimated and
real disturbances. This comparison offers a general under-
standing of the disturbances that can affect the system while
also being estimable. It confirms that the moment observer
effectively estimates the velocities impacting the system and
altering the internal configuration of the quadrotor, thanks to
the filtering characteristics ensuring a smooth approximation
to the estimated values.

D. ADAPTIVE NMPC WITH MOD EXPERIMENTS
In Figure 13.a and 13.b, an improved trajectory tracking
is observed in the presence of disturbances. Figure 13.c

FIGURE 13. Adaptive NMPC with MOD experiment results.

demonstrates that the control error η̃ =
[
η̃x η̃y η̃z η̃ψ

]T
∈

R4 converges to values close to zero in the presence of
external disturbances applied in the simulation. Specifically,
the control errors are bounded, achieving a final characteristic
error |η̃| < 0.1, and are different from zero, i.e., η̃ = ηd−η ̸=

0. Finally, the control actions are depicted in Figure 13.d.
Figure 14 illustrates the estimation of perturbations

affecting the internal configuration of the quadrotor during
the real experimental test, showcasing the evident presence
of non-modeled dynamics. While the MOD action estimates
the external velocities perturbing the system, the adaptation
law estimates the estimation error, ensuring its convergence
to zero, i.e., µ̂u(t) ≈ µ̃ext .

The estimation of non-model dynamics, expressed as
external disturbances, offers insight into phenomena not
accounted for during the development of the mathematical
model of the robotic system. The results confirm the
robustness of the proposed controller, which is a combination
of NMPC, the adaptation-estimation law, and the momentum
observer dynamic.

E. DISCUSSIONS
This work combines a dynamic momentum observer and
an adaptive estimation law with a model-based predictive
controller subject to constraints to estimate unmodeled
disturbances in order to solve the trajectory tracking task.
The results of the simulated tests show that the momentum
observer estimation law and the adaptive control law allow
estimating the component of the unmodeled dynamics that
serves both to estimate the disturbance and to generate the
necessary adaptation in the system dynamics to dissipate
control errors. Furthermore, the NMPC is structured as a
nonlinear programming problem, employing the multiple
shooting method. Its cost function encompasses both the
kinematic and dynamic models of the quadrotor.

The tests utilize the MiL framework and external distur-
bances were introduced to simulate disruptive behavior for
the system. This allowed demonstrating the robustness of the
proposed controller by combining the optimal input of the
predictive controller and the estimation of the disturbance
unknown to the system, ensuring that the steady-state error
converges to values close to zero despite the incidence of
external disturbances that modify the system’s dynamics. The
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FIGURE 14. Results of adaptive law and MOD disturbance estimation.

use of the CasADi framework ensures that the time required
to find the optimal solution remains below the sampling time,
addressing a significant challenge in using predictive control
schemes in critical flight system conditions.

IX. CONCLUSION
This work develops and validates a robust controller, which
combines NMPC incorporating a cost function that considers
both the kinematic and dynamic models of the quadrotor to
produce an optimal input for the nominal model, coupledwith
the momentum observer acting as a virtual sensor, along with
an adaptive law for estimating non-modeled dynamics that
affect and modify the system’s dynamics, aiming to mitigate
control errors caused by external disturbances. The proposed
controller is evaluated through simulated experiments using
the CasADi nonlinear programming framework, known for
its high computational efficiency. In the simulated tests,
fictitious disturbances are generated, and the adaptation law
accurately estimates values close to the real ones, thus
validating the functionality of the proposed controller.
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