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Abstract—Binary obfuscation techniques are commonly em-
ployed to protect code against reverse engineering and piracy.
Unfortunately, besides being used for legitimate purposes, virus
writers also resort to obfuscation to evade antivirus detection
mechanisms based on signature scanning. Consequently, the
detection of obfuscated code in executables may be a precious
resource to prevent the execution of malicious programs. De-
tecting obfuscation is a task fraught with difficulties owing to
the wide range of possible obfuscation transformations and the
indistinguishability of obfuscated code. In this paper, we venture
into the not-so-explored world of obfuscation detection, gaining
a deeper comprehension of what happens - from a statistical
perspective - to a binary program when obfuscation transforma-
tions are applied to it. We accomplish this goal by leveraging
eXplainable Artificial Intelligence, which allows us to discern the
altered features from the invariant ones, which in turn can then
be used for obfuscation-resilient malware detection. The present
study has been carried out utilizing diverse datasets, not only
to examine the detection of obfuscation but also to classify the
specific obfuscating transformations employed. The investigation
encompasses binaries compiled for various architectures, and
we propose an effective methodology for identifying both the
existence of obfuscation and isolating invariant patterns that
can facilitate the creation of obfuscation-resistant signatures for
antivirus detection.

Index Terms—Obfuscation detection, Static analysis, XAI.

I. INTRODUCTION

Over time, software has become a highly valuable resource
that necessitates to be preserved from a plethora of possible
attacks, including piracy, which poses a major concern for
the software industry. In order to protect software from code
stealing, tampering, or cracking, it is necessary to imple-
ment countermeasures aimed at ensuring code confidential-
ity and preventing reverse engineering. Software protection
is an ongoing area of research, with new solutions being
constantly sought [1], whose actual effectiveness is still a
topic of debate. In spite of that, code obfuscation stands as
the most widely employed approach, although it only ensures
temporary safeguarding [2] and does not offer a conclusive
remedy to the issue of protecting code. Obfuscation refers to a
collection of techniques that aim to modify the appearance of a
program while retaining its original behaviour. The application
of obfuscation strategies results in a substantial increase in
the complexity of reverse engineering and manipulation, thus
serving as an effective countermeasure for safeguarding critical
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code. Actually, code obfuscation is a technique that is not only
used in the realm of software protection, but is also widely
adopted by malware authors, who employ it to hide malicious
tasks within programs and make it appear as legitimate code.
In fact, as the code is transformed into a different form
from its original, it is not recognized by traditional antivirus
software that rely on a signature scanning mechanism: they
scan the target executable for an invariant code pattern, known
as a signature. This pattern comprises a sequence of bytes
representing code or data and allows identifying the code
as malicious. Through the use of code obfuscation, malware
writers are able to transform their code into new variants
that still perform their malicious function, but do not exhibit
the code pattern that identifies them, allowing evasion from
signature-based detection by antivirus systems. In this domain,
the task of detecting obfuscated code into software becomes
highly critical, as it constitutes a first line of defense against
malicious code. However, performing obfuscation detection is
a challenging task, especially in a context involving a large
number of potentially malicious programs that are advised not
to be executed. On closer inspection, the task of obfuscation
detection emerges as a significantly important activity, not only
for countering malicious actors but also as a process intended
to evaluate the efficiency and robustness of tools used in the
field of software protection.

This paper aims to offer a fresh viewpoint to obfuscation
detection by conducting a static analysis on various features
of executables. First of all, we provide an approach, based
on machine learning, for allowing the detection of obfuscated
code, along with the distinction of the type of transformations
applied, which is the first step towards reverse engineering
and de-obfuscation. Then, we employ eXplainable Artificial
Intelligence (XAI) to investigate the effects that obfuscation
transformations have on binary programs and their static
properties, whose variation can be indicative of the presence
of obfuscated code. Specifically, through this study, we aim to
provide a key interpretation of the static features of binaries.
In order to achieve this goal, we conduct an analysis that
leads us to identify the features that vary the most when
transformations are applied and those that vary very little
or not at all. This latter aspect is also of utmost interest,
as these features can be of great value for generating sig-
natures intended for obfuscation-resistant malware detection.
Our approach involves an automated static extraction of prop-
erties from binaries compiled using different compilers, op-
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timization levels, and obfuscation transformations, which are
subsequently fed into ML and XAI algorithms. The resulting
dataset forms a crucial component of our study. Each entry
in this dataset represents a compiled binary, accompanied by
a label indicating whether a binary has been subjected to
obfuscation and, if so, the specific type of obfuscation applied.
The utilization of binaries compiled for diverse architectures
is a crucial aspect in this study. The prevalence of malware in
contemporary times often involves the compilation of original
source code for multiple platforms. Consequently, detecting
such malware becomes arduous due to the ineffectiveness
of signatures designed for one architecture to identify the
same source code compiled for another architecture, mainly
due to variations in opcodes. The distinct instruction sets
associated with different architectures introduce additional
complexities in the analysis process. Notably, the field of
obfuscation detection remains relatively underexplored within
the existing literature and, to the best of our knowledge, this
paper represents the pioneering effort in its category, forging
a novel trajectory for obfuscation detection analysis. This
paper extends and redefines the approach proposed in [3].
In comparison to the referenced paper, our contributions
encompass substantial novelties. These include but are not
limited to the identification of obfuscation types, detection of
multiple obfuscations applied to a singular binary, exploration
across various architectures, and a substantial expansion of the
utilized dataset.

In summary, we provide the following significant contribu-
tions:

• A new framework for the static extraction of essential
features from binary files, enhancing the ability to analyze
and detect obfuscation. We also built a comprehensive
dataset comprising features extracted from open-source
code by applying our framework.

• An advanced machine learning-based approach to ob-
fuscation detection that not only identifies the presence
of obfuscation but also excels in distinguishing among
distinct types of obfuscation.

• An extensive analysis of static features that are mostly
influenced when specific obfuscating transformations are
applied; consequently, we also identify the features least
influenced by obfuscating transformations.

The remainder of the paper is structured as follows: in Sec-
tion II we provide basic concepts of obfuscation and specific
obfuscating transformations, uses of code obfuscation in mal-
ware writing, and explainability through XAI. In Section III
we shortly review the state of the art regarding the employment
of ML models to address the obfuscation detection problem.
Section IV explains our approach for detecting obfuscation
using automated feature extraction. We present the results and
understandings obtained through our proposal in Section V
and, finally, in Section VI, we derive conclusions from our
discoveries and delve into discussions about future work.

II. BACKGROUND

A. Code Obfuscation

Code obfuscation refers to a software protection technique
that involves applying a series of transformations to code with
the goal of altering its syntax while preserving its semantics.
On the resulting code, it becomes more challenging to perform
reverse engineering, extract information from it, modify its
behavior, or, more generally, analyze it. The obfuscation
process is carried out by an obfuscator that applies a sequence
of transformations T = {t1, t2, ..., tn} to a program P , with
the goal of transforming it into a new program P ′. The
transformations in T preserve the code semantics: P ′ still
behaves as P , meaning that the two programs are semantically
equivalent, but they present different syntax, with P ′ usually
being much harder to analyze with respect to P .

According to Collberg’s taxonomy [4], code transformations
are categorized into three primary classes, encompassing dif-
ferent types of transformations:

• Layout Transformations: Such transformations alter the
program’s layout structure, for instance by modifying
identifiers or eliminating debugging information. The
majority of layout obfuscation is non-reversible, involv-
ing actions such as substituting identifiers with arbitrary
symbols and eliminating comments, redundant methods,
and debugging information. While layout obfuscation
may not completely prevent reverse engineering via code
inspection, at least it increases the cost of the operation.

• Control Transformations: The purpose of these transfor-
mations is to make it difficult for an adversary to track a
program’s control flow and generate analysis structures,
such as control flow graphs. Control transformations
include inserting bogus control flow instructions, obfus-
cating the targets of branch instructions, or removing all
structured programming constructs to flatten the program.

• Data Transformations: The data structures present in the
source application are transformed by disguising them
into an intricate form that is difficult to analyze. A data
transformation can be represented as a function, denoted
as E(), that converts a variable, V , into a representation
that is obscured. All feasible values for V , along with
every legitimate action that the program can perform on
V , must also be translated into this new representation.

Unfortunately, the employment of obfuscation transforma-
tions comes at a cost, as the resulting program typically in-
creases in size, execution time and memory footprint. To min-
imize costs, the application of obfuscation is often restricted
to specific parts of code or data related to the information
requiring protection.

B. Code Obfuscation uses for Malware Writing

In addition to being an important tool for software pro-
tection, obfuscation techniques are widely used in the de-
velopment of malware since they allow to bypass traditional
signature scanning-based antivirus systems. In fact, despite
being an active research area with new solutions proposed
[5], [6], malware detection is still primarily addressed through
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signature scanning-based techniques [7]. A signature can be
defined as a fixed and unalterable sequence of bytes, usually
obtained from either the code or raw content of an application,
which serves the essential purpose of providing a unique
identification for a particular malware.

More formally, as proposed by Bonfante et al. [8], given the
set of all programs P , the set of malware M , with M ⊂ P ,
the set of signatures S, and a function called detector, we
define (D) as D : P → {0, 1}. Let p be a program. We
say that p is a detected malware if a signature m ∈ S such
that D(p,m) = 1 exists and this happens if and only if m
is a sequence extracted from the program p. In response to
this detection strategy, malware authors have developed meta-
morphic viruses, which utilize self-modification techniques
while propagating in order to create new variants that exhibit
different forms while preserving the same functionality. These
variants aim to evade signature-based detection methods by
changing their appearance, thereby increasing their stealthi-
ness and reducing their chances of being detected [9]. The
purpose of this intricate task is to modify the unchanging
patterns utilized as malware signatures. This is accomplished
by applying a diverse range of code transformations, including,
but not restricted to: permutation, garbage insertion, expan-
sion, shrinking, register swaps, encryption, and other similar
techniques [4]. The use of signatures for malware detection,
however, has its pros and cons. On the one hand, if we compare
this strategy to dynamic analysis-based methodologies, we
can easily notice that signature detection is faster in terms
of scanning time, produces a lower number of false positives
and, since the malware is not executed, it avoids accidental
system infections; on the other hand, however, it is able to
detect only known malware, whose signature has already been
defined. Malware developers frequently use runtime packers,
which are self-extracting archives that unpack in memory
upon execution, along with code obfuscation techniques to
hinder reverse engineer analysts from analyzing and make
it challenging for signature scanners to detect malware. Bat
et al. [10] reported that the utilization of runtime packers
is observed in over 80% of malicious software, while nearly
half of the new malware instances are produced by repacking
the already existing malware. Several studies have shown
that obfuscation is a widely-used strategy to evade signature-
based malware detection, as evidenced by works such as
[11]–[14]. Obfuscation is a long-standing technique and, aside
from packing, encryption can be considered the first form of
obfuscation technique seen in the wild [9], [15]–[18]

Malware encryption is a method that involves encrypting
the program’s body and including a decryptor that decrypts
the code during runtime. The strength of this technique lies
in the fact that the key used for encryption changes with
every infection, making each new variant unique. Among
the first malwares to use this technique, we find Cascade,
Win95/Mad and Win95/Zombie [19], and some of them, such
as Win32/Coke, also implemented multiple levels of encryp-
tion. The weakness of this approach lies in the fact that, unlike
the program body, the decryptor typically remains unchanged,
thus representing a constant piece of code from which signa-
tures can be extracted. To circumvent this limitation, malware

authors introduced a new type of malware called polymorphic
viruses [13], which employ different schemes to alter the de-
cryptor as well. Examples of early malware employing a 32-bit
polymorphic engine were Win95/Marb.urg and Win95/HPS.
Although polymorphic viruses are quite effective in evading
signature-based antivirus scanners, they can be easily detected
with dynamic approaches, since the body of the virus will
be unencrypted in memory at runtime and using sandboxing
techniques for controlled malware execution [16], [17] can
lead to a convenient analysis and signature identification.
Another significant advancement in the evolution of malware
was marked by the emergence of metamorphic viruses [11],
[14], [17], [18], [20], [21], which are capable of altering their
code structure with each infection. However, this mutation is
purely syntactic in nature, leaving the malware’s functional
behavior unchanged.

The techniques applied in order to achieve this goal are nu-
merous, and many of them were already used in polymorphic
viruses:

• Register swapping consists in altering the registers used
in various instructions while generating a new version
of a virus. This technique, historically attributed to the
malware writer Vecna for his virus Win95/Regswap [18],
can be easily dismantled by leveraging wildcard-based
signatures and regular expression scans.

• Instruction substitution refers to replacing certain instruc-
tions or groups of instructions with others that have the
same functionality but are syntactically different [21].

• Garbage instructions insertion involves adding instruc-
tions that are not necessary for the program’s execution
flow, with the goal of varying the malware body [18],
[21], [22]. These instructions can be single operations
or sequences that do not affect the program’s state, and
may even be located in areas that will never be executed
(“dead-code”).

• Transposition involves various techniques for reorder-
ing instructions while preserving the original flow of
the program [20]. One method is to randomly reorder
some instructions and then use unconditional jumps to
reconstruct the original flow. Another approach is to
isolate independent groups of instructions and modify
their order, eliminating the need for unconditional jumps.
However, finding independent groups of instructions can
be challenging, so developers often resort to simpler
techniques, such as reordering subroutines within the
malware. This approach was used by the Win32/Ghost
malware and can result in up to n! different variants,
where n is the number of subroutines.

• Code integration, one of the most sophisticated tech-
niques used to obfuscate code was first employed by the
virus writer Zombie in Win95/Zmist (Zombie Mistfall). It
involves decompiling the program to be infected, insert-
ing malware code in between, and then reassembling the
original program and malware into a single executable.

C. Explainable Artificial Intelligence
Artificial intelligence (AI) models have long been regarded

as “black boxes” by humans, indicating that they offer re-
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sponses without providing any insight into how their de-
cisions are formulated. This has led to the emergence of
a subfield of AI known as eXplainable AI (XAI), which
focuses on elucidating the mechanisms underlying AI system
predictions. Among XAI techniques are included rule-based
systems, decision trees, and model-agnostic methods such as
LIME (Local Interpretable Model-agnostic Explanations) and
SHAP (SHapley Additive exPlanations). These methods serve
the purpose of providing explanations for decisions made on
individual instances or offer a comprehensive overview that
explains the behavior of the generated model. A generally
acknowledged classification of XAI methods is as follows:

• Model Agnostic/Specific: Interpretation techniques that
are specific to a particular model are referred to as model-
specific, while those that are not are known as model-
agnostic. Although agnostic approaches can enhance in-
terpretability of any machine learning model, they may
be precluded from having access to internal model data
such as weights and structural information.

• Intrinsic/Extrinsic: Models can be inherently inter-
pretable, or interpretation techniques may be neces-
sary post-training to achieve interpretability. Decision
trees and other transparent models are intrinsic models,
whereas extrinsic models require the use of interpretation
techniques after training.

• Local/Global: Local interpretation techniques capture the
behavior of a single instance, while global interpretation
techniques depict the behavior of the entire dataset.

D. Model Interpretability using SHAP

The SHAP methodology is deeply rooted in cooperative
game theory, specifically focusing on the computation of the
Shapley value [23]. This value serves as a metric to gauge the
influence exerted by an individual player in the formation of
coalitions. Within the realm of game theory, a coalitional game
comprises a cohort of N players and a characteristic function,
denoted as v, mapping player subsets, S ⊆ 1, 2, · · · , N , to a
real value, v(S) — representing the collective payoff achieved
by the players in the given subset when collaborating. The
Shapley value, in turn, is derived through a weighted average
computation of a player’s marginal contributions across all
conceivable player subsets. Here, the marginal contribution,
∆v(i, S), ascribed to player i within coalition S, represents
the additional value brought about by the inclusion of player
i in the coalition. In the context of XAI, consider a model
prediction m constructed upon a set of d features, denoted as
m(f1, f2, · · · , fd). Consequently, features 1 through d can be
analogously perceived as players in a game. Here, the payoff,
v(S), with S ⊆ f1, f2, · · · , fd, takes the form of a scalar
prediction computed from a subset of feature values. The
Shapley value computation, denoted as ϕi, for each feature,
then mirrors the contribution of that feature to the overall
model prediction:

ϕi =
∑

S ⊆ F \ i |S|!(|F | − |S| − 1)

|F |!
∆v(i, S) (1)

Here, F represents the set of all features, while S is a subset
of F . The term ∆v(i, S) delineates the marginal contribution
attributed to feature i — essentially, the difference between the
model prediction when including feature i and when excluding
it.

The precise computation of the Shapley value requires an
evaluation of the characteristic function a factorial number
of times, resulting in a computational complexity denoted by
O(2n), where n is the number of features [23]. It is easy
to notice that training an ML classifier on all the subsets to
compute the exact Shapley value is computationally infeasible.
To overcome this problem, several approximation techniques
have been introduced in recent years to calculate the Shapley
value efficiently. Such techniques vary in the assumptions and
computational methods they apply for approximating ∆v(i, S)
in Equation 1, with the expected decrease in the prediction
variance if we remove the input variable x from the subset S
of the input features E[m(x)|x]− E[m(S − x)|S − x].

III. RELATED WORK

Despite the widespread use of obfuscation in numerous
application scenarios, most of the studies in the scientific
literature focus on its detection in Javascript and Android
programs, with very limited attention on the binary domain.
Several papers explore the application of machine learning
methods for detecting obfuscation [24]–[26].

Salem et al. [24] introduced Oedipus, a machine learning-
based framework designed to perform metadata recovery at-
tacks on obfuscated C programs. The framework leverages
Decision Tree and Naive Bayes classifiers to detect six specific
obfuscation transformations. To evaluate Oedipus, the authors
employed the Tigress obfuscator to generate a dataset of
11,075 obfuscated programs, all compiled for the x86 archi-
tecture. They employed Term Frequency Inverse Document
Frequency (TF-IDF) features within the disassembly files. The
primary goal of Oedipus is not to distinguish between obfus-
cated and non-obfuscated programs. Instead, it aims to identify
specific obfuscation transformations, enabling the recognition
of particular patterns and techniques used by an obfuscator
when applying one of the six considered transformations.
Moreover, the study considers only a single possible layer
of obfuscation, which represents a limitation, as multiple
transformations are frequently applied to programs in practical
scenarios. Shirazi et al. [25] investigated the application of
semantic reasoning in combination with ensemble learning
for detecting obfuscation transformations at the basic-block
level. The authors employed the Tigress and O-LLVM
obfuscators to generate obfuscated versions of code, producing
programs with both single and multiple layers of obfuscation.
However, the study lacks precise information regarding the
dataset size, which is stated to be between 1,000 and 5,000
samples, as well as the specific features chosen and extracted
from the binaries. Additionally, focusing on basic-block level
granularity may limit the detection of various transformations,
such as those that impact the overall layout of a program. Jiang
et al. [26] developed a hybrid neural network model, for de-
tecting obfuscation in x86 assembly code by combining Graph
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Fig. 1. Dataset generation

Convolutional Network (GCN) and Long Short-Term Memory
(LSTM) techniques. The authors generated a comprehensive
dataset consisting in a total of 43,381 binaries compiled for the
x86 architecture, where the obfuscated binaries were produced
using O-LLVM. The authors selected 27 features for their
analysis, most of which are related to the count of specific
instruction types (e.g., number of arithmetic instructions, num-
ber of logic instructions, and so forth). However, this choice
could be a limitation, as these features are absolute values that
may lack meaningful significance when comparing programs
of different sizes.

Some attempts have also been made to investigate alterna-
tive approaches that do not rely on machine learning for detect-
ing obfuscation [27]–[29]. Smith et al. [27] presented a static
approach, called REDIR, specifically tailored for obfuscated
anti-debugging methods, which utilizes a rule based engine
leveraging intermediate representation (IR). A tool called Dyn-
ODet is proposed in [28]. It is a binary instrumentation-based
tool designed to detect dynamic obfuscation. Specifically,
DynODet is able to detect six different types of obfuscation
transformations that were observed being highly represented
in a set of binary programs. Lastly, Treadwell et al. [29] devel-
oped a heuristic approach for detecting malicious obfuscated
PE binaries in Windows systems that leverages static features.

IV. PROPOSAL

This paper introduces a machine learning-driven method
for detecting obfuscation by relying on XAI to identify the
impact of specific transformations on features related to pro-
gram properties. To conduct our investigation, we constructed
diverse datasets by extracting 19 features from a total of
102,146 different binaries (including both non-obfuscated and
obfuscated binaries). To the best of our knowledge, our study
represents the largest-scale investigation of obfuscation detec-
tion involving such a substantial number of binaries.

The methodology employed for creating our datasets is
summarized in Figure 1.

Initially, we compiled an extensive collection of source
code from open-source repositories of tools and libraries. No-
table projects considered for this purpose include binutils,
coreutils, inetutils, gzip, tar, and sharutils,
among others. To compile the code, we utilized various

versions of the GNU Compiler Collection * (GCC): 4.9.4,
5.5.0, 6.4.0, 7.3.0, and 8.2.0, along with versions 4.0, 5.0,
6.0, and 7.0 of Clang *. It is important to clarify that our
focus is not on the specific version but rather on the inherent
variability introduced by different compilers and optimization
levels. The selected versions were chosen to represent a range
of compiler releases over time. We also considered compiler
optimization, as it shares similarities with obfuscation by
transforming the original code to enhance performance and/or
reduce code size, and may lead to increased compilation
time and potentially affect the program’s debuggability *. We
employed five distinct optimization levels, from O0 to O3,
in addition to the code size optimization option, Os. The
inclusion of multiple optimization levels in our study was
motivated by the objective of strengthening the classification
process. By considering various optimization levels, we aimed
to enhance the classification model’s ability to differentiate
obfuscating transformations from optimization techniques.

Meanwhile, to generate the obfuscated binaries,
we compiled the source code using the O-LLVM
(Obfuscator-LLVM) tool [30]. We applied three different
obfuscating transformations: Control-Flow Flattening, Bogus
Control Flow and Instruction Substitution. The Control-Flow
Flattening transformation, as the name suggests, completely
rearranges the flow of a program [31], [32]. This process
involves simplifying the connections between different
parts of the program. Both conditional (decisions) and
unconditional (straightforward) paths are rerouted through
a central hub called the dispatcher node. This node uses
a fabricated variable to decide where the program should
go next. The value of this variable changes after each
program section, known as a basic block, is completed. The
Bogus Control Flow transformation modifies a program’s
function call graph by inserting extra steps before the existing
ones. These new steps include what is called an opaque
predicate, which is a condition whose outcome is hard to
predict, followed by a decision to return to the original
steps. Additionally, the original steps are copied, and random
unnecessary instructions are added to the copied version.

*https://gcc.gnu.org/
*https://clang.llvm.org/
*https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
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This method changes how the program moves through the
opaque predicate and decision, ultimately creating a different
function call graph. Adding pointless instructions in the
copied steps also makes the code more confusing and harder
to analyze. Instruction Substitution involves replacing original
instructions with functionally equivalent but syntactically
different instructions. By substituting instructions, the
obfuscator alters the program’s control flow and data flow,
making it harder for reverse engineers to understand its
logic and purpose. The goal of instruction substitution is to
introduce confusion and increase the complexity of the binary
code, thereby impeding static analysis and making the reverse
engineering process more challenging.

We developed a framework enabling the feature extraction
of a set of 19 features, as presented in Table I, which encom-
passes significant properties of the program under analysis,
including the class label. The feature extraction mechanism
was implemented using Python and leveraged the Python APIs
of radare2*, specifically the r2pipe module. We empha-
size that all the chosen features pertain to functions since the
obfuscating transformations that we considered can be imple-
mented at the function level. The feature extraction process
employed in this study is entirely static. This method was
necessary to reproduce a realistic scenario wherein running
obfuscated code might lead to running malicious code. Thus,
we adopted a static extraction procedure to integrate our frame-
work into a detection system, enabling the generation of alerts
when obfuscating transformations are detected. Furthermore,
our static methodology offers additional advantages. Static
analysis methods are faster compared to dynamic analysis.
They are also capable of examining all possible execution
paths, not only those executed in practice. Hence, static
analysis can detect obfuscated code fragments that may only
manifest in rare circumstances during execution. This aspect
of static analysis is particularly valuable in the presence of
obfuscated routines, which may only execute if stimulated with
specific inputs or when a precise event occurs. Another notable
advantage of our static analysis approach is its applicability to
binaries compiled for different operating systems and archi-
tectures. Since we do not require binary execution, we avoid
dealing with complicated and costly emulation, enabling us to
extract features of interest from every binary, regardless of its
architecture or format. This feature is particularly significant
for our proposal, as we deal with many binaries compiled
for different architectures, demonstrating the effectiveness of
our approach in scenarios such as the Internet of Things
(IoT), where various architectures are in use. The binaries are
compiled for the following architectures: x86_32, x86_64,
arm_32 (little endian), arm_64 (little endian), mips_32
(little endian), mips_64 (little endian), mipseb_32 (big
endian), and mipseb_64 (big endian). Considering different
architectures holds significant importance from our perspec-
tive. Not only is this issue not extensively explored in the
existing literature, but it is also essential to consider that a
substantial portion of malicious software targeting the IoT
consists of repurposed versions of malware originally designed

*https://rada.re/

for other architectures. Thus, developing novel approaches for
detecting malicious code that are independent of the underly-
ing architecture is crucial. This way, malicious behavior can
be readily identified even if the code is compiled for different
architectures or has undergone modifications through various
compiler optimizations or obfuscating transformations.

From the generated list of binaries, we created six distinct
datasets for our experiments:

• The first three datasets, named fla, bcf, and sub,
are utilized for a binary classification task. Each dataset
comprises both non-obfuscated programs and obfuscated
ones. The fla dataset involves the control flow flattening
transformation, the bcf dataset includes the bogus con-
trol flow transformation, and the sub dataset incorporates
the instruction substitution transformation.

• The fourth dataset, named binary mixed, encom-
passes all the non-obfuscated binaries along with their
respective obfuscated versions, each transformed using a
single obfuscating technique. This dataset is also used
for binary classification, where the binaries are labeled
as either obfuscated or non-obfuscated.

• The fifth dataset, named multi partial, involves a
multi-class classification task, with four different class
labels (obfuscated or a single applied transformation).
This dataset includes all non-obfuscated binaries and
obfuscated binaries generated by applying a single ob-
fuscating transformation.

• The last dataset, named multi all, also consists of a
multi-class classification task. In this case, we augment
the fifth dataset with additional obfuscated binaries ob-
tained by applying three different obfuscating transfor-
mations to the same binary. The purpose of experiments
involving this dataset is to determine if we can detect
the presence of obfuscation even when multiple transfor-
mations are applied to a binary. Additionally, we aim to
identify features that can effectively detect the usage of
multiple transformations.

Table II presents the instruction categories extracted from
the binaries, which are used to calculate the percentages shown
in Table I. It should be noted that the categories listed do
not include specific instructions but rather represent instruction
types. These types are abstractions created by radare2 and
represent sets of instructions. As an example, the je and jle
X86 instructions are classified under the cjmp instruction
type, despite being distinct instructions. These abstractions
enable us to manage extensive lists of different instructions
across various architectures by organizing them into feasible
categories that are divided by high-level behavior.

The datasets underwent preprocessing before being utilized
in a XGBoost classifier incorporating k-fold cross-validation.
It is crucial to note that multiple samples, generated from each
program used in the study with variations in optimization lev-
els, compilers, and obfuscation techniques, were considered.
These samples are not independent; binaries produced at the
same optimization level by different compilers, such as GCC
and Clang, are likely to exhibit significant similarities. To
address this, special care was taken during the train-test split
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TABLE I
EXTRACTED FEATURES

Feature Meaning
f cyc complex Cyclomatic complexity

f cycle cost Function cycles cost

f loop count Loop count

f n bb Number of basic blocks

f n locals Number of local variables

f arit Percentage of arithmetic instructions

f logic Percentage of logic instructions

f control flow Percentage of control flow instructions (e.g. jmp)

f stack Percentage of stack operations (e.g. push and pop)

f memory Percentage of memory access operations

f program flow Percentage of program flow instructions (e.g. call and ret)

n func Number of functions

n imp Number of imported symbols

n string Number of strings

n symbols Number of defined symbols

f n xrefs Number of cross-references to current function

f n instr Number of instructions

f edges Number of edges in the Control Flow Graph

TABLE II
INSTRUCTIONS CATEGORIES

Category Instructions Types
Arithmetic Operations add, div, mod, mul, sub, abs
Logic Operations and, not, or, xor, rol, ror, sal, sar, shl, shr,

cmp, acmp
Control Flow cjmp, mjmp, jmp, ucjmp, ujmp, rjmp, ijmp,

irjmp, mcjmp, rcjmp, cmov, case, switch,
trap

Stack Operations pop, push, upush, rpush
Memory Access mov, lea, load, store
Program Flow Control call, ccall, leave, ret, cret, ucall, rcall,

icall, ircall, ucccall

process. Specifically, we ensured that samples generated from
the same program never appeared in both the training and
testing datasets. This precautionary measure prevents the in-
flation of accuracy results that could arise if identical samples
were present in both sets, thereby enhancing the reliability of
our evaluation. The selection of XGBoost was motivated by
its advantageous qualities, including its capacity to generate
interpretable models. This is due to the algorithm’s reliance on
decision trees, which enable visualization and analysis, facili-
tating the comprehension of the associations between features
and predictions. Consequently, it becomes more convenient
to offer explanations for individual predictions. Furthermore,
XGBoost has been integrated with diverse XAI algorithms,
including feature importance scores and partial dependence
plots, which provide additional knowledge about the model’s
classification process.

In our analysis, we employ the SHAP methodology, as
introduced by Lundberg and Lee [33]. This game-theoretic
approach is chosen for its numerous advantages over other
prevalent methods, making it a preferred option for explaining
the outcomes of our machine learning model. A pivotal
strength of SHAP lies in its extrinsic nature, rendering it
suitable for ex-post analysis. Notably, its model-agnostic char-
acteristic enhances its versatility, accommodating a diverse
array of models, including but not limited to XGBoost. This

stands in contrast to alternative techniques such as LIME [34]
and Anchors [35], which are localized in their applicability
and encounter constraints when confronted with varied model
architectures. Additionally, while Gradient-weighted Class Ac-
tivation Mapping (GRAD-CAM) [36] and other gradient-based
methodologies share an extrinsic nature, they are inherently
model-specific, which potentially limits their applicability
across the spectrum of models. The adoption of SHAP serves
a dual purpose: besides supplying a localized interpretation of
a prediction, it also offers a global interpretation. This compre-
hensive approach ensures an understanding of the predictive
process, encapsulating the influence of all features integrated
into the model. Such a dual-tiered interpretation is especially
crucial for enhancing interpretability and understanding the
rationale behind the prediction.

In this paper, we rely on the use of a TreeExplainer [37],
a powerful model for the computation of SHAP values. The
TreeExplainer algorithm is usually employed when additive
tree-based models, such as random forests and gradient boost-
ing machines, are used for the classification. The key idea
underlying the algorithm is to compute an estimate of the
expected value for the model’s output, denoted as f(x), given a
specific subset of features, represented as xS , E[f(x)|xS ]. To
achieve this estimate, the algorithm looks at how many training
samples with feature values matching xS end up in each leaf
node of the decision tree. By examining the distribution of
these matching samples across the leaf nodes, the algorithm
gains information about the impact of the features on the
model’s predictions. The proportion of matching samples in
each leaf node provides insight into how much each leaf node
contributes to the overall prediction for the specific feature
subset xS . One of the key advantages of the TreeExplainer
method for computing SHAP values is its ability to signif-
icantly reduce computational complexity compared to exact
SHAP value computation. The reduction in computational
complexity is particularly notable for tree-based models and
ensembles of trees, such as sums of trees. In the context
of trees and sums of trees, the computational complexity
of exact SHAP value computation is exponential. However,
TreeExplainer employs an efficient algorithm that reduces
this complexity to a low-order polynomial. This reduction
in complexity makes the computation of SHAP values more
feasible and efficient for practical use with tree-based models.
Furthermore, the method takes advantage of the linearity
property of SHAP values. Specifically, when combining or
summing the SHAP values of two individual functions (such
as two trees or two components of an ensemble), the resulting
SHAP values are simply the sum of the SHAP values of the
original functions. By reducing the computational complexity,
TreeExplainer enables the practical application of SHAP val-
ues to larger and more complex tree-based models, making
their interpretability and feature importance analysis more
feasible in real-world scenarios.

Additionally, it is worth noting that the SHAP framework,
including TreeExplainer, does not rely on the assumption of
feature independence. This is an important characteristic, as
many real-world datasets often exhibit complex interdependen-
cies among features. The SHAP approach provides a flexible
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TABLE III
DETECTION RESULTS

Dataset Accuracy Precision Recall F1-Score
fla 0.997 0.994 0.978 0.986
bcf 0.986 0.982 0.904 0.941
sub 0.919 0.880 0.393 0.543

binary mixed 0.925 0.952 0.833 0.889
multi partial 0.916 0.914 0.916 0.903
multi all 0.919 0.918 0.919 0.908

and robust methodology for interpreting model predictions,
capturing the effects of feature interactions and dependencies
without imposing restrictive assumptions.

V. RESULTS

Fig. 2. Global Feature Importance: Bogus Control Flow Transformation

Fig. 3. Global Feature Importance: Flattening Transformation

The results of our obfuscation detection process are shown
in Table III. In order to evaluate the quality of our analysis we
employed several metrics, such as Accuracy, Precision, Recall,
and F1-score. Specifically, such measures are defined as: (1)
Accuracy, formally defined as Accuracy = TP+TN

TP+TN+FP+FN ,
represents the percentage of correctly classified samples. (2)
Precision, formally defined as Precision = TP

TP+FP , repre-
sents the number of true positive instances divided by the
total number of instances predicted as positive. (3) Recall,
formally defined as Recall = TP

TP+FN , represents the fraction
of true positive instances over the total number of actual
positive instances. (4) F1-score, formally defined as F1 =

Fig. 4. Global Feature Importance: Instruction Substitution Transformation

Fig. 5. Beeswarm Plot: Bogus Control Flow Transformation

Fig. 6. Beeswarm Plot: Flattening Transformation

2·(Precision·Recall)
Precision+Recall , represents the harmonic mean of precision

and recall, balancing both metrics. The above formulas are
defined in terms of: True Positive (TP), which is the number of
the correctly predicted positive instances, True Negative (TN),
which is the number of correctly predicted negative instances,
False Positive (FP), which is the number of the incorrectly
predicted positive instances, and False Negative (FN) is the
number of the incorrectly predicted negative instances.

Promising results have been achieved for all datasets,
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Fig. 7. Beeswarm Plot: Instruction Substitution Transformation

Fig. 8. Correlation Plot: Bogus Control Flow Transformation

Fig. 9. Correlation Plot: Flattening Transformation

thereby proving the effectiveness of performing obfuscation
detection relying on a machine learning (ML) based model
that leverages static features. The only suboptimal result was
observed when handling the sub dataset, as indicated by a
recall value of 0.393, suggesting that a significant number
of positive instances were not correctly identified by the
model. However, this outcome was expected. According to

Fig. 10. Correlation Plot: Instruction Substitution Transformation

the LLVM Obfuscator webpage*, the instruction substitution
transformation primarily operates on arithmetic instructions
by making slight modifications. Since the functions analyzed
in our experimental evaluation exhibit a scarcity of purely
arithmetic operations, obtaining satisfactory results was chal-
lenging. Despite the robust evidence provided by the results,
demonstrating the worth and success of our obfuscation de-
tection methodology, our study goes beyond simple detection
performance. It aims to gain a deeper understanding of the
obfuscation process by observing the influence of individual
obfuscating transformations on features, and utilizing this
information to detect obfuscation or identify invariant fea-
tures. Specifically, invariant features hold significant value as
they may be employed to create malware signatures that are
obfuscation-resilient.

Fig. 11. Global Feature Importance: binary mixed dataset

Initially, we focus on the binary classification task on the
datasets associated with a specific transformation. The distinct
features involved in each obfuscating transformation, as de-
picted in Figures 2, 5, 3, 6, 4 and 7 offer significant insights.
It is particularly interesting to observe that certain features are
significant only when they assume low or high values. For
instance, consider the cyclomatic complexity, which measures
the number of linearly independent paths through a function’s
source code. Figure 6 demonstrates that when the cyclomatic

*https://github.com/obfuscator-llvm/obfuscator/wiki/Instructions-
Substitution
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Fig. 12. Beeswarm Plot: binary mixed dataset

Fig. 13. Correlation Plot: binary mixed dataset

complexity value is high, there is a high likelihood that no
flattening has been applied to the target program. However,
when its value is low, we are not able to make the inverse
claim. This outcome obtained through the XAI procedure
carries considerable meaning as it allows to determine which
obfuscating transformation was implemented by examining the
features identified as having the greatest impact for a given
sample. This information is extremely precious in both the
domains of de-obfuscation and reverse engineering.

The results of the correlation matrices for the first three
datasets presented in Figures 8, 9 and 10, generated using the
SHAP technique, suggest a low level of correlation among
the features in the datasets. Notably, the similarity between
the control transformation experiments is reflected in these
matrices. The low level of correlation suggests that the features
are relatively independent, providing unique information about
the investigated transformations.

Shifting our focus to the binary mixed dataset, it is
crucial to note that despite the presence of multiple obfuscating
transformations, the key features that predominantly character-
ize the obfuscated software of the previous experiments remain
consistent, as shown in Figures 11, 12 and 13. We observe that
the number of symbols and the feature related to logic and
program flow instructions, which serve as primary features in
analyzing individual obfuscating transformation, also emerge

Fig. 14. Global Feature Importance: multi partial dataset

Fig. 15. Global Feature Importance: multi all dataset

as main features in the experiment conducted on the binary
mixed dataset. This observation suggests that even in the
presence of multiple transformations, their effects appear to
accumulate, without one transformation adversely affecting the
outcomes of the others.

The most remarkable results are observed in the multi-
classification experiments. In these experiments, we aim not
only to determine whether a binary has been obfuscated or
not, but also to identify the specific type of obfuscating
transformation applied. Table III presents the excellent classi-
fication results achieved by our methodology. By examining
the features involved in the classification, as shown in Figures
14 and 15, we observe that the characteristic features identified
in the binary classification experiments also play a significant
role in the multi-classification experiments.

Figure 14 shows the results of the experiments conducted
on the multi partial dataset, which comprises binaries
obfuscated using a single obfuscating transformation per bi-
nary. In Figure 15, we observe the results of the experiments
performed on the multi all dataset, where binaries are
obfuscated using three different obfuscating transformations
simultaneously. Notably, even in the presence of multiple
transformations, the accuracy, precision, recall, and F1-score
achieved are remarkably satisfactory. These results confirm
our assumption that detecting obfuscating transformations in
binaries can be effectively accomplished through a machine
learning-based approach, leveraging features extracted via
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static binary analysis.

VI. CONCLUSIONS

This paper aims to contribute to the field of obfuscation
detection by providing insights into this important topic. We
employ an ML-based approach, augmented with XAI, to gain
a comprehensive understanding of how obfuscating transfor-
mations affect the properties of target binaries. The obtained
results not only confirm our initial hypotheses but also present
numerous intriguing avenues for further exploration by the
malware research and reverse engineering communities.

In our future work, we aim to broaden the scope of our
analysis by exploring additional obfuscating transformations
and features, leading to a more comprehensive assessment of
obfuscation techniques.

REFERENCES

[1] D. Quarta, M. Ianni, A. Machiry, Y. Fratantonio, E. Gustafson,
D. Balzarotti, M. Lindorfer, G. Vigna, and C. Kruegel, “Tarnhelm:
Isolated, transparent & confidential execution of arbitrary code in
arm’s trustzone,” in Proceedings of the 2021 Research on Offensive
and Defensive Techniques in the Context of Man At The End (MATE)
Attacks, ser. Checkmate ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 43–57. [Online]. Available:
https://doi.org/10.1145/3465413.3488571

[2] R. Honick, Software piracy exposed. Elsevier, 2005.
[3] C. Greco, M. Ianni, A. Guzzo, and G. Fortino, “Explaining binary

obfuscation,” in 2023 IEEE International Conference on Cyber Security
and Resilience (CSR), July 2023, pp. 22–27.

[4] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

[5] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in 2007 IEEE Symposium on Security and Privacy
(SP’07). IEEE, 2007, pp. 231–245.

[6] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables
in the wild,” in Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, 2004.

[7] N. Idika and A. P. Mathur, “A survey of malware detection techniques,”
Purdue University, vol. 48, 2007.

[8] G. Bonfante, M. Kaczmarek, and J.-Y. Marion, “Control flow graphs
as malware signatures,” in International workshop on the Theory of
Computer Viruses, 2007.

[9] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
in Broadband, Wireless Computing, Communication and Applications
(BWCCA), 2010 International Conference on. IEEE, 2010.

[10] M. Bat-Erdene, T. Kim, H. Li, and H. Lee, “Dynamic classification of
packing algorithms for inspecting executables using entropy analysis,”
in 2013 8th International Conference on Malicious and Unwanted
Software:” The Americas”(MALWARE). IEEE, 2013, pp. 19–26.

[11] M. Driller, “Metamorphism in practice,” 29A Magazine, vol. 1, 2002.
[12] D. Mohanty, “Anti-virus evasion techniques and countermeasures,”

Published online at http://www. hackingspirits. com/eth-
hac/papers/whitepapers. asp. Last accessed on, vol. 18, 2005.

[13] Rajaat, “Polimorphism,” 29A Magazine, vol. 1, no. 3, 1999.
[14] L. Julus, “Metamorphism,” 29A Magazine, vol. 1, no. 5, 2000.
[15] M. Ianni, E. Masciari, and D. Saccà, “An overview of the endless battle
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Eötvös Nominatae, Sectio Computatorica, vol. 30, no. 1, pp. 3–19, 2009.

[33] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, 2017.

[34] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.

[35] ——, “Anchors: High-precision model-agnostic explanations,” in Pro-
ceedings of the AAAI conference on artificial intelligence, vol. 32, 2018.

[36] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[37] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin,
B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, “From
local explanations to global understanding with explainable ai for trees,”
Nature Machine Intelligence, vol. 2, no. 1, pp. 2522–5839, 2020.

VII. BIOGRAPHY SECTION

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3439884

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

Claudia Greco is a Ph.D. student at the Depart-
ment of Computer Science, Modeling, Electronic
and System Engineering (DIMES) of the University
of Calabria, Italy. She is actively engaged in research
in the field of cybersecurity. Her primary research
interests lie in the areas of Binary Analysis, Obfusca-
tion and IoT Security. She received a Master’s degree
from the University of Calabria after completing a
research period at Northeastern University in Boston,
MA (USA) for her thesis. During her Ph.D. studies,
she was a visiting researcher at Wien Universität in

Vienna (Austria).

Michele Ianni is an Assistant Professor at the De-
partment of Computer Science, Modeling, Electronic
and System Engineering (DIMES) of the University
of Calabria, Italy. He received a Ph.D. degree in
Information and Communication Technologies from
the University of Calabria, Italy, in 2018. During
his Ph.D. he was a visiting researcher in SecLab,
University of California, Santa Barbara. Previously,
he was a Postdoctoral Researcher at the University
of Calabria, Italy and at the University of Verona,
Italy. In 2023, he was a visiting professor at the
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