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ABSTRACT Engineers used TCAD tools for semiconductor devices modeling. However, it is computation-
ally expensive and time-consuming for advanced devices with smaller dimensions. Therefore, this work
proposes a machine learning-based device modeling algorithm to capture the complex nonlinear relationship
between parameters and electrical characteristics of gate-all-around (GAA) nanowire field-effect transistors
(NWFETs) from technology computer-aided design (TCAD) simulation results. This method utilizes a
densely connected deep neural networks (DenseDNN), which establishes direct connections between layers
in the neural networks, provides stronger feature extraction and information transmission capabilities. By
incorporating cost-sensitive learning methods, the proposed model focus more on the critical data that
determines device characteristics, leading to accurate prediction of key device characteristics under various
parameters. Experimental results on a test dataset of 116 NWFETs demonstrate the effectiveness of this
method. The DenseDNN model with cost-sensitive learning exhibits better performance than traditional
deep neural networks (DNN) with various widths and depths, with a prediction error below 1.62%.
Moreover, compared to TCAD simulation results, the model can speedup 10°x.

INDEX TERMS Machine learning, device modeling, technology computer-aided design (TCAD) simula-

tion, cost-sensitive densely connected DNN.

I. INTRODUCTION

N THE past decades, CMOS has consistently followed

Moore’s Law [1], with the number of transistors per unit
area doubling every 18-24 months. CMOS devices continue
to be miniaturized, from planar to FinFETs. However, as
the transistor sizes continue to shrink into the nanometer
scale, traditional device theories and process technologies
are confronted with challenges arising from physical limi-
tations. The electrostatic performance of FinFETs becomes
worse, the short channel effect (SCE) is aggravated, and
the issues of parasitic capacitance and resistance become
increasingly severe, which leads to a significant degradation
in device performance. The structure of FinFETs is no longer
able to meet the requirements. Therefore, gate-all-around

(GAA) devices have been proposed, including NWFETs and
nanosheet field-effect transistors (NSFETSs) [2], [3], [4], [5],
[6] to address these challenges. In the GAA structure, the
channel is fully enveloped by the gate, enhancing the gate
control over the channel and providing better electrostatic
characteristics than FinFETs. In order to study GAA devices
more effectively, this work conducts experiments using
GAA NWFETs to learn the complex nonlinear relationship
between device parameters and electrical characteristics.
Generally, engineers rely on TCAD tools for simulating
and modeling semiconductor devices to predict and tackle
complex physical phenomena in the devices [7]. Nonetheless,
TCAD-based device modeling encounters two major chal-
lenges: 1) physics- based model equations require a lot of
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time and professional knowledge [8]; 2) TCAD tools have
some limitations when dealing with devices with relatively
small feature sizes, and have high computational costs and
long simulation time.

Machine learning-based model has emerged as an alter-
native solution to address these challenges. Artificial neural
networks (ANN) were first proposed by Litovski in the
early 1990s for modeling transistors [9]. The semiconductor
device modeling based on ANN can easily capture the
nonlinear electrical characteristic of the device by adding a
nonlinear activation function [10], and predict the key device
characteristics, such as current-voltage and capacitance-
voltage relationships [11], [12], [13], [14], work functions
[15], threshold voltage and subthreshold slope, and on-state
current [16], [17], [18], [19]. Furthermore, ANN models
can be used for compact modeling [20], [21], [22], [23],
parameter extraction [24] and design space exploration
optimization [25]. These works demonstrate the effectiveness
of ANN in device modeling. Hence, further exploration of
device modeling methods based on ANN is undoubtedly
worthwhile.

When using ANN for device modeling, it is crucial to
perform appropriate preprocessing of the data. Especially for
current-voltage curve data, normalization is often done using
a logarithmic transformation to eliminate the impact of data
at different scales on model training. On this basis, combined
with cost-sensitive learning methods [26], the ability of the
model to handle complex and critical tasks can be further
enhanced. By assigning different cost weights to different
samples [27], [28], the model can more accurately capture
key features in the curves, thereby improving the accuracy
of predictions.

In this work, inspired by the densely connected neural
networks [29], [30], an improvement to the traditional
deep neural networks architecture is proposed, known as
the DenseDNN model, which establishes dense connections
between layers. By leveraging this dense direct connec-
tivity, the performance and training effectiveness of the
network are improved. We trained the DenseDNN using
data generated by TCAD and further optimized the model
with cost-sensitive learning methods, successfully achieving
high-precision predictions of key device characteristics in a
relatively short time. The remaining sections of this paper are
organized as follows. Section II introduces the TCAD simu-
lation method and data generation. In Section III, a detailed
description of the proposed cost-sensitive DenseDNN is
presented. Section IV discusses the performance of the cost-
sensitive DenseDNN, and presents the comparison results
between cost-sensitive DenseDNN and DNNs with different
widths and depths. The conclusions are drawn in Section V.

1l. TCAD SIMULATION AND DATA GENERATION

In this work, we focus on GAAs with nanowire in circular
and triangular cross-sectional shape, which is shown in
Fig. 1. We employed our in-house TCAD tool to generate
the electrical characteristics of such GAA devices. Poisson
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FIGURE 1. (a) The schematic structure of GAA nanowire transistor. (b) The

cross-sectional view of two types of nanowires including the circle and the
triangle.
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FIGURE 2. The calibration of the transfer characteristics of the GAA
nanowire transistor with the experimental data [34].

equation, Schrodinger equation and drift-diffusion transport
equation are self-consistent solved in TCAD within the
framework of the Mode Space method [31], [32], [33], which
can capture the quantum confinement phenomenon in this
kind of quasi one-dimensional device. By adjusting the gate
work function, oxide thickness, doping concentration and
saturation velocity of carriers, the TCAD simulation can
match the experimental results of a GAA nanowire device
with an effective diameter of 12.8nm and a channel length
of 22nm [34], as shown in Fig. 2.

To train the neural networks, the NWFETs were divided
into training set, validation set, and test set based on their
different cross-sectional shapes. The training set consisted
of 242 NWFETs with circular cross-sections, resulting in
a total of 54450 (=242 x 225) simulated data samples.
The validation set comprises 27 NWFETs with circular
cross-sections, generating a total of 6,075 (=27 x 225)
simulated data samples. The test set included 116 NWFETs
with equilateral triangular cross-sections, generating 26,100
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TABLE 1. Device Parameters for NWFETs.

Parameter Range (min,max) Step
T'nw[nm] (2,5) 0.5
lg[nm] (10,20) 1
toz[nm] 0.5,1.5) 0.25
Vy4lV] 0,0.7) 0.05
ValV] (0,0.7) 0.05
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FIGURE 3. (a) A schematic view showing the structure of DenseDNN
model and (b) forward process of DenseDNN.

(=116 x 225) simulated samples. It should be noted that for
the equilateral triangular cross-section, the parameter ‘ry,,’
refers to the distance from the centroid to the vertex.

The TCAD tool was utilized to simulate 385 NWFETs
with varying parameters in order to obtain the drain current
(Ig) of each device under 225 different bias voltages. The
parameter settings used are specified in Table 1, which
include the nanowire radius (rp,), channel length (), gate
oxide thickness (f,y), and bias voltages (Vg, Vy).

In order to enhance the training of the neural network
model, data preprocessing is performed. The input data
(Faws lgs tox, Vg, Vg) is standardized before being fed
into the DenseDNN network, while the output data (1),
due to its wide distribution span, undergoes logarithmic
transformation. The model learns from the preprocessed data
and finally transforms the output data back to the original
range through the inverse logarithm function.

11l. METHODS

A. DENSEDNN ARCHITECTURE

Fig. 3 (a) shows the structure of the DenseDNN model. The
DenseDNN has four hidden layers (hl, h2, h3, h4). In hl,
h2, and h3, each layer contains 32 neurons (the selection of
the number of neurons is described in detail in Section IV)
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and each hidden layer is composed of dense connections and
tanh activation functions. h4 is a fully connected layer with
64 neurons with sigmoid activation function. The model is
implemented using Pytorch. In this study, the performance
of training the neural networks is evaluated using the root
mean square error (RMSE) as the loss function, defined as
follows:

e))

where y; is the predicted drain current by the DenseDNN, and
y; is the actual drain current. The loss function is optimized
using the Adam optimizer with an initial learning rate of
1.0 x 1073,

DenseDNN adopts the dense connection to establish a
connection relationship between all the previous hidden
layers and subsequent hidden layers. Specifically, each layer
concatenates all the neurons from the previous layers and
uses them as input for the subsequent layer. To better
understand the dense connectivity of DenseDNN, the forward
process is illustrated in Fig. 3 (b). In DenseDNN, the input
of each hidden layer comes from the outputs of all previous
layers. For example, in Fig. 3 (b), the input to h3 consists
of the output from h2 as well as the outputs from the input
layer and hl. Subsequently, the input layer, hl, h2, and
h3 are concatenated as the input for h4. Similarly, direct
connections are established from h4 to all previous layers.
Finally, h4 and the output layer resemble fully connected
layers in conventional DNN.

DenseDNN allows the features from the previous layer to
be directly transmitted to all the subsequent layers, leading to
a highly interactive and densely connected network structure.
This is in contrast to the traditional DNN architecture, where
each layer is only connected to the adjacent layer. This dense
connectivity design of DenseDNN enables each layer to
directly receive the information from all the previous layers,
enhancing the information flow and gradient propagation,
mitigating the issue of gradient vanishing to some extent. It
also enhances the backward propagation of gradients, making
the network easier to train, thus improving the accuracy and
stability of the network.

In general, DenseDNN improves the performance and
training effectiveness by introducing dense connectivity,
which provides stronger feature extraction and information
propagation. This makes DenseDNN an effective choice
for handling complex tasks and highly nonlinear data
relationships.

B. COST-SENSITIVE LEARNING

During the processing of training data, we performed a
logarithmic transformation on the drain current data. This
transformation could reduce the accuracy of predictions for
the drain current in the mid-V, and high-V, regions. To
counteract this effect and enhance the model’s ability to
learn key device characteristics, we employed a cost-sensitive
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FIGURE 4. Training set samples using the sensitive learning method. The
part circled in blue represents samples from the mid-Vg and high-Vg
regions (Vg > 0.5V), the part circled in red represents samples from the
linear region (Vg > Vi, and V4 < Vg — Vy), the green part represents
samples related to the off region (Vg=0V, V4 < 0.5V), and the purple
circles indicate samples from the overlapping areas.

learning approach. This method, by assigning different
weights to each sample, ensures that the model pays more
attention to those samples considered more important or
costly during the training process, thereby optimizing the
learning process.

As shown in Fig. 4, we selected all samples from the
mid-V, and high-V, regions of the training set, thereby
enhancing the prediction ability of the model for the drain
current in that region. Furthermore, to accurately capture
the critical device characteristics of threshold voltage (Vi)
and off current (/,5), we selected relevant samples from the
linear region and the off region. For the selected samples,
non-overlapping regions are assigned the same weight,
while weights are accumulated for overlapping regions. For
samples not selected, the weight is defaulted to 1.

Next, based on the allocation of sample weights, we
modified the loss function used during the training process:

N
. 1 A2
RMSE_sampleweight = N E 1 wi X ()’i - )’i) 2
i=

where w; represents the weight of each sample. This
adjustment ensures that samples with higher weights have
a greater impact on the total loss calculation, thereby
encouraging the model to focus more on these important
samples.

IV. RESULT AND DISCUSSIONS
A. EXPERIMENTAL SETTING
Regarding the depth setting of the network, we referred to
the cited literature [30].

Then, to determine the optimal architecture of the
proposed DenseDNN model, different hidden layer widths
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TABLE 2. Comparison of different widths.

Width 16 32 64 128 256 512

RMSE  0.0027 0.0021  0.0041 0.0056 0.0100 0.0101

TABLE 3. Comparison of different learning rate.

learning rate 0.0001 0.001 0.01
RMSE 0.0038 0.0030 0.0043
TABLE 4. Average, 3-sigma and Max Of prediction error.
Parameter " Error 30 Max
14 [pA] -0.0113 0.1954 1.2520

(number of neurons) were tested as shown in Table 2.
The test results are evaluated by RMSE on the test
set. The smaller the RMSE value, the smaller the gap
between the predicted results of the model and the real data,
and the better performance the model gets. It is observed that
the RMSE is minimized when each hidden layer contains
32 neurons. Therefore, 32 was selected as the number of
neurons for each hidden layer.

Additionally, selecting an appropriate initial learning rate
is a crucial step as it directly affects the efficiency of model
training and its final performance. Therefore, different initial
learning rates were tested, as shown in Table 3. The test
results indicate that the model’s error is minimized when the
initial learning rate is set to 1x 1073, Consequently, the initial
learning rate of the Adam optimizer was set to 1 x 1073,

B. EFFECTIVENESS OF DENSEDNN

Based on the mentioned structure, we utilized the trained
DenseDNN model to predict the drain current on the test
set in order to validate the effectiveness of the model.
Comparison between the predicted drain current and the
actual drain current is depicted in Fig. 5 (a), where only
limited fitting results are shown. The results indicate that
the trained DenseDNN can fit the key characteristic curves
with high precision. Fig. 5 (b) illustrates the distribution of
prediction errors in the DenseDNN model. The majority of
errors are concentrated around zero and decrease rapidly,
with few occurrences of larger errors. In addition, the mean
error, 30 error, and maximum error are presented in Table 4.
The mean error of the prediction is close to zero, with 3o
error of 0.1954uA and maximum error of 1.252uA. These
small error values demonstrate the high accuracy of the
DenseDNN model in predicting drain current, validating its
effectiveness in capturing the current-voltage relationship.

C. COMPARISON OF PERFORMANCE WITH DNN

To further evaluate the performance of the DenseDNN
model, the DNN model was used as a reference to assess
the predictive capabilities of the two trained models for key
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FIGURE 5. (a) Predicted (lines) and actual (dots) drain current versus gate
voltage with rpyw=3nm, Ig=12nm, tox=0.5nm on the test set. (b) Prediction
error distribution in 1,4.

TABLE 5. Structural parameters of all models.

Parameter DNN DNNw DNNd DenseDNN
width 32 55 32 32
depth 4 4 9 4

total number 4481 10139 9761 10241

device characteristics. In the experiment, we configured three
DNN models with varying hidden layer widths and depths.
DNN has same width and depth with DenseDNN without
cross-layer connections. DNNw and DNNd are designed to
ensure that the number of parameters is kept as consistent
as possible with DenseDNN by changing width or depth.
The width, depth and the total number of parameters are
presented in Table 5. The width of the last hidden layer is
fixed to 64 for all models. Fig. 6 shows the loss curves of
each model on the validation set during the training process.
From the figure, we find that simply increasing parameters
by adding width or depth does not necessarily result in better
fitting and can lead to various issues like vanishing gradients
or over fitting.

As observed from the figure, the loss of the DenseDNN
model rapidly decreases within the first 100 epochs, then
gradually stabilizes, reaching its lowest point at around 500
epochs. The losses of DNN, DNNw and DNNd reach their
minima at approximately 650, 1250 and 1200 epochs, with
no significant improvement afterward. Therefore, setting the
training epochs of each model to 1200 is more appropriate.
In the following experiment, we trained various models for
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FIGURE 6. RMSE on the validation set in the DenseDNN and DNN training.

1200 epochs in a CPU environment and recorded the training
time. Specifically, the training times of DNN, DNNw, DNNd
and DenseDNN were 53.04min, 56.48min, 84.42min, and
61.81min, respectively.

Saturation drain current (Iy), off-state current (I,4), and
threshold voltage (V) are important indicators that affect
device performance. Therefore, we will not only compare
the fitting capabilities of all models for drain current, but
also pay special attention to their ability to predict these
key indicators. We evaluated the trained DenseDNN and
DNN models on the same test set and extracted the values
of key metrics from the predicted I-V curves using the
following calculation method. Vj;, is defined as the gate
voltage corresponding to the maximum transconductance
(gm) when the transistor operates in the linear region. The
saturation drain current is drain current under V;=V;,=0.5V.
The off-state current is drain current under V,=0V and
Va=V44=0.5V. Table 6 presents the prediction errors of
the four models for these critical device characteristics.
The prediction errors are defined by the Mean Absolute
Error (MAE) [see (3)] and Mean Absolute Percentage Error
(MAPE) [see (4)]. To ensure the reliability of the model
predictions, all models were tested 10 times, and the mean of
the 10 test results was taken as the final result. It is evident
from the table that, in terms of MAE, DenseDNN model
performs best in the prediction error of Vy,. For MAPE, the
prediction error of the DenseDNN model does not exceed
2.05%, indicating a high prediction accuracy. Specifically,
the errors for Vi, Lisar, log and Iy are 2.00%, 0.95%, 2.05%,
and 1.04%, respectively. Compared to all DNN models, the
DenseDNN model exhibits lower prediction errors and better
predictive capability for key device characteristics.

1 n
MAE =~ [y; = 5il 3)
1 ljl y _S)
MAPE = — AL 4
-2 5 )

i=1
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TABLE 6. Average prediction error.

MAE MAPE
Parameter
DNN DNNw DNNd DenseDNN DNN DNNw DNNd DenseDNN
15 [pA] 0.0704 0.0656 0.2089 0.0686 1.23% 1.25% 3.69% 1.04%
Tgsat [1A] 0.1062 0.1033 0.2905 0.1210 1.04% 0.94% 2.84% 0.95%
Iopy [nA] 0.0012 0.0012 0.0012 0.0015 2.55% 2.76% 6.58% 2.05%
Vip [mV] 3.5646 5.0146 13.2100 2.5269 2.83% 3.98% 10.21% 2.00%
TABLE 7. Average prediction error on sample weight setting.
MAE MAPE
Parameter
1.5 3 5 10 15 20 1.5 3 5 10 15 20
Iq [nA] 0.0491 0.0571 0.0405 0.0527 0.0642 0.0422 0.86% 0.91% 0.92% 0.90% 1.22% 0.82%
Tisat [1HA] 0.0624 0.0652 0.0556 0.0520 0.0802 0.0616 0.63% 0.63% 0.48% 0.57% 0.92% 0.56%
Iopy [nA] 0.0011 0.0016 0.0011 0.0011 0.0013 0.0008 1.64% 1.96% 1.78% 2.13% 2.51% 2.33%
Vin [mV] 2.1566 1.9756 1.7438 1.8935 2.8524 2.3726 1.70% 1.61% 1.39% 1.54% 2.37% 1.90%
TABLE 8. Average prediction error of the optimal model.
MAE MAPE
Parameter
DNN DenseDNN DNNcs DenseDNNcs DNN DenseDNN DNNCcs DenseDNNcs
14 [pnA] 0.0704 0.0686 0.0589 0.0418 1.23% 1.04% 1.07% 0.82%
Tasat [HA] 0.1062 0.1210 0.0764 0.0571 1.04% 0.95% 0.73% 0.54%
Iopy [nA] 0.0012 0.0015 0.0012 0.0011 2.55% 2.05% 2.49% 1.62%
Vip [mV] 3.5646 2.5269 2.0975 1.8083 2.83% 2.00% 1.69% 1.44%

D. COMBINED WITH COST-SENSITIVE LEARNING
We applied the cost-sensitive learning to the DenseDNN
model and named it DenseDNNcs. Based on the sample
selection method in Section III.B, experiments were con-
ducted with different weight values to choose the most
suitable sample weight. The performance of the model
under different weight values was evaluated on the test
set to measure its performance. Table 7 shows the average
prediction errors of the DenseDNNcs model at various
weights. Comparing the MAE error results, when the weight
value is set to 5, the model has the smallest errors in
predicting I; and Vy. When the weight is set to 10, it is
most accurate in predicting Iz,;. When the weight value is
set to 20, the model performs best in predicting I g, but with
a larger error in predicting Vy,. For MAPE, when the weight
value is set to 5, the model demonstrates higher prediction
accuracy, with generally smaller prediction errors than other
weight settings. Based on a comprehensive evaluation of
MAE and MAPE error results, 5 is determined to be the
optimal weight value for the samples.

After determining the optimal weight values,
DenseDNNcs model was trained. To evaluate

the
the
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performance of the DenseDNNcs model in predicting key
device characteristics, Table 8 compares the prediction
results of the DNN model, DenseDNN model, and the
DNN model combined with cost-sensitive learning methods
(DNNCcs). Specifically, to ensure fair comparison, the DNNcs
model utilized the same sample selection method and weight
settings as the DenseDNNcs model. The results indicate that
the models incorporating cost-sensitive learning methods,
namely DNNcs and DenseDNNcs models, significantly
improve accuracy in predicting key device characteristics.
Moreover, the DenseDNNcs model exhibits the lowest
prediction errors among all models. Specifically, the maxi-
mum prediction error of MAPE is reduced to below 1.62%,
with MAE prediction errors for different leakage currents
controlled within 0.0571xA and a significant decrease
in MAE prediction error for Vth, reduced to 1.8083mV.
These results demonstrate the effectiveness of cost-sensitive
learning methods in enhancing model prediction capabilities.

To further validate the performance of DenseDNNcs, the
DNNcs model was selected for comparison. Fig. 7 displays
the predicted results of both models for Iy, Isar, Ioy. The
black line in figure represents the ideal target where the
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FIGURE 7. The comparison of the predicted Iy, Iysq¢: Iofr: Ve bY
DenseDNNcs and DNNcs on the same test set are shown in the (a)-(d). The
blue circles represent the prediction result of DNNcs, the red circles
represent the prediction result of DenseDNNcs, and the black line
represents the ideal target where the ML predictions match the TCAD
results.

TABLE 9. The comparison of model training and testing time.

Speedup
Models Training time|Testing time
with train time|without train time
TCAD [h] - 871.31 - -
DNN [h] 0.88 1.74e-4 | 9.90 x 102 5.01 x 108
DenseDNN [h] 1.03 2.03e-4 | 8.46 x 102 4.29 x 108
DenseDNNcs [h] 1.34 451le-4 | 6.65 x 102 1.93 x 106

predicted values match the actual values. Considering that
most values of I, are concentrated below 5e-8, some values
higher than 5e-8 were removed in Fig. 7 (c) to allow a
clearer comparison of the prediction results. By comparing
the distribution of prediction results around the target line
for both models, the prediction results of DenseDNNcs
are closer to the target line, indicating a stronger fitting
capability. To evaluate the prediction accuracy of the two
models, the value of R? was calculated, and R? is defined as:

R2—=1_ M 5)
S i —90)?

where y; is the mean value of the actual drain current in
the test set. The calculation results also presented in Fig. 7.
As shown in the figure, R> obtained from the predictions
of the DenseDNNcs model are greater than 0.99 and higher
than those of the DNN model, indicating superior accuracy
compared to DNN. It is worth noting that the R? of Iy,
ILysar and 1,4 predicted by DenseDNNcs are almost 1, further
proving that the use of cost-sensitive learning methods can
predict key device characteristics more accurately.
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E. COMPARISON OF SIMULATION TIME WITH TCAD
Furthermore, the DenseDNNcs model can predict key device
characteristics faster with relatively small errors compared
to TCAD simulations. As shown in Table IX, based on the
trained DenseDNNcs model, it takes about 1.6 seconds to
predict the key characteristics of 116 NWFETSs, whereas
TCAD simulations may require approximately 871.3 hours.
While the complexity of the DenseDNNcs model leads to
slightly longer prediction times compared to the DNN model,
the results from the aforementioned experiments demonstrate
that DenseDNNcs exhibits higher accuracy and superior
fitting capabilities when predicting key device characteristics.
It is important to note that the TCAD simulation times for
different devices varied in this experiment. The minimum
time to simulate one device is 1 hour, while the maximum
time reaches 28.69 hours.

V. CONCLUSION

In This paper, we propose a cost-sensitive DenseDNN
model to learn the compact current-voltage relationship of
GAA NWFETs from TCAD simulation data. The proposed
model leverages the information exchange among all layers
through direct cross-layer connections, and focus more
on deterministic samples due to cost-sensitive learning.
Experimental results demonstrate that the proposed model
can better fit the TCAD simulation data with the prediction
errors for key device characteristics no more than 1.62%,
demonstrating good predictive capability. Furthermore, com-
pared to TCAD simulation, the proposed model achieves
a significant improvement in prediction efficiency, which
speeds up 10°x while ensuring accuracy.

In future research, by analyzing the impact of samples
from different working regions of the device on the overall
performance of the model and accordingly adjusting the
sample weights, the learning process of the model regarding
the relationships of device characteristics can be effectively
optimized. This approach is expected to further improve upon
the existing performance of the model.
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