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ABSTRACT Neural Compact Models (NCMs) have emerged as a crucial tool to meet the stringent
demands of Design-Technology Co-Optimization (DTCO) and to overcome the complexities and prolonged
development cycles encountered in traditional compact model creation. Despite their efficiency in
simulating electronic devices, a significant barrier to the widespread adoption of NCMs in the industry
remains: the lack of interpretability. In the semiconductor sector, where inaccuracies or failures can
lead to considerable financial consequences, it is critical to ensure that the model’s predictions are both
understandable and reliable. This study aims to enhance the interpretability of NCMs used for I-V and C-V
characterizations by clarifying the physical significance of latent vectors. A regularization technique is
employed to disentangle features within the latent space, and interpolation is used to visualize and elucidate
each dimension’s physical impact. Our approach, which offers interpretable insights into the model’s
functionality, seeks to encourage broader implementation of NCMs in the industry, thus accelerating
advancements in DTCO.

INDEX TERMS Neural compact models, interpretability, latent vector interpolation, design-technology
co-optimization.

I. INTRODUCTION
As semiconductor technology advances toward further
miniaturization, the need for advanced and rapid compact
modeling becomes increasingly pronounced. Conventional
methods, dependent on analytical equations and extensive
parameter extraction, are challenged to meet the expe-
dited development cycles required by emerging technology
nodes [1], [2], [3], [4]. The increased complexity added
by device downscaling complicates the creation of precise
compact models, often extending the turnaround time (TAT)
and posing an obstacle to efficient Design-Technology Co-
Optimization (DTCO).
In response to these challenges, Neural Compact Models

(NCMs), which utilize Artificial Neural Networks (ANNs)
for device modeling, have been recognized as a viable
alternative to streamline the modeling process [5], [6],
[7], [8], [9], [10], [11]. NCMs, by incorporating domain
knowledge into ANN architectures and preprocessing, can

quickly simulate novel devices with a high degree of
accuracy and efficiency that outperforms traditional methods.
Despite these advances, the inherent lack of interpretability
in these NCMs is a significant hurdle that impedes their
widespread adoption in the industry.
The challenge of understanding black-box ANNs is

pivotal, particularly for applications in sectors where safety
is critical, such as autonomous driving [12] and medical
diagnostics [13]. In semiconductor device modeling, where
inaccuracies can lead to significant time and financial
costs, enhancing both the interpretability and reliability of
NCMs is essential. Researchers have introduced various
approaches, including physics-informed networks [5] and
hybrid models [14], to improve precision and physical
plausibility.
Physics-informed networks successfully integrate device

physics to circumvent unphysical behaviors of NCMs but
can restrict ANN flexibility, potentially limiting predictive
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performance. Conversely, while model-based approaches
combine basic analytical equations with ANNs, they still
retain the “black-box” nature of ANNs, achieving only partial
model interpretability. This work seeks to bridge this gap
by introducing a framework that not only capitalizes on
the speed and accuracy of NCMs but also makes their
interpretative features more accessible.
We investigate the physical relationships between latent

vectors and generated device characteristics that emerge
during the end-to-end training of NCMs. Employing a
transformer-based encoder, our approach extracts the phys-
ical representation of the given technology and regularizes
the latent vector to ensure a sparse and disentangled
representation. This technique enables a clearer separation of
the underlying factors in latent representations with distinct
semantic meanings. With our approach, which examines and
validates the model’s internal processes, we aim to enhance
the reliability and interpretability of NCMs, promoting their
wider use in DTCO and accelerating the advancement of
semiconductor device research.
Our contributions are summarized as follows:
• We introduce an encoder-decoder framework for neu-
ral compact modeling that incorporates a regularized
latent space to ensure clear interpretability and distinct
separation of device characteristics.

• To the best of our knowledge, this is the first work
to integrate explainable AI principles into device
modeling, aiming for more transparent and understand-
able NCMs.

• We clarify the role of each latent dimension in defining
device characteristics and present a heatmap-based anal-
ysis to elucidate the internal workings of ANN-based
compact models, thus making the model’s predictive
capabilities more transparent.

II. RELATED WORK
A. MODEL INTERPRETABILITY
Extensive research focuses on enhancing the interpretability
of Machine Learning (ML) models, aiming to clarify their
“black-box” nature and their internal representations. A
technique providing visual explanations for the decisions of
CNN-based models has been proposed, offering a insight
into their decision-making process [15]. In autonomous
driving, a framework designed to effectively process and fuse
multi-modal and multi-view sensor information to achieve
comprehensive scene understanding and detect adversarial
events has been introduced [12]. For medical diagnosis,
models that create a direct, multimodal connection between
medical images and diagnostic reports have been explored,
providing meaningful and visually interpretative diagnostic
processes [13]. Moreover, in language modeling, attempts
have been made to synergize reasoning and action, enabling
models to generate reasoning traces and task-specific actions
in a mutually informative manner [16]. Across these
domains, interpretability stands out as a primary research
objective to enhance model utility and trustworthiness.

B. NEURAL COMPACT MODELS
Recent progress in NCMs has incorporated domain knowl-
edge into ANNs [6], [8], [9]. This integration has led to the
development of specialized architectures and loss functions
that mitigate non-physical behaviors [5], [17], and the use
of Autoencoders (AE) to align physical parameters with
I-V characteristics [7]. Studies to address data scarcity
have included the deployment of hierarchical networks
for MOSFETs [10] and meta-learning techniques for prior
knowledge construction [11]. Furthermore, ANNs have been
shown to enhance the convergence of circuit simulation,
outperforming conventional analytical models [18].
On the other hand, hybrid models that combine basic

analytic models and ANNs have been proposed for emerging
devices [14], [19], [20]. While these models effectively learn
I-V trends by integrating both physics-based and learning-
based approaches in a complementary manner, they remain
partially interpretable due to the inclusion of ANNs, or
are less accurate due to reliance on simple equations.
Although the above strategies provide fast and accurate
simulations of emerging devices, the industrial adoption of
NCMs has been impeded primarily by concerns regarding
their interpretability and reliability. In this work, we refine
our approach by expanding the dimensionality of our
model to enhance predictive performance, while applying
L1 regularization for an interpretable, sparse representation.
This strategy ensures a balanced solution that optimizes both
interpretability and performance, fostering reliability and a
deeper understanding in practical applications, promoting
broader industry adoption.

III. PROPOSED METHOD
A. OVERVIEW OF FRAMEWORK
The workflow of our framework is depicted in Figure 1,
outlining two main stages: training and latent analysis. In
the training stage, each individual input point is mapped
into a dlatent-dimensional embedding. This embedding is
then processed through Multihead Attention (MHA) and
aggregated using max pooling to create a latent vector. The
decoder, augmented with additional query inputs such as VDS
and VGS, utilizes this latent vector to predict target values
including ID and CGG. We apply L1 regularization to the
latent vectors, aiming for a disentangled representation to
facilitate clear interpretation. This encoder-decoder config-
uration is trained end-to-end across a variety of devices to
optimize performance.
In the latent analysis phase, the trained encoder extracts

essential information from input measurements. For each
dimension zi of the latent vector, we conduct two analysis.
First, we interpolate zi between −1 and 1 while keeping
other dimensions constant to observe variations in decoder
I-V, C-V outputs and infer the role of each latent dimension.
Second, we compute the gradient of zi with respect to
the input measurements, creating a heatmap to identify
input data points that significantly influence zi. This dual
approach clarifies the causes and consequences of each latent
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FIGURE 1. Overview of our framework: In the training stage, input measurements are encoded into a latent vector, which the decoder then utilizes to
predict target I-V and C-V curves. The latent analysis stage focuses on interpreting each latent dimension zi through interpolation and heatmap
generation, to clarify its role and identify the influential input data points.

dimension, enhancing our understanding of how the ANN
functions and what it has learned in device modeling.

B. METHOD DETAILS
In our methodology, we employ an encoder-decoder struc-
ture, designed to address the complexities of predicting
I-V and C-V curves at unseen biases by utilizing crucial
information extracted from the input data. We utilize
a dataset generated using the BSIM4 model in SPICE,
calibrated to align with the 32nm technology standards
specified in the ITRS Roadmap [21]. This dataset includes
variations in Width (W), Length (L), and Temperature
(T), and for each device, we have organized the data
into input (assumed provided measurements) and target
(values for prediction) categories. The encoder is trained to
extract essential information from the available input data.
Subsequently, the decoder, comprising fully-connected layers
with skip connections, uses a latent vector, combined with
unseen biases, to predict the behavior of the target region of
a device. Further details are outlined in Algorithm 1.

Incorporating a self-attention mechanism within the
encoder is crucial for grasping the underlying physics in
the provided data by identifying relationships among input
points. This mechanism is designed to capture physical
relationships between various positions in the input mea-
surements and to understand connections between physical
phenomena, such as the connection between Drain-Induced
Barrier Lowering (DIBL) and output resistance (Rout) in I-V
curves. This feature enables the model to discern complex
patterns and comprehend the physics embedded in the device
characteristics, thereby not only enhancing its predictive
performance but also distilling interpretable factors into
latent representations.

Algorithm 1 Encoder-Decoder Training
Notations: k: # input data, d: embed size, m: input
dimension

1: Input: Device data (xi, yi) for i = 1, . . . ,N;
2: Parameter: Regularization weight λ;
3: Split the device data into input set T and target set U ;
4: Encoder:
5: Form input matrix: XT ∈ R

k×d;
6: Apply self-attention on XT : ST =

softmax

(
XT XTT√

d

)
XT ;

7: Aggregate: z = maxpool(ST ) ∈ R
1×d;

8: Decoder:
9: Initialize total loss: Ltotal = 0;

10: for (xj, yj) ∈ U do
11: Form decoder input: Zj = concat(z, xj) ∈ R

d+m;
12: Predict output: ŷj = fdec(Zj);
13: Compute loss: Lj = λ · ‖z‖1 +MSE(ŷj, yj);
14: Update total loss: Ltotal = Ltotal + Lj;
15: end for
16: Compute gradients: ∇enc,∇dec = ∇Ltotal;
17: Update encoder and decoder: fenc← fenc−α∇enc, fdec←

fdec − α∇dec;

We employ L1 regularization on the latent vector to
enhance interpretability by encouraging sparsity in the latent
representations. This method effectively isolates the data’s
generative factors into separate, clear dimensions in the latent
space, thereby allowing for a straightforward and easily
understandable connection between changes in the device
characteristics and shifts in the latent variables.

VOLUME 12, 2024 497



PARK et al.: ENHANCING INTERPRETABILITY OF NCMs: TOWARD RELIABLE DEVICE MODELING

Identifying the optimal latent dimensionality is key
because dimensions that are too large can hinder inter-
pretability, whereas those too small can cause an information
bottleneck, potentially harming the learning process.
Preliminary experiments with Variational Autoencoders
(VAEs) revealed that a latent space of 8 dimensions was
sufficient to reconstruct the I-V and C-V curves. However,
to achieve sparse and factored representations for improved
interpretability, we chose a latent space of 32 dimensions
with L1 regularization. By utilizing a larger latent space
and enforcing stringent regularization, the model can learn
a sparse, defined representation, in which each dimension
isolates different independent characteristic factors. This
technique allows us to achieve a balance between main-
taining an interpretable latent space and ensuring practical
computational and representational efficiency.

C. EXPERIMENTAL SETUP
To develop a robust model, we created a comprehensive
dataset using BSIM4 models calibrated to 32nm technol-
ogy. The dataset includes various device dimensions and
temperatures to capture a wide range of properties within
semiconductor devices. Gate widths span from 50nm to
100um, and gate lengths range from 32nm to 10um. We
covered operating temperatures from 0 to 125 ◦C.

We partitioned the devices into two sets: one for training
and one for testing. This approach allowed our model
to learn from the training devices and then have its
performance evaluated on the unseen test devices. Further,
we divided the data for each device into input and target
sets, simulating a scenario where the input data are user-
provided measurements used to generate latent code, which
is utilized by the neural compact model (decoder).
For the input data, we conducted VDS sweeps at fixed

VGS values of 0.0, 0.8, and 1.1 V, as well as VGS sweeps
at fixed VDS values of 0.1, 0.5, and 1.1 V. These sweeps
generate the ID−VDS and CGG−VDS curves, as well as the
ID−VGS and CGG−VGS curves, respectively. The target data
consist of all data points not included in these input sweeps.
Specifically, the decoder is tasked with predicting the entire
range of VDS (from 0 to 1.1 V) and VGS (from −0.3 to 1.1
V) at an interval of 0.05 V. These data points cover the full
operational space of the devices, extending beyond the fixed
values used in the input data sweeps.
In our experiments, we trained our model for a total

of 5,000 epochs using a batch size of 64. The learning
rate was initially set to 10−4 and decayed by a factor of
0.8 every 200 epochs. We utilized the Adam optimizer to
minimize the total loss, which comprises a combination
of Mean Squared Error (MSE) loss and L1 regularization,
with a coefficient of 10−5. The encoder was configured
with a Multihead Attention (MHA) mechanism, including 4
attention heads and 3 encoder layers, all utilizing the ELU
activation function. The decoder was constructed with 6
layers, each possessing 256 hidden nodes, and incorporated
skip connections to enhance performance.

FIGURE 2. Performance on I-V Curve. Solid circles denote input data
points; open circles represent predictions on test data, highlighting the
model’s generalization capabilities.

Figure 2 exhibits the performance of our encoder-decoder
architecture, demonstrating its capability to accurately cap-
ture the output characteristics shown in (a), and the transfer
characteristics depicted in (b). In this figure, solid circles
represent the provided input data points, while open circles
indicate unseen test data. The model demonstrated high
precision on both the provided input and unseen test data,
emphasizing its robustness and validity.

IV. LATENT DIMENSIONS ANALYSIS
This section explores the latent space of each trained I-V and
C-V model, examining the role of each dimension through
interpolation and heatmap analysis. For interpolation, an
instance of device input is encoded into a latent vector, with
each dimension interpolated while holding others constant,
to understand the function of each dimension. Heatmap
analysis computes the gradient of each latent dimension
with respect to the input data samples, highlighting input
points that significantly influence the decisions of the
ANNs. The gradients are normalized and displayed in a
color spectrum ranging from gray to red, where a red
marker indicates a high gradient value for the target latent
dimension, signifying a strong impact on the model’s output.
Furthermore, by commenting on the explanations of the
interpolated curves and potential device physics reasons, we
aim to underscore that these interpolated curves are not
merely visually similar, but they also represent physically
plausible device characteristics.
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FIGURE 3. Latent Interpolation of I-V Characteristics: Each row demonstrates variations in I-V curves influenced by a distinct latent dimension (z1 to z5).
The disentangled representation emphasizes the unique, interpretable role of each latent variable.

A. I-V MODEL INTERPRETATION
As depicted in Figure 3, we examine the influence of
five specific latent dimensions, z1 to z5, on the model’s
output. It is crucial to note that the numbering of these
dimensions is for illustration purposes and does not represent
a fixed order, as their ordering is determined automatically
during training. To focus on shape variations and facilitate
clearer interpretation, we normalize ID and log ID in the
plots by their respective maximums, except for z2, which is
normalized using the device with the largest IDmax .

Upon examining z1, it is evident that in the saturation
region, the output conductance, gds, tends to flatten as z1
increases. The I-V model, trained with diverse device sizes
and temperatures, needs to capture the unique behaviors
associated with Channel Length Modulation (CLM) and
thermal effects, as both significantly influence gds in the
saturation region. To effectively differentiate between devices
and make accurate predictions in unseen regions of devices,
the I-V model has encoded information related to gds
in the saturation region within the z1 latent dimension.
The heatmap shows that regions with high VGS and VDS
values are highlighted in red, indicating that the encoder is
effectively capturing information related to gds from these
input saturation regions.
In the plots for z2, a consistent decrease in the ID

scale is observed as z2 ascends, while the curve shapes
remain unchanged. Given the direct relationship between
the ID scale and gate width, z2 likely corresponds to this
device parameter. The heatmap supports this by showing
the encoder’s emphasis on regions of maximal ID across

varying VGS values to determine scales for unseen ID−VDS
sweeps.
Moving to z3, we notice two distinct behaviors with

changing values. First, with an increase in z3, ID shifts
from saturation to a linear rise with VGS. This shift can be
attributed to factors like velocity saturation or early channel
pinch-off. Second, a noticeable spread of curves with VDS
variations appears evident at lower z3 values, while curves
tend to converge at elevated z3 values. Phenomena such as
CLM and DIBL can explain these variances. Given that
these effects occur after the device is turned on, the model
predominantly extracts data from high VGS input regions.

Observations related to z4 indicate that the threshold
voltage (VTH) rises as z4 increases. This rise may result
from the channel lengthening, which mitigates short-channel
effects and alters Vth. The heatmap highlights the model’s
focus on inputs where ID shows a rapid change. Lastly, for
z5, the data indicates a reduction in Gate Induced Drain
Leakage (GIDL) intensity as z5 grows. This effect becomes
more evident with larger VDS values, a consequence of the
strengthened electric field near the drain-to-channel junction.
It’s also worth noting that shorter channel lengths can
exacerbate GIDL. The model pays more attention to input
data where the device is essentially off, i.e., VGS values close
to zero or negative.

B. C-V MODEL INTERPRETATION
Referring to Figure 4, we investigate the effect of specific
latent dimensions, ranging from z1 to z3, on the predictions
of the model. Following an approach analogous to the I-V
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FIGURE 4. C-V Characteristics in Latent Space. Interpretations of each
latent dimension: (a) CGG modulation in the saturation region, (b) Shifts in
VTH and VFB, (c) Scaling of CGG.

analysis, CGG values in the plots are normalized based on
their individual max values. However, for z3, normalization
is carried out using the device exhibiting the highest CGGmax .

For z1, as its value increases, there’s a clear reduction in
the capacitance values in the inversion, especially within the
saturation region. This trend is influenced by various device
characteristics. The oxide thickness, doping concentration,
and channel length play a pivotal role in shaping the
capacitance values in the inversion. The heatmap apparently
emphasizes the saturation regions, with a marked focus at
VDS = 1.1 V. Moreover, the observed low CGG in saturation
at high VDS can be explained by the device’s transition
into the saturation mode, leading to channel pinch-off and
consequently, a reduced effective channel area contributing
to CGG.
As z2 increases, we notice a concurrent reduction in both

VTH and VFB. This correlated behavior suggests that there are
shared underlying factors influencing these changes, such as
a change in the work function of the gate material, charges
in the gate oxide, or variations in the substrate doping. All
of these can affect both VTH and VFB at the same time. The
model appears to focus more on the vicinity of VFB and
VTH , highlighting their importance in the latent dimension
z2.
In the case of z3, increasing values bring about a clear rise

in the magnitude of CGG, while the overall shape, includ-
ing features like VTH and VFB, remains consistent across
different z3 values. This highlights the capability of our

method in capturing a disentangled representation, allowing
for straightforward interpretation of device characteristics
curves. The encoder mainly attends to the regions with
high capacitance, both in inversion and accumulation, which
are crucial in determining the scales of unseen CGG − VGS
curves. Furthermore, since the magnitude of CGG is closely
associated with the gate area, represented by W×L, z3 could
potentially correspond to this gate area parameter, providing
further insights into its influence on device characteristics.
In this section, we have examined the latent spaces of the I-

V and C-V models, pinpointing how each dimension reflects
specific attributes of semiconductor devices. Utilizing L1
regularization has resulted in a sparse yet disentangled
representation, with each latent dimension reflecting a unique
characteristic. The analysis through interpolation shows
that the model generates curves that are both realistic
and informative, aligning with known device behaviors.
Heatmap analysis further reveals the selective focus of our
neural networks, identifying the input data elements that are
most influential in shaping the output. This investigation
underscores our ability to elucidate the internal mechanisms
of neural compact models, offering clear and interpretable
insights that can enhance understanding in the field of device
physics.

V. DISCUSSION
We conducted additional experiments to explore the rela-
tionship between latent dimensions and the actual electrical
parameters of semiconductor devices. We selected fifteen
random devices from a 32nm technology node and encoded
their input data into a latent space. Specifically, we focused
on interpolating the z4 latent dimension from −0.3 to +0.3,
while keeping the other dimensions constant, effectively
creating a series of virtual devices. We then measured the
threshold voltages, VTHLIN in the linear region with VDS at
0.1 V, and VTHSAT in the saturation region with VDS at 1.1 V,
for these virtual devices.
In Figure 5, each color represents a latent vector corre-

sponding to a different actual device, ensuring that identical
colors across both VTHLIN and VTHSAT indicate the same
device. The data shows that both VTHLIN and VTHSAT exhibit
a near-linear relationship with the z4 latent dimension,
suggesting a strong correlation. This observation suggests
that z4 plays a pivotal role in modulating the threshold
voltage, a parameter of critical importance in defining device
performance. Notably, for lower values of z4, VTHSAT is
observed to be lower than VTHLIN and this trend reverses as
z4 increases. This phenomenon can be attributed to DIBL,
which becomes more pronounced in shorter-channel devices,
indicating that with an increase in z4, the virtual devices
transition from short to long-channel characteristics.

VI. CONCLUSION
In this study, we introduce a framework for NCMs
that emphasizes interpretable and reliable simulations. Our
approach involves regularizing latent spaces to achieve
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FIGURE 5. Correlation between z4 and Threshold Voltages: A linear trend
in threshold voltages with z4 confirms disentangled and interpretable
representation.

disentangled representations, which ensures a transparent
understanding of model outcomes. By interpolating latent
dimensions, we clarify their impact on the device’s I-V
and C-V characteristics, while heatmaps provide visual
and intuitive insights into the NCMs’ internal operations.
Our work integrates explainable AI into device modeling,
promoting the development of transparent and efficient
NCMs that are trusted and widely adopted in Design-
Technology Co-Optimization (DTCO), thereby advancing
semiconductor device research.
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