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Abstract—Background and objective: The high volume of emergency room patients often necessitates head CT examinations to rule out
ischemic, hemorrhagic, or other organic pathologies. A system that enhances the diagnostic efficacy of head CT imaging in emergency
settings through structured reporting would significantly improve clinical decision making. Currently, no AI solutions address this need.
Thus, our research aims to develop an automatic radiology reporting system by directly analyzing brain anomalies in head CT data. Data
and methodology: We propose a multi-branch CNN-LSTM fusion network-driven system for enhanced radiology reporting in emergency
settings. We preprocessed head CT scans by resizing all slices, selecting those with significant variability, and applying PCA to retain 95%
of the original data variance, ultimately saving the most representative five slices for each scan. We linked the reports to their respective
slice IDs, divided them into individual captions, and preprocessed each. We performed an 80-20 split of the dataset for ten times, with 15%
of the training set used for validation. Our model utilizes a pretrained VGG16, processing groups of five slices simultaneously, and features
multiple end-to-end LSTM branches, each specialized in predicting one caption, subsequently combined to form the ordered reports after
a BERT-based semantic evaluation. Results and discussion: Our system demonstrates effectiveness and stability, with the postprocessing
stage refining the syntax of the generated descriptions. However, there remains an opportunity to empower the evaluation framework to
more accurately assess the clinical relevance of the automatically-written reports. Part of future work will include transitioning to 3D and
developing an improved version based on vision-language models.
Clinical impact: Our system improves clinical decision making by automating radiology reporting for emergency head CTs, enhancing
diagnostic accuracy, reducing cognitive biases, and providing timely support for integration in hectic clinical settings.
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I. INTRODUCTION

THE number of patients who access an emergency room
is typically very significant and, at the same time, a head

Computed Tomography (CT) examination is often required.
The demand for head CT scans in emergency settings is
driven by the need to quickly and accurately diagnose critical
conditions such as strokes, traumatic brain injuries, and other
neurological emergencies. However, this diagnostic process is
not without challenges. The high costs associated with CT
imaging include those related to the patient’s extended stay in
the hospital. Prolonged observation periods increase the risk
of hospital-acquired conditions, including delirium and other
complications, particularly in older adults.

Radiologists examine CT scans to diagnose the cause of
patient’s symptoms, monitor treatment effects, screen for var-
ious illnesses, and write radiological reports [1]. However, the
process of interpreting CT scans is time consuming. A radiolo-
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gist spends 5 to 20 minutes to interpret and manually describe
the CT findings, further delaying patient’s stay in the hospital
[2]. In addition, this process is highly dependent on the
individual experience. Radiologists rely on cognitive heuristics
when making diagnostic decisions, such as representativeness,
anchoring, and availability [3]. Representativeness refers to the
tendency to assess the probability of a clinical condition based
on how much the patient’s symptoms resemble typical cases
of that condition. Anchoring involves relying on the initial
piece of information (i.e., the anchor), whereas availability is
the tendency to judge the likelihood of events based on how
easily examples come to mind. These heuristics can sometimes
lead to diagnostic errors, especially in high-pressure emer-
gency environments. Automatic radiology reporting represents
a crucial advancement in reducing radiologists’ workload and
improving diagnostic accuracy [2]. Deep Learning (DL) mod-
els present challenges due to their non-transparent decision-
making processes. This lack of interpretability can hinder
trust and adoption in clinical settings. Teaching machines to
produce automatic, human-readable reports is a promising
approach to address this issue, as it can enhance the trans-
parency of DL models by providing a clear rationale behind
their decisions [4]. A well-designed decision-support system
for radiology reporting can bridge the gap between raw data
analysis and clinical decision making, offering a more intuitive
understanding of the Artificial Intelligence (AI)’s findings and
recommendations. Therefore, exploring the development of
automatic radiology reporting systems is essential not only
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for improving the interpretability of DL models but also for
ensuring that these systems can effectively support radiologists
in making accurate, consistent, and unbiased diagnoses.

In this context, an automatic radiology reporting system
designed to enhance the diagnostic efficacy of head CT imag-
ing in emergency settings by harmonizing the report structure
could be highly beneficial to the clinical decision-making
process. Such a system could standardize the interpretation
of head CT scans, reduce variability in diagnoses, and ensure
that critical findings are consistently reported. In addition,
creating multi-purpose reporting systems for radiologists that
can detect several diseases simultaneously is still a challenge
as, up to date, there are no solutions based on AI specifically
designed to fulfill this task. Thus, the motivation behind our
research is to create an automatic radiology reporting system
that directly analyzes anomalies in brain structures, such as
calcifications, hemorrhages, and other deviations from brain
anatomies considered unremarkable, to provide radiologists
with a second opinion and help reduce cognitive biases.

In this paper, we propose a multi-branch Convolutional Neu-
ral Network-Long Short-Term Memory (CNN-LSTM) fusion
network-driven system with a Bidirectional Encoder Represen-
tations from Transformers (BERT)-based semantic evaluator
for enhanced radiology reporting in emergency room head CT
scans, whose workflow is illustrated in Fig. 1, articulating the
objective into four key contributions:

• A dual-input preprocessing pipeline that optimizes both
imaging and textual data, including a strategy to select the
most representative slices of each scan when a slice-by-
slice labeling is unavailable or not possible to perform;

• A multi-branch CNN-LSTM fusion network that inte-
grates imaging features with multiple parallel LSTM
branches, each receiving distinct inputs and producing
a set of outputs, subsequently combined to form the
ordered reports, thus leading to a stronger radiological
data representation;

• A BERT-based evaluator that semantically analyzes and
selects the best among the predictions for each section of
the report, ensuring it appears properly structured;

• A rule-based postprocessing stage that refines the syntax
of the automatically-written reports, making them more
in line with how radiologists write.

It is also noteworthy to underline that this system is the first
to work on head CT scans of emergency room patients, thus
considering the extreme heterogeneity of cases that it has to
deal with and its potential usefulness as a supportive tool in
such a hectic clinical context.

For promoting transparency and reproducibility, we release
the source code of the proposed system in a GitHub repository
accessible at https://github.com/S3l11/HeadCTRadRepo. To
safeguard privacy, raw data are not openly accessible. Access
to anonymized textual data and preprocessed imaging data,
represented as selectively-reduced and compressed versions of
the original head CT scans, is subject to approval. Requests
must be submitted in writing and include a declaration of non-
profit use.

II. LITERATURE REVIEW

The initial focus of DL in radiology was on employing
CNNs due to their effectiveness in processing complex imag-
ing data [5]. CNNs excel at automatically amalgamating low-
level features into high-level representations through succes-
sive layers. However, creating reports required the integration
of a sequential model capable of handling textual data, lead-
ing to the adoption of Recurrent Neural Networks (RNNs)
[6]. CNNs encode images into feature vectors, which RNNs
then decode into textual descriptions, thus providing a more
comprehensive understanding of radiological data. A notable
example of this approach is the work by Shin et al. [7], the
first that utilized CNNs to identify regions of interest in chest
X-ray images from the Indiana University chest X-ray (IU X-
ray) dataset and RNNs to produce corresponding descriptions
(e.g., location, severity, and affected organs).

However, RNNs face challenges in retaining information
over extended sequences, as their layers apply equal weights
throughout. Additionally, training RNNs with the backpropa-
gation algorithm often results in gradients that either explode
or vanish, necessitating variations of the RNN architecture.
The most prominent extension is the LSTM network, which in-
corporates memory blocks to preserve the network’s temporal
state and gates to regulate the flow of information [8]. Within a
LSTM hidden unit, each sequence is processed in its entirety,
with information stored in a memory cell. The memory cell
itself determines what information to retain and when to allow
its reading or updating through three gates, which operate
as needed: the input gate transfers new information into the
memory cell, the forget gate selectively discards irrelevant
data, and the output gate enables the storage of important
information. Specifically, the output ht at time point t is
regulated by (1), where it, ft, ot, and ct are the activation
vectors of the three gates and of the memory cell at time point
t, σ is the sigmoid activation function, tanh is the hyperbolic
tangent activation function, xt denotes the current input, b
denotes the bias of the memory cell and of each gate, and
W are the diagonal weight matrices:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi),

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ),

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc),

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo),

ht = ottanh(ct). (1)

The first work that introduced a hierarchical LSTM to produce
reports by capturing long-range semantics was by Jing et al.
[9]. Although this model achieved outstanding results on the
IU X-ray dataset, the predictions contained repeated sentences
due to a lack of contextual coherence in the hierarchy. More
recently, Xue et al. [10] created sentences using the same
dataset by employing CNN and LSTM in a recurrent way.
Similarly, Li et al. [11] proposed a system that first annotated
the X-ray image via classifying and localizing common tho-
racic diseases and then created sentences from an attentive
LSTM. However, the generated text lacked some abnormal
descriptions and included sentences that differed from those
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Fig. 1: Workflow of the multi-branch CNN-LSTM fusion network-driven system. The process begins with a preprocessing pipeline followed
by the extraction of relevant features using a pretrained VGG16. These features are processed through multiple parallel LSTM branches
trained from scratch, each responsible for generating distinct captions corresponding to different aspects of the radiological findings. The
BERT-based semantic evaluator analyzes and selects the best individual captions, which are then combined to form a complete, ordered
report. A final postprocessing stage refines the syntax of the generated text, ensuring structural coherence. The red bars (//) indicate missing
passages, excluded from this exemplification to ensure its clear reading.

in the training set. Recent advancements have significantly
improved the quality and relevance of the generated text as the
work by Sirshar et al. [12], who proposed an attention-based
model that combined a CNN encoder with a LSTM decoder
enhanced by an attention mechanism for sequence generation
using the IU X-ray and Medical Information Mart for Intensive
Care Chest X-Ray (MIMIC-CXR) datasets.

Despite the advancements of CNNs used in conjunction
with recurrent modules, they encounter significant limitations
in producing reports that are sufficiently diverse and con-
textually accurate, both critical for clinical acceptance and
utility. Their rigid structure frequently results in repetitive
and less human-like descriptions [13]. Moreover, some of the
datasets used to train these models often lack the realism
needed for effective clinical application. Publicly available
datasets like Radiology Objects in COntext (ROCO) [14] and
ImageCLEF [15], which contain radiological images extracted
from articles on PubMed Central and similar databases, do not
fully reflect clinical environments. The associated captions are
typically brief and lack the detail of true radiological reports,
thus limiting the ability to capture the nuances of radiology
reporting. Despite openly-accessible datasets like IU X-ray
[16], ChestX-ray14 [17], CheXpert [18], and MIMIC-CXR
[19] offer more realistic data, their focus on X-ray images
restricts their applicability across various imaging modalities.

To our knowledge, only two works address CT data in this
context. Aswiga et al. [20] developed a radiology reporting
model that utilized a deep recurrent architecture, integrating
a multi-level transfer learning framework with a LSTM. This

model used image features, extracted from a private dataset
of 150 breast and thorax CT images, and word vectors as
inputs to produce captions. However, their approach involves
a pure concatenation of captions rather than producing a full
report. On the other hand, Kim et al. [21] proposed a CT
scan-based captioning model that combined a CNN with a
language model, specifically distilGPT2. Their study focused
on normal and intracerebral hemorrhage head CT scans along
with the corresponding reports. However, it is limited to the
prediction of individual captions. In both cases, the CT images
and associated reports are not publicly accessible, and the
generated descriptions are neither fully comprehensive nor
properly structured.

Our research aims to address these challenges by improving
the diversity and contextual relevance of the automatically-
written reports, thereby enhancing their suitability to support
the clinical decision-making process.

III. DATA AND METHODOLOGY

A. Imaging and Textual Data Collection

We gathered data from the Synapse Teaching File of the
Azienda Provinciale per i Servizi Sanitari of the Autonomous
Province of Trento, Italy, comprising a total of 500 patients
who visited the emergency room in the first half of 2022,
from January to June. For each patient, we collected one
head CT scan performed without intravenous contrast ad-
ministration. The inclusion criteria encompassed both males
and females over the age of 18, regardless of neurological
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pathology or injury status. We included not only cases with
or without pathologies, but also cases with deviations from
brain anatomies considered unremarkable. These deviations
may not necessarily be linked to a pathological condition.
Additionally, a single patient may present with multiple clini-
cal conditions, mirroring real-world scenarios. Table I catego-
rizes the included conditions, such as the presence of blood
(e.g., hemorrhage), calcifications, ischemia, edema, and other
findings. When multiple scans were available for a patient,
we selected the earliest one to prevent intra-patient bias and
potential information leakage. When also a head CT scan with
intravenous contrast administration was available for a patient,
we discarded it. Each scan consists of a variable number of
slices, ranging from a minimum of 13 to a maximum of
307, with resolutions between 512 pixels × 512 pixels and
512 pixels × 559 pixels. During the collection phase, we
anonymized all scans by removing any sensitive information
(i.e., name, surname, date of bird, and sex) and the name of
the hospital where the exam was undertaken, whereas retaining
relevant information such as the field of view and compression
rate. We stored the anonymized slices as JPEG files in zipped
folders numbered in ascending order, one for each scan.
Alongside imaging data, we also collected associated reports
written in Italian. We anonymized these reports by removing
any sensitive information and saved them as TXT files, one
for each scan.

We performed both imaging and textual data collection
in accordance with the General Data Protection Regulation-
compliant University of Trento’s guidelines and the European
AI Act, following the ethical principles of the Helsinki Decla-
ration and all applicable national laws governing observational
feasibility studies.

TABLE I: Occurrence, as %, and presence, as True/False, of the
main clinical conditions included in the dataset. In line with the
standard structure of the radiological reports, which are inherently
comprehensive and include both positive (i.e., presence) and negative
(i.e., explicit absence or negation) clinical findings, this stratification
represents a holistic grouping.

Clinical condition Occurrence Presence in multiple reports

Hemorrhage 32.6 True
Calcifications 10 True
Ischemia 19.8 True
Edema 13.4 True
Other clinical findings 42.6 True

B. Preprocessing Strategy

We undertook both imaging and textual data preprocessing
before feeding them to our multi-branch CNN-LSTM fusion
network.

1) Imaging Data Preprocessing: We extracted all slices
from each zipped head CT scan, subsequently opening, con-
verting them to gray scale, and resizing each to a uniform
dimension of 224 pixels × 224 pixels. This standardiza-
tion was crucial for ensuring consistency across the dataset.
Throughout these initial steps, we meticulously managed
arrays containing the slices, their resized counterparts, and

their corresponding indices, safeguarding data integrity. After
resizing, we analyzed the variance in pixel values across
all slices, selecting those exhibiting significant variability,
deemed to contain the most diagnostically-relevant features.
Before applying Principal Component Analysis (PCA) to the
selected slices, we normalized data by subtracting the mean
and dividing by the standard deviation to reduce variations
in brightness due to diverse scanning parameters, addressing
PCA’s sensitivity to initial variable variances. We configured
the PCA to retain 95% of the original data variance, aiming
to preserve the most informative features while minimizing
redundancy [22]. This involved calculating the covariance
matrix, extracting its eigenvalues and eigenvectors, and se-
lecting principal components that cumulatively accounted for
the designated percentage of variance. This selective reduction
not only streamlined data dimensionality but also enhanced
computational efficiency by focusing on the most salient
features [23]. We systematically saved the best five slices (i.e.,
those most characteristic based on their variance contributions
and selected for striking the best balance between performance
and computational efficiency, for a totality of 2500 slices)
in a structured directory designed for optimal retrieval. We
saved data in JPEG format for the slices to facilitate visual
inspection, and in CSV format for the features, which included
transformed features and their indices, ensuring comprehensive
data documentation. Finally, for each patient’s folder in the
PCA-reduced dataset, we automatically checked all JPEG files
and the associated TXT file. Each slice was then copied to an
output directory with a new, systematic naming convention that
incorporated the CT scan name to which the slices belong as
the first four digits of the slice ID (i.e., XXXX SliceYYYY).
We paired each report with the slice IDs and recorded these
pairings in a list, which served as a comprehensive index,
mapping each preprocessed group of five slices to its corre-
sponding report.

2) Textual Data Preprocessing: We constructed a dictio-
nary where each slice ID was mapped to a list of captions.
These captions were extracted by reading through the corre-
sponding file line by line. For each line, we identified the slice
ID and its associated report, splitting the report into individual
captions at each period, provided the resulting text was not just
white space. The split of the report into individual captions
served to reduce the complexity of the decoding process. By
fragmenting the text into smaller, independent sentences, the
decoding operation becomes more manageable and modular,
ensuring a more efficient process, thus optimizing the system’s
ability to handle and interpret the information effectively,
even when working with a relatively small dataset. Once the
captions were loaded into our dictionary, we computed the
maximum number (Nmax) of captions per slice ID by finding
the length of the longest list of captions in the dictionary to
standardize input sequences. We than embarked on a more
detailed cleaning process. We prepared a set of rules to
eliminate punctuation, a necessary step to reduce noise in
textual data. For each caption, we broke down the text into
individual words, converted these words to lowercase to main-
tain consistency, and stripped away punctuation. Additionally,
we removed any tokens that were a single character in length,
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as they generally do not contribute meaningful information.
After cleansing the tokens, we rejoined them into a single
string, book-ending each caption with markers (i.e., ”startseq”
and ”endseq”) to indicate the start and end of a caption,
thus facilitating the model’s learning of caption structure, as
exemplified in Fig. 2. The cleaned captions were then stored
back into a new dictionary, keyed by the original slice IDs. To
ensure our imaging data corresponded with the preprocessed
captions, we filtered out any slices whose IDs were not present
in the new dictionary. This alignment ensured each slice to be
associated with its correct, cleaned caption.

XXXX_SliceYYYY 

In sede occipitale sinistra 

apprezzabile area ipodensa in prima 

ipotesi orientativa per esito. Non 

franchi focolai ischemici nascenti 

nè evidenti spandimenti emorragici 

in atto. Strutture della linea 

mediane in asse. Nei limiti di 

ampiezza età-compatibili gli spazi 

liquorali ventricolari, cisternali 

della base e pericorticali delle 

convessità. Si rimanda in 

valutazione specialistica per 

eventuale proseguimento dell'iter 

diagnostico.

XXXX_SliceYYYY

startseq in sede occipitale 

sinistra apprezzabile area ipodensa 

in prima ipotesi orientativa per 

esito endseq 

startseq non franchi focolai 

ischemici nascenti nè evidenti 

spandimenti emorragici in atto 

endseq 

startseq strutture della linea 

mediane in asse endseq 

startseq nei limiti di ampiezza età 

compatibili gli spazi liquorali 

ventricolari cisternali della base 

pericorticali delle convessità 

endseq 

startseq si rimanda in valutazione 

specialistica per eventuale 

proseguimento dell iter diagnostico 

endseq

Fig. 2: Result of textual data preprocessing (on the right), starting
from one radiological report (on the left).

C. Preprocessed Data Handling

To ensure the slices were grouped and split appropriately,
we organized them based on the first four digits of their IDs,
guaranteeing that each PCA-reduced group contained exactly
five slices. Captions for each slice were tokenized into integer
sequences, padded to a uniform length. These sequences were
then used to build input and output data for the model, with
sequences padded and outputs encoded categorically.

We conducted a randomized 80-20 split of the dataset,
allocating 80% for training and 20% for testing. Hence, out
of the 2500 total slices, we used 2000 for training and 500
for testing, and we designated 15% of the training set (i.e.,
300 slices) as the validation set. We repeated this randomized
80-20 split ten times to ensure that the results were not biased
by a potentially favorable data split.

D. Model Architectural Details

We designed our multi-branch CNN-LSTM fusion network
with the five slice feature inputs and the nine caption inputs,
producing nine separate textual outputs. The use of multi-
ple parallel LSTMs allowed the model to capture temporal
characteristics and long-term dependencies within the caption
sequences, while preserving the relative position of each
caption in the report. For instance, the first LSTM processed
all captions appearing in the first position, the second LSTM
handled captions in the second position, and so on, covering all
nine positions across different reports. This model architecture,
displayed in Table II, allowed us to integrate visual and textual

data effectively, leveraging the strengths of both types of
information.

We began by extracting essential features from the slices
using a pretrained VGG16 [24]. This network, consisting of
16 layers with small receptive fields (3 × 3 filters), was
restructured to output the activations from the second-to-
last layer, providing a 4096-dimensional feature vector for
each slice. Specifically, we defined five inputs for the slice
features, each with a shape of (4096,). These features were
concatenated into a single vector of 20480 dimensions (5 slices
× 4096 dimensions) and passed through a Dense layer with
4096 neurons and a Rectified Linear Unit (ReLU) activation
function to combine the grouped slice features. We also
defined nine inputs for the captions, each with a shape of (82,),
representing the tokenized and padded sequences of words.
These inputs were reshaped to (82, 1) to be processed by nine
parallel end-to-end LSTM layers with 256 units each, partic-
ularly useful for sequence prediction problems. Each LSTM
processed captions corresponding to a specific position in the
sequence, and the outputs of these LSTM layers were then
concatenated with the processed slice features, resulting in
combined feature vectors of 4352 dimensions. Each combined
vector was passed through a Dense layer with 256 neurons
and a ReLU activation function to make the model take into
account non-linear interactions. The outputs of these Dense
layers were further processed through final output layers, each
producing a probability distribution over the vocabulary words
using a Softmax activation function to assign probabilities to
each class by producing real values between 0 and 1, with
sum equal to 1.

E. Model Final Configuration
We customized the final architecture of our multi-branch

CNN-LSTM fusion network after two sets of preliminary
experiments. In the first set of experiments, we tested state-of-
the-art CNNs as backbones (i.e., feature extractors) to find the
best performing for the addressed task. In the second set of
experiments, we searched for the most suitable values for the
hyperparameters, specifically the number of epochs, learning
rate, and batch size. For all experiments, we chose the Adam
optimizer with an initial learning rate of 0.0001 and a batch
size of 2. Each time a new best-performing value for any
hyperparameter was found, it replaced the one proposed in
this base configuration.

1) Optimal Backbone Selection: We tested a well-
established CNN architecture such as VGG16 as baseline,
known for its strong performance in image recognition tasks
due to its architecture. We also considered ResNet50V2 [25],
Xception [26], and InceptionResNetV2 [27] due to their com-
petitive performance on ImageNet dataset. The comparison
showed that VGG16 was the best performing (i.e., the one
with the lowest validation loss) to extract visual features. Its
pretrained weights provided robust generalization capabilities,
allowing it to be used as pure feature extractor without fine-
tuning. This also allowed resources to be allocated to training
the multiple parallel LSTMs from scratch. Thus, following
experimentation made use of VGG16 as backbone for the final
structure of our model.
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TABLE II: Model architecture. Input1 to Input5 are feature vectors extracted beforehand using a pretrained VGG16 and concatenated into a
single vector of size 20480 (4096 × 5). The concatenated vector is then passed through a Dense layer. Input6 to Input14 represent sequences
of text, each with a maximum length of 82. Each caption input is then reshaped to be compatible with and processed through a LSTM
(LSTM1 to LSTM9) layer, which outputs a feature vector of size 256. The combined slice features are concatenated with the features
generated by the LSTM layers and each concatenated vector is then passed through a Dense layer, reducing its size to 256. This is followed
by another Dense layer with a Softmax activation function, producing the final output.

Layer Output shape Number of parameters Connected to layer

Input1 (None, 4096) 0 []
Input2 (None, 4096) 0 []
Input3 (None, 4096) 0 []
Input4 (None, 4096) 0 []
Input5 (None, 4096) 0 []
Input6 (None, 82) 0 []
Input7 (None, 82) 0 []
Input8 (None, 82) 0 []
Input9 (None, 82) 0 []
Input10 (None, 82) 0 []
Input11 (None, 82) 0 []
Input12 (None, 82) 0 []
Input13 (None, 82) 0 []
Input14 (None, 82) 0 []
Concatenate (None, 20480) 0 [Input1, Input2, Input3, Input4, Input5]
Reshape1 (None, 82, 1) 0 [Input6]
Reshape2 (None, 82, 1) 0 [Input7]
Reshape3 (None, 82, 1) 0 [Input8]
Reshape4 (None, 82, 1) 0 [Input9]
Reshape5 (None, 82, 1) 0 [Input10]
Reshape6 (None, 82, 1) 0 [Input11]
Reshape7 (None, 82, 1) 0 [Input12]
Reshape8 (None, 82, 1) 0 [Input13]
Reshape9 (None, 82, 1) 0 [Input14]
Dense (None, 4096) 83890176 [Concatenate]
LSTM1 (None, 256) 264192 [Reshape1]
LSTM2 (None, 256) 264192 [Reshape2]
LSTM3 (None, 256) 264192 [Reshape3]
LSTM4 (None, 256) 264192 [Reshape4]
LSTM5 (None, 256) 264192 [Reshape5]
LSTM6 (None, 256) 264192 [Reshape6]
LSTM7 (None, 256) 264192 [Reshape7]
LSTM8 (None, 256) 264192 [Reshape8]
LSTM9 (None, 256) 264192 [Reshape9]
Concatenate1 (None, 4352) 0 [Dense, LSTM1]
Concatenate2 (None, 4352) 0 [Dense, LSTM2]
Concatenate3 (None, 4352) 0 [Dense, LSTM3]
Concatenate4 (None, 4352) 0 [Dense, LSTM4]
Concatenate5 (None, 4352) 0 [Dense, LSTM5]
Concatenate6 (None, 4352) 0 [Dense, LSTM6]
Concatenate7 (None, 4352) 0 [Dense, LSTM7]
Concatenate8 (None, 4352) 0 [Dense, LSTM8]
Concatenate9 (None, 4352) 0 [Dense, LSTM9]
Dense1 (None, 256) 1114368 [Concatenate1]
Dense3 (None, 256) 1114368 [Concatenate2]
Dense5 (None, 256) 1114368 [Concatenate3]
Dense7 (None, 256) 1114368 [Concatenate4]
Dense9 (None, 256) 1114368 [Concatenate5]
Dense11 (None, 256) 1114368 [Concatenate6]
Dense13 (None, 256) 1114368 [Concatenate7]
Dense15 (None, 256) 1114368 [Concatenate8]
Dense17 (None, 256) 1114368 [Concatenate9]
Dense2 (None, 1153) 296321 [Dense1]
Dense4 (None, 1153) 296321 [Dense3]
Dense6 (None, 1153) 296321 [Dense5]
Dense8 (None, 1153) 296321 [Dense7]
Dense10 (None, 1153) 296321 [Dense9]
Dense12 (None, 1153) 296321 [Dense11]
Dense14 (None, 1153) 296321 [Dense13]
Dense16 (None, 1153) 296321 [Dense15]
Dense18 (None, 1153) 296321 [Dense17]

Trainable: 98964105
Non-trainable: 0
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2) Optimal Hyperparameter Selection: Using the best-
performing backbone from the previous set of experiments,
the choice of the optimal hyperparameter combination was
driven by the Bayesian optimization algorithm, recognized for
its effectiveness in maximizing model performance [28]. We
investigated all possible combinations among the following
values, chosen for their computational efficiency in prelimi-
nary evaluations:

• Number of epochs: [50, 100, 150];
• Learning rate: [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05];
• Batch size: [2, 4, 8, 16, 32, 64].

We selected the hyperparameter combination that led to the
lowest validation loss. Thus, following experimentation made
use of 100 epochs, 0.001 as learning rate, and 32 as batch
size.

F. Computational Environment and Training Strategy

We set up the computational environment using the Keras
library built on a TensorFlow backend (version 2.15.0) and
one NVIDIA A100 GPU with 40 GB of RAM for accelerated
computing.

We trained our multi-branch CNN-LSTM fusion network
for 100 epochs, with a learning rate set to 0.001 and a batch
size of 32. We confirmed Adam as the optimizer, recognizing
its effectiveness in efficiently minimizing the loss function
during training. We used categorical cross-entropy as loss
function and incorporated an early stopping callback with a
patience of 8 to further mitigate overfitting. Training the model
from scratch took approximately 6 hours. We then saved the
model weights that resulted in the lowest validation loss and
used these weights to evaluate model performance on the test
set.

G. Reporting Process and Evaluation

We first initialized nine tokenizers, each fitted on the textual
data from the caption dictionary, to build a vocabulary that
mapped words to unique integers based on their frequency in
the text. Next, we grouped the test slices by their prefixes,
corresponding to the first four characters of each slice ID,
which allowed us to handle all slices from a single CT scan
together and ensure consistent comparisons across related
slices. The model then produced captions for each slice in
the group, generating a set of captions for the nine positions
managed by the tokenizers. If fewer than nine captions were
produced, we added empty strings for consistency. The report-
ing process began with a predefined start token and proceeded
iteratively, with each step generating the next word based on
the previously generated text and the visual features extracted
from each slice. The model selected the next word from a
probability distribution over the vocabulary, influenced by a
temperature parameter that controlled the randomness of pre-
dictions. Lower temperatures led to more predictable, conser-
vative word choices, whereas higher temperatures introduced
more variability and creativity. This process continued until
the model predicted an end token or reached the maximum
predefined length for each description.

For each produced caption, we calculated BiLingual Eval-
uation Understudy (BLEU), Recall-Oriented Understudy for
Gisting Evaluation (ROUGE), and METEOR scores. These
metrics automatically compute accuracy scores by comparing
the predicted reports with the radiologists’ written descrip-
tions. BLEU scores were calculated for different n-gram
combinations (BLEU-1 through BLEU-4) as in (2), (3), (4),
and (5), providing a detailed measure of precision in the
generated text [29], where BP is the brevity penalty and pn
is the n-gram precision:

BLEU -1 = BPp1, (2)
BLEU -2 = BP

√
p1p2, (3)

BLEU -3 = BP 3
√
p1p2p3, (4)

BLEU -4 = BP 4
√
p1p2p3p4. (5)

ROUGE scores focus on recall, assessing the overlap be-
tween generated and reference texts [30], with ROUGE-1 (6),
ROUGE-2 (7), and ROUGE-L (8) being used, where LCS is
the length of the longest common subsequence, as ROUGE-
L specifically measures the longest common subsequences
between two sentences:

ROUGE-1 =
∑

1-gram∈Reference Countmatch(1-gram)∑
1-gram∈Reference Count(1-gram) , (6)

ROUGE-2 =
∑

2-gram∈Reference Countmatch(2-gram)∑
2-gram∈Reference Count(2-gram) , (7)

ROUGE-L = LCS(Candidate,Reference)
Length(Reference) . (8)

METEOR score, computed as in (9), offers a more balanced
view by considering both precision and recall alongside addi-
tional linguistic factors [31], addressing some of BLEU’s limi-
tations by incorporating synonym matching through WordNet,
where Fmean = 10PR

R+9P and Penalty = γ
(

chunks
matches

)θ
, being

P precision, R recall, and γ and θ tuning parameters:

METEOR = Fmean(1− Penalty). (9)

BLEU emphasizes precision, whereas METEOR and ROUGE
are recall-based metrics, complementing each other in eval-
uating the quality, accuracy, and robustness of the generated
text [32].

Once the Nmax captions were produced for each slice of
the PCA-reduced group of five slices belonging to the test
set, they were evaluated using BERT [33] as pure semantic
evaluator, making possible to calculate the perplexity score
for each caption. We chose BERT to assess the likelihood of
the predicted captions, with lower perplexity scores indicating
higher semantic coherence and more natural language struc-
ture. For each position, the captions were scored based on this
perplexity measure, and the caption with the lowest perplexity
(i.e., the highest semantic quality) was selected as the best
option for that position. If no valid caption was available for
a specific position, a fallback mechanism ensured that the
first prediction generated by the corresponding predictor for
that position was selected instead. This process ensured that,
even in the absence of high-quality options, a caption was
always chosen. We then compiled the best captions for all
positions in order to form the complete, ordered report for
each group of five slices. The resulting best predictions for
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each CT scan were compared with the respective ground truths
by calculating BLEU-1 to BLEU-4, ROUGE-1, ROUGE-2,
ROUGE-L, and METEOR scores. Fig. 3 displays the reporting
process, using as example a PCA-reduced group of five slices
from a test head CT scan. To summarize overall performance,
we finally calculated the global averages of each metric across
the entire test set, providing a comprehensive view of the
accuracy and consistency of the model.

H. Postprocessing Strategy

We undertook textual data postprocessing to refine the
generated descriptions. Specifically, we made grammatical
corrections without altering the semantics, ensuring that the
content of the predictions remained unchanged.

We employed a rule-based approach, which included the
use of regular expressions (i.e., regex) to match and correct
common patterns, such as missing punctuation, incorrect cap-
italization, and inconsistent spacing. This procedure allowed
us to systematically address typical formatting errors in the
automatically-written reports, enhancing their readability. We
then conducted a manual revision to make the refined reports
adhere closely to the formatting standards of radiological ones.
This additional step ensured that any errors missed by the rule-
based approach were corrected while preserving the semantic
integrity of the predictions.

I. Ablation Study

We designed a baseline configuration to investigate the
impact of treating the radiological report as a single cohesive
unit, as opposed to decomposing it into individual caption
sequences. In this configuration, slice features extracted from
the VGG16 were passed through a single LSTM, which then
produced the entire report as a monolithic text output.

The rationale behind this ablation study was to test whether
simplifying the problem by removing the need to split reports
and reducing the complexity of multiple parallel LSTMs could
still support accurate radiology reporting. In this baseline, we
also achieved the optimal trade-off between model perfor-
mance and computational efficiency. By using this configu-
ration as reference point, we aim to clearly demonstrate the
performance gains achieved through problem decomposition
and highlight the advantages of using multiple parallel LSTMs
for processing independent captions.

J. Additional Statistical Analysis

We applied the Friedman test to assess the presence of statis-
tically significant differences among the test set combinations
[34], setting the significance level (P) at 0.05. In the event
that general differences were detected, we planned to conduct
a post-hoc analysis using the Nemenyi test to identify any
specific pairs of combinations with significant differences.

To compare the performance of the baseline configuration,
the final model configuration, and the final model config-
uration with the added postprocessing stage, we employed
the Wilcoxon signed-rank test [35]. This test was chosen to
account for the paired nature of the data, as all configurations

were evaluated on the same test set. We used this test to
determine whether the differences in evaluation scores were
statistically significant, with P again set at 0.05.

K. Language Impact Assessment

We conducted a comprehensive evaluation of the final model
configuration performance on radiological reports translated
into English to ascertain whether the language of the input
text impacted the accuracy and coherence of the generated
descriptions.

The experimental setup involved the use of a verified
translation pipeline to convert the original Italian reports into
English while preserving semantic fidelity and consistency.
The preprocessing pipeline remained unchanged, including
textual data cleaning, tokenization, and the split of the reports
into individual captions. We utilized the same multi-branch
CNN-LSTM fusion network architecture, along with identical
hyperparameters. To maintain consistency, we performed the
same data division protocol (80-20 for training and testing,
with 15% of the training set used for validation). Each trans-
lated report was processed in alignment with its paired imaging
data, ensuring compatibility with the PCA-reduced groups of
five slices. The training and evaluation phases followed the
same procedures, with performance assessed using BLEU,
ROUGE, and METEOR metrics, along with semantic checks
via BERT-based evaluation.

IV. RESULTS

In this section, we present the results in both graphical and
tabular formats, and discuss them in section V.

Table III reports the evaluation scores for radiology re-
porting, including BLEU-1 to BLEU-4, ROUGE-1, ROUGE-
2, ROUGE-L, and METEOR, over the ten different test set
combinations. These metrics are presented for the final model
configuration only. Since the Friedman test revealed no statis-
tically significant differences among the sets (i.e., P > 0.05),
we chose to proceed with the combination that yielded the
highest BLEU-4, ROUGE-L, and METEOR scores, precisely
the 8th. Fig. 4 illustrates the individual and overall learning
curves for the multi-branch CNN-LSTM fusion network in the
Italian version, whereas Fig. 5 illustrates the individual and
overall learning curves for the multi-branch CNN-LSTM fu-
sion network in the English version. Table IV summarizes the
evaluation scores for radiology reporting, including BLEU-1 to
BLEU-4, ROUGE-1, ROUGE-2, ROUGE-L, and METEOR.
These metrics are presented for the baseline configuration
(i.e., single CNN-LSTM fusion network) in the Italian version,
the final model configuration (i.e., multi-branch CNN-LSTM
fusion network) in both Italian and English versions, and the
final model configuration with the added postprocessing stage
in both Italian and English versions, all computed on the same
test set combination. The Wilcoxon signed-rank test revealed
no statistically significant differences between the two final
model configurations (Italian and English) and also between
the final model configuration and the same configuration with
the added postprocessing stage in both Italian and English
versions, whereas all evaluation scores of the baseline model
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Fig. 3: Automatic process of report creation for the PCA-reduced group of five slices of each test head CT scan. Nine (i.e., Nmax) predictors
generate distinct captions for each slice of the group. The predicted captions are then analyzed by the BERT semantic evaluator. For each
position, the best predicted captions (i.e., those with the lowest perplexity score) are automatically selected and fused to compile the complete,
ordered report for that specific scan.

configuration are statistically lower with respect to those of the
other configurations in the Italian version, except for ROUGE-
1. Fig. 6 displays the descriptions generated in Italian as
predicted by our model, alongside the postprocessed versions,
compared with the reference reports for the PCA-reduced
groups of five slices from three head CT scans belonging to
the test set.

V. DISCUSSION

Clinical decision making is critical in the healthcare do-
main and errors in radiology reporting can lead to serious
consequences. Therefore, improving the accuracy of reports
by AI strategies is necessary, as there is still a significant gap
in research in the related field. In light of this, we propose the
first system for improved radiology reporting in emergency
room head CT scans, consisting of a dual-input preprocessing
pipeline, a multi-branch CNN-LSTM fusion network, a BERT-
based semantic evaluator, and a rule-based postprocessing
stage.

According to the achieved results, the absence of statistical
significance in Table III suggests that no single test set com-
bination is notably more favorable than others, indicating that
our model generalizes well across different data combinations.
This reflects stability and consistency in the learning process,
regardless of the specific data split. The learning curves in
Fig. 4 and Fig. 5 show a consistent decrease in loss for
both the training and validation sets, implying steady model
improvement. The close alignment between the training and
validation loss further suggests that our model is not overfit-
ting, as its performance remains comparable across both sets.
Additionally, the curves converging to a similar value towards
the end indicate that our multi-branch CNN-LSTM fusion
network has likely reached its maximum learning potential for
the given data. The architectural design of the model also helps
mitigate overfitting risks. By combining features using a Dense
layer with ReLU activation after the concatenation of slice and
caption features, the network can focus on the most relevant in-
teractions, reducing redundancy in the high-dimensional input
space. Furthermore, the use of separate LSTMs for processing
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TABLE III: Evaluation scores for radiology reporting, expressed in %, over the ten different test set combinations. If present, * indicates
statistically significant differences according to the Friedman test.

Test set combination BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

1 33.6 26.2 21 16.3 41.3 22.1 34.6 34.1
2 32.9 25.8 21.9 16.4 41.3 23.4 32.9 34.3
3 34 25.6 21.4 17.1 40.6 21.2 31 32.3
4 33.1 23.9 20.7 16.9 39.8 22.5 33.8 33.4
5 32.9 24.3 19.8 16.8 39 22.5 31.1 31.9
6 35.1 25.8 21.1 17.2 37.1 23.9 31 32.9
7 31.9 23.7 19 15.9 37.9 20.7 33.1 34.1
8 34.2 25.7 20.5 17.3 39.6 23.5 34.6 34.5
9 34.2 25.3 21.1 17 39.2 23.7 31.1 32.2
10 33.1 25.2 20.7 16 40 24.9 32.1 31.9

Fig. 4: Individual (on the left) and overall (on the right) learning curves for the multi-branch CNN-LSTM fusion network -ITA version-
.

Fig. 5: Individual (on the left) and overall (on the right) learning curves for the multi-branch CNN-LSTM fusion network -EN version-.
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TABLE IV: Evaluation scores for radiology reporting, expressed in %, on the test set. If present, * indicates statistically significant differences
according to the Wilcoxon signed-rank test.

Configuration BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

Single CNN-LSTM fusion network (baseline) 27.9* 18.1* 12.6* 9.7* 36.8 16* 30.1* 28*
Multi-branch CNN-LSTM fusion network (final) -ITA version- 34.2 25.7 20.5 17.3 39.6 23.5 34.6 34.5
Multi-branch CNN-LSTM fusion network (final) -EN version- 33.2 25.9 19 16.8 37.4 22.9 32.7 32
Multi-branch CNN-LSTM fusion network (final) + postproc. -ITA version- 34.4 26.2 22.1 19.4 39.7 24.9 35.6 37.7
Multi-branch CNN-LSTM fusion network (final) + postproc. -EN version- 33.2 25.9 19.1 17.3 37.5 23.4 32.9 35.6

PREDICTED REPORT POSTPROCESSED REPORT GROUND TRUTH

BLEU-1: 72.3%
BLEU-2: 69.8%
BLEU-3: 68.2%
BLEU-4: 66.9%
ROUGE-1: 86.1%
ROUGE-2: 76.5%
ROUGE-L: 86.1%
METEOR: 91.6%

non sono attualmente apprezzabili 
segni tc di spandimenti ematici intra 
extraassiali nè di lesioni ischemiche 
recenti non alterazioni 
densitometriche focali acute intra ed 
extraassiali linea mediana in asse 
con sistema ventricolare in sede di 
regolare morfologia nella norma gli 
spazi subaracnoidei della convessità 
della base cranica cisternali

Non sono attualmente apprezzabili 
segni TC di spandimenti ematici intra 
ed extra-assiali nè di lesioni 
ischemiche recenti. Non alterazioni 
densitometriche focali acute intra ed 
extra-assiali. Linea mediana in asse 
con sistema ventricolare in sede, di 
regolare morfologia. Nella norma gli 
spazi subaracnoidei della convessità, 
della base cranica, cisternali.

Non spandimenti ematici in atto. Non 
alterazioni densitometriche focali 
acute intra ed extra-assiali. Linea 
mediana in asse con sistema 
ventricolare in sede, di regolare 
morfologia. Nella norma gli spazi 
subaracnoidei della convessità, della 
base cranica e cisternali.

non iperdensità di significato 
emorragico in sede intra ed 
extraassiale non alterazioni 
densitometriche focali acute intra ed 
extraassiali non evidenti allo stato 
attuale alterazioni densitometriche 
focali carattere edemigeno acuto del 
parenchima encefalico linea 
mediana in asse con sistema 
ventricolare in sede di regolare 
morfologia 

Non iperdensità di significato 
emorragico in sede intra ed extra-
assiale. Non alterazioni 
densitometriche focali acute intra ed 
extra-assiali. Non evidenti allo stato 
attuale alterazioni densitometriche 
focali di carattere edemigeno acuto 
del parenchima encefalico. Linea 
mediana in asse con sistema 
ventricolare in sede, di regolare 
morfologia.

Non emorragie endocraniche di 
recente insorgenza. Non evidenti allo 
stato attuale alterazioni 
densitometriche focali a carattere 
edemigeno acuto del parenchima 
encefalico. Regolari le dimensioni del 
sistema ventricolare, delle cisterne 
della base e degli spazi liquorali 
periencefalici. Strutture della linea 
mediana in asse.

BLEU-1: 50%
BLEU-2: 44.5%
BLEU-3: 40.8%
BLEU-4: 37.3%
ROUGE-1: 60%
ROUGE-2: 43.6%
ROUGE-L: 54.3%
METEOR: 52.3%

Grossolano spandimento emorragico 
a livello della sostanza bianca 
profonda emisferica sinistra con 
edema perilesionale ed estensione a 
livello degli spazi subaracnoidei 
fronto-parietali con emoventricolo. 
Compressione sul trigono del 
ventricolo omolaterale e modesto 
shift della linea mediana.

Spandimenti ematici. Alterazioni 
densitometriche focali di carattere 
edemigeno acuto del parenchima 
encefalico. 

spandimenti ematici alterazioni 
densitometriche focali carattere 
edemigeno acuto del parenchima 
encefalico 

BLEU-1: 1.2%
BLEU-2: 0.4%
BLEU-3: 0.3%
BLEU-4: 0.3%
ROUGE-1: 0.5%
ROUGE-2: 0.1%
ROUGE-L: 0.5%
METEOR: 1.6%

Fig. 6: Generated descriptions as predicted by the multi-branch CNN-LSTM fusion network and postprocessed ones with the ground truths
for the PCA-reduced groups of five slices of three head CT scans belonging to the test set.

captions in specific positions ensures that each sequence is
handled independently, minimizing the risk of unintended in-
teractions between sequential elements. As evidenced in Table
IV, the final model configuration achieves strong performance,
with further improvements from the postprocessing stage, par-
ticularly in aligning reports with the structural conventions of
the ground truth data. Compared to the baseline, these results
highlight the clear benefits of problem decomposition and
use of parallel LSTMs for handling different report sections
independently. The model also maintained comparable levels
of performance across both languages. Specifically, the BLEU-
4, ROUGE-L, and METEOR scores for the English-translated
reports are within a 3% margin of those obtained for the Italian
ones, indicating that the model effectively generalized to the
new linguistic context. This capability can be attributed to the
parallel structure of the LSTM branches, trained to remain
neutral to the language of the textual input. Additionally, the
semantic evaluation stage, powered by BERT, further ensured
language-agnostic assessment of the produced reports. This
structured approach proves to be crucial for effective radiology
reporting. However, the current evaluation metrics may not

fully capture the quality of the predictions, particularly when
the model’s output closely matches the ground truth in content
but diverges stylistically, leading to lower scores. For example,
the predicted report for the first PCA-reduced group of five
test slices (Fig. 6) demonstrates very high degree of alignment
with the reference report in both content and style, indicating
almost complete overlap. For the second PCA-reduced group
of five test slices, the produced report shows strong content
alignment with the reference report and maintains a good level
of consistency in style. In contrast, the generated text for
the third PCA-reduced group of five test slices exhibits good
content alignment but poor stylistic alignment, despite iden-
tifying important clinical details. Specifically, the reference
report indicates an hemorrhagic event in the left hemisphere,
leading to significant swelling, extension of bleeding into
other brain spaces, and a mild shift of the brain’s central
structures, necessitating immediate medical intervention. The
predicted report notes localized swelling in brain tissue that
requires medical attention, thus it effectively captures the key
clinical problem even if lacking the detailed nuance found in
the reference one. This highlights the importance of having
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individual scores for each generated description for a more
granular assessment of its reliability but also the need for more
refined metrics that better account for both content accuracy
and stylistic coherence.

In the literature, some researchers have concentrated solely
on extracting global features from radiological images, which
often results in imprecise localization of anomalies that are
typically confined to specific regions of the image [36], [37].
Additionally, many of the predicted reports are produced using
RNNs, which are prone to the issue of gradient vanishing,
particularly when dealing with long sentences [38]. Further-
more, several existing techniques struggle with generating
words in the correct order [39] or crafting descriptions that
are convincingly human-like [13], reducing their effectiveness
in clinical practice. It is also important to note that no
research group has yet tackled the challenge of making the
radiology reporting task even more challenging by processing
and analyzing data from emergency settings, where the range
of cases is extremely broad and decisions need to be made
within very limited timeframes. Compounding these issues is
the fact that most available datasets are heavily focused on X-
ray images and often include captions that are brief and lack
the richness in detail characteristic of true radiological reports.
Moreover, these datasets frequently fall short of the realism
necessary for practical clinical application, as discussed in
section II. The system proposed in this paper addresses and
resolves all of these challenges, offering a more precise and
clinically-relevant solution for radiology reporting. In fact, our
multi-branch CNN-LSTM fusion network not only improves
the localization of abnormalities through more accurate feature
extraction but also produces more coherent and human-like
descriptions, thus enhancing its applicability in real-world
clinical settings. Furthermore, training on diverse emergency-
specific data ensures exposure to a wide spectrum of clinical
conditions, thereby enhancing the system’s robustness and
generalizability.

The first limitation of the research presented in this paper
lies in the absence of a label (i.e., clinical annotation) for each
slice, due to the labor-intensive and time-consuming nature of
this task for radiologists. Additionally, the approach used is
not fully 3D, as it processes and analyzes only the best five
slices resulting from the PCA-based strategy for each head
CT scan. This lowers the computational complexity, a critical
requirement in emergency settings, but it may limit the ability
of the model to capture the full spatial context and intricate
details that are inherent in volumetric data [40]. Moreover,
the multi-branch architecture is designed to process captions
corresponding to specific sections of the report rather than
explicitly targeting conditions like hemorrhage or ischemia.
While this design ensures flexibility and coherence in the gen-
erated descriptions, it may limit diagnostic precision. Further-
more, despite the demonstrated effectiveness and stability of
our system, particularly with the added postprocessing stage,
there remains room for refinement in both model performance
and evaluation framework to better assess the clinical relevance
and medical accuracy of the automatically-written reports.

In future research, we plan to conduct a detailed stratifica-
tion of the dataset’s demographic characteristics to better align

its representativeness with larger population distributions and
further validate its applicability to diverse clinical scenarios.
We will also refine our system by exploring alternative strate-
gies, such as 3D approaches or resampling to uniform resolu-
tion and saving slices within a clinically-standardized 15-cm
range centered on the brain, for a more robust spatial context
analysis. We plan to enhance it further through the integration
of vision-language models. These models have recently shown
significant potential in health informatics, particularly for
the automatic generation of reports by effectively integrating
visual and textual data. However, they are still constrained by
challenges related to the need for substantial computational
resources and extensive domain-specific training data, which
can impact their reliability and trustworthiness in clinical
settings [41]. Ultimately, we will incorporate qualitative eval-
uations to prove that the PCA-based dimensionality reduction
effectively retains diagnostically-relevant information, ensur-
ing that the analyzed slices adequately represent the ground
truth conditions. Qualitative metrics will also be employed to
evaluate diagnostic accuracy by answering specific questions
regarding the presence of errors or omissions in the produced
reports (e.g., Are non-existent pathologies included? Are ex-
isting pathologies omitted?) and assessing stylistic coherence,
thereby enhancing the overall robustness of our system.

VI. CONCLUSION

Automatic radiology reporting can significantly reduce the
workload of report writing, but linking visual and textual
knowledge from radiological data is still a task that has
not been effectively solved. In the literature, researchers first
produced a short descriptive sentence of a radiological image
using only the visual features. Then, they attempted to pro-
duce more informative descriptions with multiple sentences.
However, this introduced new challenges in content selection
and ordering [1].

The multi-branch CNN-LSTM fusion network-driven sys-
tem with the BERT-based semantic evaluator that we describe
in this paper has the potential to ensure that relevant findings
are included and presented in a clear, ordered format. This
solution would help radiologists quickly identify critical in-
formation, make more informed decisions, and thus improve
the overall efficiency of radiological workflows. Additionally,
it could reduce the time required for CT interpretation, allow-
ing for faster diagnosis and treatment of patients, especially
emergency room ones. Finally, the computational efficiency
of the proposed system makes it particularly suited for those
settings where time and resource constraints are paramount.
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