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ABSTRACT The integration of electroencephalography (EEG) and functional near-infrared spectroscopy
(fNIRS) can facilitate the advancement of brain-computer interfaces (BCIs). However, existing research
in this domain has grappled with the challenge of the efficient selection of features, resulting in the
underutilization of the temporal richness of EEG and the spatial specificity of fNIRS data. To effectively
address this challenge, this study proposed a deep learning architecture called the multimodal DenseNet
fusion (MDNF) model that was trained on two-dimensional (2D) EEG data images, leveraging advanced
feature extraction techniques. The model transformed EEG data into 2D images using a short-time Fourier
transform, applied transfer learning to extract discriminative features, and consequently integrated them
with fNIRS-derived spectral entropy features. This approach aimed to bridge existing gaps in EEG-fNIRS-
based BCI research by enhancing classification accuracy and versatility across various cognitive and motor
imagery tasks. Experimental results on two public datasets demonstrated the superiority of our model over
existing state-of-the-art methods. Thus, the high accuracy and precise feature utilization of the MDNF model
demonstrates the potential in clinical applications for neurodiagnostics and rehabilitation, thereby paving the
method for patient-specific therapeutic strategies.

INDEX TERMS Brain–computer interfaces, multimodal neuroimaging, short-time Fourier transform, spec-
trogram imaging.

Clinical and Translational Impact Statement—This study is preclinical research. The high accuracy of
MDNF in EEG-fNIRS data analysis paves the way for personalized neurodiagnostics and rehabilitation
strategies in clinical settings.

I. INTRODUCTION

ADVANCEMENTS in neuroimaging have spurred
remarkable progress in brain-computer interfaces

(BCIs), thereby enabling direct communication between
the human brain and external devices. This technology
holds transformative potential for individuals with motor
disabilities and those seeking innovative modes of inter-
action [1]. Electroencephalography (EEG), with its high
temporal resolution, excels at capturing rapid brain dynamics.
This facilitates users in controlling external devices through

imagined movements or specific cognitive tasks [2]. Func-
tional near-infrared spectroscopy (fNIRS) provides valuable
spatial information regarding brain activation, thereby local-
izing hemodynamic responses associated with different tasks
or stimuli [3].

Despite their strengths, EEG and fNIRS have limitations.
EEG lacks spatial specificity, rendering it difficult to pin-
point precise brain regions involved in specific cognitive
processes. Conversely, fNIRS, while offering spatial local-
ization, exhibits limited temporal resolution, rendering it
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challenging to track rapid neural activity changes. The inte-
gration of these modalities in hybrid EEG-fNIRS BCIs offers
a promising solution, capitalizing on their complementary
advantages. Simultaneous EEG-fNIRS recordings provide a
more comprehensive view of brain activity, combining EEG’s
temporal insights with fNIRS’s spatial localization [4], [5].
This integrated approach holds the potential formore accurate
and robust BCIs across diverse cognitive states and tasks, thus
enhancing their adaptability for real-world applications.

Although initial integration efforts encountered challenges
in data fusion, co-registration, and synchronization [6], cur-
rent advancements facilitate seamless EEG-fNIRS recording,
opening new research frontiers. Machine learning (ML) and
deep learning (DL) are crucial for extracting insights from
EEG-fNIRS data in BCI applications. ML algorithms such as
support vector machines (SVM) [7] and linear discriminant
analysis (LDA) [8] classify cognitive states or intentions,
whereas DL models such as convolutional neural networks
(CNNs) [9] and recurrent neural networks (RNNs), includ-
ing long short-term memory (LSTM) [10], further enhance
BCI capabilities. CNNs capture spatial patterns in EEG
data, while RNNs model temporal dependencies. DL offers
advantages in terms of accuracy, real-time control, and com-
munication for motor-impaired individuals by automating
feature extraction.

However, the existing ML and DL approaches in hybrid
BCIs face significant challenges. A key bottleneck lies in fea-
ture selection and representation, which directly impact the
classification accuracy and the broader applicability of these
BCIs. Traditional approaches often rely on hand-crafted fea-
tures, a time-consuming process that can introduce biases and
may not fully capture the complex, multi-dimensional infor-
mation within EEG-fNIRS data. Even DL models, despite
being capable of automated feature extraction, may struggle
with the application of conventional one-dimensional (1D)
processing techniques to EEG-fNIRS data. This 1D approach
limits the ability to effectively represent the dynamic inter-
play between the temporal patterns captured by EEG and the
spatial information provided by fNIRS.

Furthermore, several existing hybrid BCI systems do not
adequately address the synergy between EEG’s temporal
richness and fNIRS’s spatial specificity. There is untapped
potential in leveraging these complementary strengths in a
unified framework, which could result in improved classifi-
cation accuracy across a wider range of tasks. In addition,
many approaches focus on a single modality (either EEG or
fNIRS), missing the opportunity for the creation of a more
robust feature space that maximizes the benefits of both.

To address these challenges, this study introduced a novel
approach that effectively integrated EEG and fNIRS data, tar-
geting specific brain regions and employing advanced feature
extraction techniques. The key contributions of this study are
as follows.

1) Development of the multimodal DenseNet fusion
(MDNF) model: We developed a customized MDNF
model that integrates transformed EEG data along

temporal and spectral dimensions with fNIRS spec-
tral entropy representation, providing a rich, multi-
dimensional feature space and enhancing classification
accuracy.

2) Strategic selection of EEG channels: EEG channels
were selected based on neuroanatomical locations and
their associations with cognitive and motor functions.
This strategic selection was validated through higher
classification outcomes, thus ensuring that key features
were effectively included in the model.

3) Preparation of two-dimensional (2D) representation
using short-time Fourier transform (STFT) of EEG
data: EEG data was transformed into a 2D represen-
tation in the both temporal and spectral domains. This
facilitated seamless integration with the MDNF model
through transfer learning, which ensured the extraction
of crucial data features and improved overall model
performance.

This study aimed to advance hybrid EEG-fNIRS BCI
systems, thereby enhancing the accuracy and applicability
across a range of motor imagery (MI) and cognitive tasks,
including n-back, discrimination/selection response (DSR),
and word generation (WG). The remainder of the paper is
organized as follows. Section II reviews the relevant litera-
ture. Section III explains the research methodology used in
this study. Section IV provides an exposition of the results
obtained, a comprehensive discussion, potential applications,
and future research directions. Finally, Section V concludes
the paper.

II. RELATED WORK
This section provides an overview of prior research on
BCI, organized into EEG-based BCI, fNIRS-based BCI, and
hybrid EEG-fNIRS.

A. EEG-BASED BCI
EEG-based BCIs facilitate direct communication between
the human brain and external devices by recording electri-
cal activity from scalp electrodes. Users perform specific
tasks, such as MI or cognitive activities, generating distinct
EEG patterns. These patterns are then analyzed to deter-
mine the user’s intent, facilitating device control. Researchers
utilize both open-source datasets and custom experimental
setups [16], [17], [18] to advance BCI technology.

Studies have explored various data classification meth-
ods, including spectral estimation (e.g., autocorrelation,
power spectrum [19], [20]), time-based features (e.g., mean,
standard deviation (SD), skewness [21]), and waveform
transformations (e.g., STFT, continuous wavelet transfor-
mation, and discrete wavelet transformation [22], [23]) for
2D time-frequency feature extraction. Both conventional ML
algorithms (e.g., SVM, k-nearest neighbour (k-NN) [24]) and
DL methods (e.g., CNNs, deep neural networks (DNNs),
RNNs [19], [25], [26]) have been widely used for classifi-
cation. DL methods, leveraging pre-trained models such as
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TABLE 1. Comparison of hybrid EEG-fNIRS BCI methods.

DenseNet and ResNet [27], [28], have generally exhibited
superior performance in tasks such as depression classifica-
tion and MI detection.

Despite their successes, EEG-based BCIs are plagued by
limited spatial resolution, susceptibility to signal interfer-
ence, and individual variability, which hinder their broader
applicability. To address these challenges, researchers have
explored fNIRS as a complementary modality.

B. fNIRS-BASED BCI
Various studies utilize fNIRS data and ML techniques for
decoding brain activity patterns. For motor tasks, DL meth-
ods (CNNs, LSTM, and Bi-LSTM) have exhibited promise,
achieving accuracies of up to 88.5% [29]. Novel feature
extraction approaches, such as vector-based phase analy-
sis, have further increased accuracy (98.7% for two-class
BCIs [30]). Studies using sparse representation classifica-
tion [31] and CNN-based time series classification [32]
have further demonstrated the potential of fNIRS BCIs,
with certain achieving accuracies near or exceeding 98%.
Studies have also explored preprocessing techniques, with
GLM-based approaches offering potential accuracy improve-
ments [33]. Further, studies utilizing ML algorithms such
as random forest and ANNs have also demonstrated high
classification accuracy in tasks involving rest, MI, and motor
execution [34]. DL approaches, particularly CNNs, have
outperformed conventional ML methods for MI task classi-
fication [35].
However, fNIRS-based BCIs are plagued by limited mea-

surement depth, and temporal resolution, and generally
focusing on cortical regions. Thus, these limitations may
necessitate integration with modalities such as EEG for more
comprehensive brain activity analysis.

C. HYBRID EEG-fNIRS
Researchers have explored the simultaneous integration of
EEG and fNIRS recordings to obtain a more compre-
hensive understanding of neurological processes. Studies
utilizing hybrid frameworks often leverage the complemen-
tary strengths of both modalities. For instance, employing
SVM with functional brain connectivity (FBC) features
derived from combined EEG-fNIRS data has demonstrated
promise in classifying cognitive tasks [7]. Similarly, using
k-NN for classification and the application of singular
value decomposition of Fast Walsh-Hadamard transform
coefficients (FWHTC) for feature extraction has also yielded

good results [11]. DL approaches have demonstrated advan-
tages over conventional ML in hybrid systems. DNNs have
achieved notable accuracy in classifying cognitive tasks [12],
[13]. CNNs excel at capturing spatial patterns within the
complex data obtained from EEG and fNIRS recordings [9],
[14]. Hybrid models that incorporate both EEG and fNIRS
data have demonstrated potential in the classification of
cognitive decline and Alzheimer’s disease, even identify-
ing relevant brain regions associated with the progression
of the disease [8]. Finally, integrating the fNIRS and EEG
data using recurrence plots and CNN-LSTM models offers
encouraging results for classification tasks [15]. The selection
of these models for our study stems from their proven effi-
cacy in handling the multifaceted nature of EEG-fNIRS data.
A summary of recent EEG-fNIRS work has been presented in
Table 1.
The results presented in Table 1 underscore the potential of

hybrid EEG-fNIRS BCIs for diverse applications, including
the classification of both cognitive and MI tasks. However,
the existing studies often rely on limited datasets or focus on
specific tasks. In addition, while demonstrating the feasibility
of integrating EEG and fNIRS, many prior approaches may
not fully exploit the rich temporal and spatial information
available within this combined data.

A key challenge lies in the effective representation of the
complex interplay between the temporal dynamics captured
by EEG and the spatial information provided by fNIRS.
Traditional feature extraction methods, often relying on
basic statistical measures, may not adequately capture this
interplay.

To address this limitation, this study proposed a novel
approach using STFT for EEG signal transformation. STFT
decomposes a signal into its constituent time-frequency com-
ponents, thus providing a more comprehensive representation
compared to traditional 1D processing [22]. This approach
facilitates the capture of the temporal variations in the EEG
signal and the dominant frequencies at different points in
time. Studies have shown that STFT-based features can
improve classification accuracy in EEG-based BCIs [36],
[37], [38], [39]. By incorporating time-frequency informa-
tion, we aimed to create a richer feature space that better
reflects the underlying neural activity patterns associatedwith
various cognitive and MI tasks.

Furthermore, existing DL models for EEG-fNIRS inte-
gration often necessitate substantial training data for opti-
mal performance. This can be a significant obstacle,
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as collecting large, high-quality EEG-fNIRS datasets can be
time-consuming and expensive.

To address this challenge, our study employed transfer
learning techniques. Transfer learning involves adapting a
pre-trained model on a related task to a new task with limited
data. This approach can significantly reduce the training time
and improve model performance when the source and target
tasks share underlying similarities [40]. In the context of
EEG-fNIRS BCIs, pre-trained models on EEG or fNIRS data
from related tasks can be fine-tuned for the specific classifica-
tion problem at hand. This strategy can alleviate the need for
massive datasets and potentially enhance the generalizability
of our model.

III. METHODOLOGY
This study aimed to create a reliable model for the classifica-
tion of cognitive and MI tasks using EEG data, transformed
into STFT 2D images, integrated with fNIRS data, and pro-
cessed with the proposed MDNF model. The methodology
involves dataset description, STFT-based EEG transforma-
tion, channel selection, data filtering, feature extraction,
model architecture, and performance evaluation.

A. DATASETS DESCRIPTION
This study employed two publicly available datasets.
Dataset 1 [41] included EEG and fNIRS recordings from
26 healthy individuals (9 males, 17 females, average age
26.1±3.5 years). Participants completed three cognitive
tasks: n-back (0-back, 2-back, and 3-back), DSR (target vs.
non-target symbols), and WG (word generation vs. base-
line). The DSR and n-back task sessions comprised a 2 s
instruction (I) period, a 40 s task (T) period, and a sub-
sequent 20 s rest (R) period. In the WG task, the task
period was shortened to 10 s with 1 s for stop and a
rest period of 13-15 s. EEG data, recorded at a 1,000 Hz
sampling frequency using a 30-electrode setup, were down-
sampled to 200 Hz. Simultaneously, fNIRS data, collected
with 36 channels, were downsampled to 10 Hz. Further, raw
fNIRS data were transformed into changes in oxygenated
(1HbO) and deoxygenated (1HbR) concentrations based on
the Beer-Lambert law. The recording configuration has been
depicted in Fig. 1(a).

Dataset 2 [42] focused on MI tasks and comprised data
from 29 participants (14 males, 15 females, average age
28.5±3.7 years). The dataset included EEG and fNIRS
recordings. EEG data was collected from 30 channels using a
BrainAmp EEG amplifier, whereas fNIRS data was collected
from 36 channels using NIRScout equipment. Participants
engaged in kinesthetic MI by visualizing hand-opening or
closing while holding a ball (left hand vs. right hand).
Each trial comprised distinct phases, including an instruc-
tion period, a task phase, and a rest interval, resulting in
three sessions in total. Preprocessing involved re-referencing,
bandpass filtering, independent component analysis for arte-
fact removal, and downsampling/filtering to enhance data
quality. fNIRS data were processed to calculate 1HbO and

FIGURE 1. (a) Positions of EEG electrodes (yellow) and fNIRS optodes
(red) of Dataset 1. (b) Placement of EEG electrodes (blue and black
(ground) circles) and fNIRS sources (yellow hexagons) and detectors
(orange hexagons) of Dataset 2. Black solid lines denote fNIRS channels.

1HbR concentrations. Fig. 1(b) depicts the electrode place-
ment.

B. DATA TRANSFORMATION USING STFT
The first step involved transforming raw EEG data into
images using STFT. This offers several advantages in the
analysis of time-series data, such as EEG and fNIRS signals.
STFT facilitated the visualization of the temporal evolu-
tion of frequency components, effectively encapsulating the
spectral content of the data over time. This transformation
simplifies the data representation, rendering it more amenable
to DL models designed for image processing. It facilitates
the extraction of intricate patterns and relationships in the
time-frequency domain, which can be crucial for tasks such
as event classification or feature extraction. In addition,
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transforming data into images can enhance interpretability
and facilitate the application of CNNs, which are proficient
at learning hierarchical features from image-like data. Thus,
STFT-driven image representations bridge the gap between
time-series data and modern deep-learning techniques, offer-
ing a powerful tool for the comprehensive classification of
complex signals. STFT decomposes the data into overlapping
segments of time and frequency representation, creating spec-
trograms. The translation-invariant nature of STFT images
facilitates the identification of patterns despite temporal shifts
in EEG data. To calculate the STFT, we divided the EEG data
into overlapping segments of 1 s with a 0.5 s overlap. The
STFT of an EEG is computed using (1).

STFT [n, k] =
N∑
i=1

x[m]w[n− m]e−j2π k
m
N (1)

where n represents the time index, k represents the frequency
index, x[m] is the EEG signal at index m, and w is the
window function. The number of samples N in each segment
is determined by the sampling frequency and window size.
The small chunks of 1 s with an overlap of 0.5 s have been
used for the generation of STFT. The number of samples
is determined by the sampling frequency and the selected
window sizes.

C. CHANNEL SELECTION
Although the use of all available EEG channels for train-
ing classifiers may appear ideal, it can be computationally
expensive and susceptible to overfitting. To address these
limitations, we strategically selected a subset of informative
channels based on their anatomical locations and their asso-
ciation with cognitive and motor functions. We strategically
selected a subset of 10 EEG channels (Fp1, Fp2, AFz, F1,
F2, C3, C4, CP1, CP2, and Pz) for Dataset 1, and a similar
subset for Dataset 2 (AFp1, AFp2, AFF5h, F3, F4, FCC5h,
Cz, CCP3h, CCP5h, and CCP6h). This selection is based on
a thorough understanding of the neuroscience underpinning
the tasks.

For Dataset 1, the channels Fp1, Fp2, and AFz, located in
the prefrontal cortex, are essential for higher-order cognitive
functions such as decision-making, planning, and working
memory. Similarly, for Dataset 2, the channels AFp1, AFp2,
and AFF5h target the same cognitive functions. The fronto-
central cortex (channels F1, F2, C3, and C4 for Dataset 1; F3,
F4, and FCC5h for Dataset 2) is implicated in attention, motor
preparation, and sensory integration, which are crucial for all
tasks and particularly for the MI task’s visuomotor compo-
nents. Finally, the parietal cortex (channels CP1, CP2, and
Pz for Dataset 1; CCP3h, CCP5h, and CCP6h for Dataset 2)
supports spatial awareness, attention, and sensory processing,
which are vital for the cognitive tasks at hand [43].
For fNIRS, a simplified spectral entropy-based represen-

tation was used. Consequently, no channel selection was
performed. This simplified representation facilitated the

model in maintaining lower complexity even when utilizing
all available channels.

This strategic selection ensures that brain activity from
essential cognitive and motor areas is represented while
also facilitating a more efficient and focused analysis. The
chosen combination reflects a balance between covering a
broad spectrum of brain functions and maintaining computa-
tional efficiency. Although alternative channel configurations
may be viable, the presented selection was justified by its
effectiveness in capturing a comprehensive array of brain
processes, as evidenced by enhanced precision in task cat-
egorization outcomes. through the adoption of this method,
which is deeply rooted in an understanding of brain func-
tionalities, we substantially improved the capacity of the
classifier to identify relevant patterns and render accurate
categorizations based on EEG data, thereby optimizing the
classification process for cognitive task identification.

To further validate the rationale behind this channel selec-
tion, an experimental approach was employed. The proposed
model, incorporating the selected channels and their corre-
sponding features (band values and band-ratios), was used
to evaluate the channel selection strategy presented in [9].
To assess both cognitive and MI states, channels were
grouped based on their anatomical locations and associated
brain regions. Leveraging data from five diverse individuals,
the evaluation results confirmed that the selected channel
groups (Tables 2 and 3) for both cognitive and MI states
yielded accuracy levels comparable to utilizing all available
channels. This finding underscores the effectiveness of the
chosen channels in representing a comprehensive range of
brain activity while maintaining computational efficiency.

D. DATA FILTERING
Following the selection of specific EEG channels, the sub-
sequent step was data filtering. A 4th-order Butterworth
bandpass filter was devised to extract EEG data within the
1-45 Hz frequency range. This filtration process preserved
the relevant activity information while diminishing unwanted
artefacts and extraneous data. The filtering procedure was
applied to the distinct channels individually. In addition, a dis-
tinct low-pass filter was implemented for processing fNIRS
data, setting the upper limit at 0.2 Hz. This low-pass filter
attenuated frequencies above this threshold, ensuring that
only the slower hemodynamic changes and relevant signals
associated with fNIRS data were retained [44]. Consequently,
the filtering process optimized the fNIRS data for subsequent
analysis, aligning with the specific characteristics of this
modality.

E. FEATURE EXTRACTION
Two distinct approaches were employed to extract the spec-
tral features from the EEG and fNIRS data for subsequent
classification. For EEG data, STFT was utilized to convert
the time-series data into spectrograms (STFT images). These
spectrograms effectively captured the temporal dynamics of
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TABLE 2. Model-based selection of channels group for cognitive states in Dataset 1.

TABLE 3. Model-based selection of channels group for MI states in Dataset 2.

brain activity within a specific frequency range. Fig. 2(a)
shows sample STFT images for channels Fp1 (channel 1)
and CP1 (channel 8) of participant 1 during the WG task. For
fNIRS data, owing to the inherently lower spectral resolution
of fNIRS (limited to 0-0.2 Hz), STFT images were deemed
unsuitable for capturing the nuanced spectral information.
To address this, the fNIRS data were segmented into smaller
time windows (2-5 s) and subjected to spectral entropy cal-
culations. The idea of selecting the 2-5 s varying windows
involves ensuring that the output shape of the data remains
consistent, with the same number of frames for each signal
(despite varying time intervals). Spectral entropy measures
the complexity and unpredictability contained in the data
across the frequency range of fNIRS. It serves as an alterna-
tive for the spectral representation of the data via the analysis
of the quantified ratio of spatial information encoded along
the frequency bands. The spectral entropy is calculated as
follows.

H = −
∑
f

P̂(f ) log(P̂(f )) (2)

where H is the spectral entropy, P̂(f ) represents the nor-
malized power spectral density of fNIRS data, and f is the
frequency.

This approach quantifies the complexity of the signal’s
frequency spectrum, providing a more comprehensive repre-
sentation of the underlying brain activity. Notably, in contrast

to EEG processing, all 72 channels encompassing both HbO
and HbR data were retained for the fNIRS analysis.

The preprocessing stage culminated in a data transforma-
tion process tailored to each modality. For EEG data, this
entailed converting the time-series data into spectrograms via
the STFT, with each image standardized to a resolution of
128×128 pixels and three color channels. Conversely, fNIRS
data was reshaped into samples defined by a fixed number
of frames and channels, ensuring consistency across varying
time windows. Table 4 provides a comprehensive overview
of these transformations.

F. DATA SPLITTING
To prevent data leakage across trials, a meticulous data split-
ting procedure was implemented. For EEG data, each trial
was transformed into a set of images via the STFT, with one
image generated per selected channel. This group of images,
representing a single trial, was treated as a unified sample
during the splitting process, guaranteeing that all images from
a given trial remained together. In the case of fNIRS data,
a framing operation with overlapping windows was applied.
This transformed the data from its original trial-based struc-
ture (T ) into a format where each trial was represented by
a sequence of windows (TWi ), with i denoting the index of
the corresponding window. Crucially, each group of windows
derived from a single trial was assigned the same activity
class label. Subsequently, the data split was performed across
trials, ensuring that all windows belonging to a specific trial
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FIGURE 2. (a) Spectrograms of EEG data for the WG task from
participant 1. (I) Channel Fp1 showing frontal lobe activity, and (II)
channel CP1 indicating parietal lobe activity, both demonstrating the
time-frequency characteristics captured by the STFT transformation.
(b) Data splitting procedure. Each trial is segmented into overlapping
windows. Trials are then assigned to training, validation, and test sets,
ensuring all windows within a trial remain together.

remained within the same set (training, validation, or testing).
This approach is visually illustrated in Fig. 2(b).

G. MODEL ARCHITECTURE
The proposed MDNF model for the EEG data classification
involved DenseNet201, which is a DL architecture character-
ized by its convolutional blocks with skip connections as a
basenet. This choice is guided by several factors, including
its intricate structure, efficient parameter usage, and high
accuracy owing to its foundation on the ImageNet dataset.
The proficiency of the model in recognizing complex patterns
within spectrograms aligns seamlessly with the representa-
tion of EEG data. Notably, the capacity of the model to
capture intrinsic characteristics without requiringmanual fea-
ture extraction is a significant benefit, facilitating it in the
detection of activity patterns associated with different brain
areas [45].

Furthermore, because it has been extensively trained on
a varied range of pictures from the ImageNet database,
DenseNet201 is particularly well-suited for instances when
the EEG dataset is restricted. In terms of architecture, the
strategy entails the development of ten separate DenseNet201
models, known as basenets, each catering to one of the
ten specified EEG channels. The outputs of these basenets
pass through pooling layers and are then flattened. These
10-flattened outputs are integrated through concatenation
and subsequently fed into a dense layer equipped with

FIGURE 3. Architecture of the proposed MDNF model. This diagram
illustrates the flow of data from EEG and fNIRS inputs through the
DenseNet201 basemodel, highlighting the key layers and connections
used for feature extraction and integration.

Algorithm 1 Pseudocode of the Proposed MDNF

Require: EEG input channels: X (i)
EEG for i = 1 to 10, each

with shape (128, 128, 3), labels y, nearest neighbors k ,
fNIRS Input Channels: X (j)

fNIRS for j = 1 to 72
1: Process begins
2: while i ≤ EEGchannels do
3: A(i)EEG ← Pass X (i)

EEG through a DenseNet201
basemodel

4: end while
5: while j ≤ fNIRSchannels do
6: A(j)fNIRS← Pass X (j)

fNIRS through Eqs. (3) - (9)
7: end while
8: EEGconcatenated← [A(1)EEG,A(2)EEG, . . . ,A(10)EEG]
9: fNIRSconcatenated← [A(1)fNIRS,A

(2)
fNIRS, . . . ,A

(72)
fNIRS]

10: Dataconcatenated← fNIRSconcatenated,EEGconcatenated
11: Pass through Eqs. (10) - (15)
12: Output classes

2048 filters. This step ensures compatibility with the out-
puts generated by the fNIRS models. The fNIRS model
comprises flattened, convolution, pooling, and flattened lay-
ers, culminating in concatenation with the EEG model’s
outputs. The final stage encompasses two fully connected
layers and a dropout layer, facilitating the transformation
of outputs into the required classification categories. This
intricate architecture harnesses the strengths of both the EEG
and fNIRS models, thereby culminating in a comprehensive
and powerful system for accurate EEG data classification.
The architecture is shown in Fig. 3 and follows a series of
mathematical annotations to reach the output classes. The
pseudocode of the method is presented in Algorithm 1.

Z1 = XfNIRS ∗W1 + B1 (3)

A1 = Activation(Z1) (4)

A2 = MaxPool(A1) (5)

Z3 = A2 ∗W2 + B2 (6)

A3 = Activation(Z3) (7)
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TABLE 4. Summary of data transformation and input shapes for EEG and fNIRS.

FIGURE 4. Intra-subject performance metrics heatmap on the HOV approach for (a) n-back, (b) WG, and (c) MI tasks. The heatmaps illustrate the
precision, recall, accuracy, and F1 score for each subject, providing a visual representation of the model’s performance across different cognitive and
motor tasks. These results highlight the model’s ability to consistently classify EEG-fNIRS data with high accuracy for individual subjects.

A4 = MaxPool(A3) (8)

A5 = Flatten(A4) (9)

where XfNIRS is the input data from the fNIRS sensor,W1 rep-
resents the weights matrix for the first layer, B1 is the bias
vector for the first layer, Z1 is the linear combination output of
the first layer, A1 is the activation output of the first layer, A2
is the output after max pooling operation onA1,W2 represents
the weights matrix for the second layer, B2 is the bias vector
for the second layer, Z3 represents the linear combination
output of the second layer, A3 is the activation output of the
second layer, A4 is the output after max pooling operation on
A3, and A5 is the flattened output.
We concatenated the outputs of the fNIRS sub-model (A5)

and the concatenated EEG output to obtain AConcatenated. The
rationale for concatenating EEG and fNIRS features at the
middle stage of the model is based on several factors for
ensuring that both modalities are integrated in an impactful
manner. Performing concatenation following the 2D CNN
layers facilitates the individual treatment of each modality by
the model and consequently captures the modality-specific
characteristics along temporal and spatial specificity before
combining them. This yields a comprehensive feature set,
thereby ensuring that key information from both modalities
has been extracted.

In addition, both modalities share different frequency
bands, sampling rates, and absolute amplitude levels. There-
fore, their concatenation at an early stage, such as before

the input of the model, could result in the introduction of
bias towards the modality with higher amplitude values and
a diverse spectrum. Conversely, if the modalities were com-
bined after the classification stage, it could result in a loss of
complementary information, which is the primary advantage
of combining both modalities.

These data were then passed through fully connected layers
as follows:

ZDense1 = FC(A(1)Concatenated) (10)

ADense1 = Activation(ZDense1) (11)

whereAConcatenated is the concatenation ofA5 and the concate-
nated EEG output, ZDense1 is the linear combination output
of the first fully connected layer, and ADense1 is the activation
output of the first fully connected layer.

ZDense2 = FC(ADense1) (12)

ADense2 = Activation(ZDense2) (13)

where ZDense2 is the linear combination output of the second
fully connected layer and ADense2 is the activation output of
the second fully connected layer.

We applied dropout with a probability of 0.5 to ADense2 to
get ADropout.

ZOutput = FC(ADropout) (14)

AOutput = Activation(ZOutput) (15)
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TABLE 5. Simulation parameters of the model.

where ADropout is the output after applying dropout to ADense2,
ZOutput is the linear combination output of the output layer,
and AOutput is the activation output of the output layer, repre-
senting the output classes (n-back, DSR, WG, or MI).

The simulation parameters that have been used as part of
model training and testing outcomes are presented in Table 5.

The input to the model was presented in the form of 2D
EEG images and processed fNIRS data. The RGB images,
which represent time and frequency information, were stan-
dardized to a shape of 128×128×3. In each of these images,
the information along the time axis was limited to the duration
of the individual tasks. The frequency axis was bounded by
the Nyquist criterion, that is, 100 Hz (with a 200 Hz sampling
frequency). For the fNIRS data, the 2D shape was determined
by the segmentation into windows and the inclusion of chan-
nel information for each sample.

H. PERFORMANCE EVALUATION
We assessed the model performance using several metrics:
accuracy, precision, recall, and the F1 score. These metrics,
calculated from a confusion matrix and particularly relevant
for BCI evaluation, offered a comprehensive picture of the
model’s efficacy in classifying cognitive and MI tasks.

IV. RESULTS AND DISCUSSION
This section presents the experimental results, a comparison
of our proposed model to prior studies, and a discussion of its
clinical translational implications and future directions.

A. EXPERIMENTAL RESULTS
The outcomes were generated using the hold-out valida-
tion (HOV) and cross-validation (CV) approaches. The
prescribedmethodologywas implemented in Google Colabo-
ratory, using the Python programming language. Performance
assessment metrics for the proposed approach, which consid-
ered the integration of EEG-fNIRS data, were evaluated for
each participant across all three cognitive and MI tasks. The
intra-subject performance metrics results for the n-back,WG,
and MI tasks on the HOV approach were detailed in heatmap
format, as illustrated in Figs. 4(a), 4(b), and 4(c), respectively.
The precision, recall, accuracy, and F1 score, computed
across all 26 participants in Dataset 1 and 29 participants
in Dataset 2, are presented as comprehensive performance
metrics.

TABLE 6. Average and SD of intra-subject performance metrics for
n-back, WG, and MI tasks using HOV and CV approaches.

In addition, the effectiveness of our channel selection
approach was validated through experimental results. Conse-
quently, using the selected 10 channels, the model achieved
high classification accuracy. This high performance indicated
that the chosen channels effectively captured the necessary
features induced by the tasks, justifying the exclusion of the
remaining channels. Thus, these results demonstrate that the
strategic selection of EEG channels based on neuroanatomi-
cal relevance was appropriate and sufficient.

To facilitate better comparison with benchmarking studies,
CV has been employed using the k-fold approach. The data
were passed through 5 folds, and their average performance
metrics were analyzed. It was found that the performance
metrics of the model using CV were on par with the HOV
case, which exhibited only minor variations in performance
metrics. These outcomes are depicted in Table 6.

Upon examining Fig. 4, the average and SD of intra-subject
performance metrics for the n-back, WG, and MI tasks were
calculated, as presented in Table 6. Notably, for the DSR
task, all performance metrics reached 0.999±0.0001 and
0.996±0.0013 for every subject in the HOV and CV
approaches, respectively. The model achieved high accuracy
while ensuring that no instances of overfitting occurred. This
was confirmed by passing the model through two validation
schemes. In addition, the performance on the test (unseen)
dataset was on par with the training and validation data,
further affirming the model’s normal convergence. These
metrics served as comprehensive indicators of the model’s
performance in classifying EEG-fNIRS data. The average
performance metric across both datasets has been further
presented as the bar graph in Fig. 5(a). These results demon-
strate themodel’s potential for classifyingmotor-related brain
activity.

Notably, certain deviations were observed in the results.
Specifically, for four subjects in the WG task, one subject in
the n-back task, and five subjects in the MI task, as depicted
in Fig. 4, lower accuracy values and other performance met-
rics were recorded. This could be attributed to the inherent
characteristics of the data collected from these particular
participants, which may lack crucial distinguishing features
in the time-frequency domain. Moreover, the classification
rates for the WG and MI tasks were lower compared to the
n-back andDSR tasks. There could be several reasons for this.
First, the WG task involved complex cognitive processes,
including language production and semantic retrieval. These
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FIGURE 5. Additional results on the HOV approach. (a) Average intra-subject performance metrics (accuracy, precision, recall, and F1 score) for both
datasets. (b) Radar chart comparing performance metrics across all tasks. (c) Box plots showing the distribution of accuracy for each task.

processes could result in more variable and less distinctive
neural patterns, rendering the modelling challenging. Simi-
larly, theMI tasks involve complex neural activations that can
be subtle and harder to distinguish. Such variability can result
in relatively lower classification outcomes. In the future, this
could be overcome through the development of advanced
models with improved handling of attention mechanisms.

Nevertheless, the model consistently demonstrates a high
degree of accuracy across a majority of cases, signifying
the robustness of the adopted approach. Thus, the proposed
model outperformed existing architectures and methods in
terms of accuracy and showcased its ability to consistently
achieve optimal outcomes for a range of classification tasks
involving EEG-fNIRS data processing. The comprehensive
evaluation of accuracy, precision, recall, and F1 score pro-
vides a holistic view of the model’s effectiveness, thus
underscoring its potential for advancing our understanding of
neural processes in cognitive and MI tasks.

To gain a holistic perspective on the model’s performance
across different cognitive and MI tasks, we employed radar
plots to visualize the average accuracy, precision, recall, and
F1 score for both datasets as depicted in Fig. 5(b). Remark-
ably, the radar plot illustrated that the DSR task exhibited the
highest average performance across all metrics, followed by
the n-back, WG, and MI tasks. This ordering aligned with the
complexity of these tasks, with DSR necessitating a higher
level of cognitive engagement. The radar plot provides an
informative summary of the model’s capabilities, offering a
concise comparison of its performance.

To delve deeper into the accuracy distribution across both
datasets, we constructed box plots. These plots exclusively
focused on accuracy as a metric and revealed the variability
in classification performance within each group. Although
the DSR task consistently attained exceptional accuracy, the
box plots for the n-back, WG, and MI tasks indicated vari-
ations in the performance among participants as shown in
Fig. 5(c). Interestingly, these variations can be attributed to
individual differences in task-related brain activity. Thus, the
box plots confirmed the model’s robustness and highlighted
the potential for tailoring BCI systems to individual users
based on their unique neural responses. This underscores

the adaptability and personalization capabilities of our
approach.

Further analysis of the task-dependent performance indi-
cated that our model exhibited exceptional accuracy in the
DSR task, a notable achievement compared to its perfor-
mance in the n-back and WG tasks. This distinction could
stem from the DSR task’s relative simplicity, where par-
ticipants are required to discriminate between basic visual
stimuli. Such simpler tasks may elicit more distinct and
classifiable neural patterns in both EEG and fNIRS data. Con-
versely, the n-back and WG tasks, which engage higher-level
cognitive functions, may produce more nuanced and complex
brain activity, thereby presenting a greater challenge for accu-
rate classification.

The efficacy of STFT and theMDNF architecture is central
to the success of the proposed model in EEG-fNIRS-based
BCI tasks. The STFT transformation of EEG data into spec-
trograms revealed the critical interplay between time and
frequency dimensions, which is essential for recognizing
patterns linked to various cognitive states. Meanwhile, the
MDNF architecture, leveraging a DenseNet201 backbone,
adeptly learns the intricate relationships present in this mul-
timodal data. The capacity of the model to merge spatial
information from fNIRS with the detailed temporal dynamics
captured by STFT-based EEG features is a significant factor
behind its high classification accuracy.

B. MODEL’S COMPUTATIONAL COMPLEXITY
The proposed model balanced between accuracy and compu-
tational efficiency.While STFT image generation (60-80 min
in each subject on a CPU) and training (43-50 min in each
subject on a T4 GPU) were somewhat time-consuming,
testing was highly efficient (0.5 min in each subject on
a T4 GPU). This computational profile is well-suited for
offline analysis. However, real-time BCI applications may
require further optimization. The exploration of more com-
pact versions of the MDNF model could provide a solution,
minimizing computational demands without sacrificing per-
formance. In addition, the leveraging of specialized neural
network hardware could significantly accelerate processing
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FIGURE 6. Performance comparison between the MDNF model and a
simplified CNN architecture for the n-back task on Subject 1. The
evaluation involves results from HOV and CV approaches, demonstrating
the superior accuracy of the MDNF model.

speeds, rendering our model a viable option for real-time
applications wherein swift response times are essential.

C. OPTIMIZATION AND GENERALIZATION
To mitigate the risk of overfitting, several measures were
taken. The foremost measure was the reduction of the number
of EEG channels based on anatomical locations, resulting
in a 10-channel representation instead of 30 channels. The
fNIRS data were transformed into a reduced-dimensional
representation via the extraction of a single value of spectral
entropy from each frame (window) of data. Pooling layers
were introduced in the model architecture to discard any
redundant information that could result in overfitting. The
overall data was divided into training, validation, and test
sets. Ensuring that the performance of the validation and test
datasets was on par with the training dataset confirmed that
the model did not experience overfitting. However, although
the performance of themodel on individual subjects produced
promising results, its generalization across multiple subjects
remains a question and will be explored in future work.

D. MODEL BENCHMARKING AND ABLATION
EXPERIMENTS
To further analyze the effectiveness of the model, the perfor-
mance of the model was analyzed by replacing the DenseNet
base models with simplified CNN layers to assess the impact
of transfer learning in the current MDNF model. The out-
comes of both models under CV and HOV are presented in
Fig. 6. The performance outcomes are depicted for Subject 1
under the n-back classes. The MDNF model achieved an
accuracy of over 97% for both HOV and CV. By excluding
the DenseNet layers and using a simplified CNN model, the
accuracy was reduced to less than 90% for both HOV and CV
cases.

To ensure the prevention of overfitting in the established
models, the performance was evaluated using both HOV
and CV. In addition, the performance on the test dataset
(unseen data) was compared to the training and validation

TABLE 7. Comparison with prior studies using the same datasets.

performance and found to be consistent. As evident in Fig. 6,
the training curves converged smoothly without any indica-
tion of divergence. These outcomes confirmed that the perfor-
mance of the model does not exhibit any signs of overfitting.

E. COMPARISON WITH PRIOR STUDIES
Our model demonstrated significant progress in classifying
cognitive and MI tasks using EEG-fNIRS data. In the n-back,
WG, and DSR tasks, it achieved accuracies of 95.1% (HOV),
93.1% (CV), and 99.9% (HOV) respectively. It consistently
outperformed previous studies across the n-back, WG, and
DSR tasks using the same dataset [7], [13], [15]. Similarly,
the MI task accuracy was 91.7% (HOV), which exceeded
other studies using the same dataset [11], [13], [46], [47],
[48]. A comparison with prior studies is presented in Table 7.
This enhancement in performance is attributed to the hybrid
data advantage, where the integration of EEG and fNIRS
data offers a more comprehensive spatio-temporal perspec-
tive than the use of either modality alone. The informative
dimensions derived fromSTFT-based spectrograms and spec-
tral entropy effectively discerned the subtle patterns critical
for distinguishing between cognitive states. In addition, the
excellent ability of the MDNF architecture to navigate the
complex interplay within this multimodal data significantly
contributed to our model’s success.

F. CLINICAL TRANSLATIONAL IMPLICATIONS OF MDFN
The impressive performance of the proposed model in cogni-
tive and MI task classification using EEG-fNIRS data holds
significant promise for clinical translation. By accurately
discriminating between cognitive states, the model offers
valuable insights into the neural mechanisms underlying
attention, memory, decision-making, and other complex brain
functions [49]. This could advance our fundamental under-
standing of cognition by facilitating researchers in linking
specific task performance metrics (e.g., faster reaction times
on the n-back task) to the model’s identified neural patterns.
Moreover, this discriminatory power suggests potential appli-
cations in the diagnosis and management of neurological
disorders. Through the detection of subtle alterations in brain
patterns associated with cognitive and motor functions, the
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model could enable the early identification of conditions such
as Parkinson’s disease, stroke, or dementia [50]. This early
detection could result in timely interventions, potentially
slowing disease progression and improving patient outcomes.

The adaptability of the model to limited EEG data, cou-
pled with its accuracy, opens up possibilities for real-time
brain monitoring using wearable devices, paving the way for
noninvasive BCIs that could transform healthcare with early
interventions, continuous monitoring in real-world settings,
and assistive technologies for individuals with disabilities or
those undergoing neurorehabilitation. In addition, the capac-
ity of the MDNF model to identify specific neural patterns
linked to cognitive or motor deficits could inform personal-
ized rehabilitation strategies, thereby optimizing the therapy
outcomes by targeting the most affected neural circuits.

Future research should focus on the validation of the
model’s generalizability across diverse datasets and exper-
imental conditions. The use of interpretability techniques
would provide deeper insights into the model’s decision-
making processes and potentially reveal new biomarkers
for cognitive disorders [51]. Furthermore, exploring calibra-
tion strategies or adaptive algorithms could tailor the model
to individual users’ brain patterns, which could enhance
its accuracy and broaden applications into personalized
medicine or neurorehabilitation. Consequently, rigorous val-
idation in cross-subject classification studies is necessary
to ensure the model’s generalizability across diverse patient
populations, which is a crucial step towards the integration of
the MDFN model into routine clinical practice.

V. CONCLUSION
The evaluation of our proposed model demonstrated a sig-
nificant advancement in EEG-fNIRS data processing and
classification. Its superior accuracy, precision, recall, and F1
scores across tasks such as n-back, WG, DSR, and MI exhib-
ited its effectiveness in capturing complex time-frequency
patterns within neural data. Surpassing the performance of
existing approaches, the model offers exceptional poten-
tial for the accurate decoding of cognitive and MI tasks.
This study has far-reaching implications for advancing cog-
nitive neuroscience and enabling new clinical diagnostics,
personalized treatment strategies, and future neurocognitive
research. With the continued evolution of the field, the model
presents exciting opportunities for diverse applications. Thus,
continued refinement of the architecture, exploration of its
generalizability, and increased focus on interpretability will
undoubtedly result in even greater discoveries regarding the
human brain and cognitive processes. This research signifies
a major step forward in our quest to understand the intricacies
of the mind.
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