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ABSTRACT Objective: Low-cost, portable RGB-D cameras with integrated motion tracking functionality
enable easy-to-use 3D motion analysis without requiring expensive facilities and specialized personnel.
However, the accuracy of existing systems is insufficient for most clinical applications, particularly when
applied to children. In previous work, we developed an RGB-D camera-based motion tracking method and
showed that it accurately captures body joint positions of children and young adults in 3D. In this study,
the validity and accuracy of clinically relevant motion parameters that were computed from kinematics of
our motion tracking method are evaluated in children and young adults. Methods: Twenty-three typically
developing children and healthy young adults (5-29 years, 110-189 cm) performed five movement tasks
while being recorded simultaneously with amarker-based Vicon system and an Azure Kinect RGB-D camera.
Motion parameters were computed from the extracted kinematics of both methods: time series measurements,
i.e., measurements over time, peak measurements, i.e., measurements at a single time instant, and movement
smoothness. The agreement of these parameter values was evaluated using Pearson’s correlation coefficients r
for time series data, andmean absolute error (MAE) and Bland-Altman plots with limits of agreement for peak
measurements and smoothness. Results: Time series measurements showed strong to excellent correlations
(r-values between 0.8 and 1.0), MAE for angles ranged from 1.5 to 5 degrees and for smoothness parameters
(SPARC) from 0.02-0.09, while MAE for distance-related parameters ranged from 9 to 15 mm. Conclusion:
Extracted motion parameters are valid and accurate for various movement tasks in children and young adults,
demonstrating the suitability of our tracking method for clinical motion analysis.

INDEX TERMS Children, motion analysis, motion tracking, Kinect, RGB-D.
Clinical Impact: The low-cost, portable hardware in combination with our tracking method enables motion
analysis outside of specialized facilities, while providing measurements that are close to those of the clinical
gold-standard.

I. INTRODUCTION

CLINICAL motion analysis plays an important role in
the evaluation of patients’ motor functions and activi-

ties, in therapy planning and adaptation, and in monitoring

progress over time [1]. In clinical practice, such analysis
is often carried out in the form of observer-based assess-
ments, which generally consist of a list of movement tasks
and associated scoring criteria, based on which a therapist
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rates the patient’s function, capacity, or performance. As the
scoring is based on the therapist’s subjective perception,
it is subject to intra- and inter-rater variability. Furthermore,
the therapists require training and sometimes certification,
and the assessments rely on an ordinal scale, meaning that
patients have to make substantial progress to improve their
score [2]. To overcome these drawbacks, clinical assessments
have been supplemented with technology, e.g., marker-based
3D motion analysis (3DMA), which is considered the gold
standard for clinical gait analysis as it provides excellent
accuracy in motion tracking [3]. Such quantitative measure-
ments facilitate clinical decision-making, e.g., the need for
neuro-orthopedic surgery, and the evaluation of the effec-
tiveness of interventions [4]. While 3DMA is routinely
applied to analyze gait, several other applications have been
explored [5], e.g., assessing upper limb function [6], [7] or
trunk control [8]. Nevertheless, various factors hinder the
routine implementation of 3DMA for objective, fine-grained,
interval-scaled therapeutic assessments. The accurate place-
ment of markers on a patient’s body is time-consuming and
requires the patients to cooperate, which may be especially
difficult in the case of children with neurological impair-
ments [9]. In addition, the high cost and spatial requirements
restrict the use of these systems to specialized facilities,
and the evaluation and interpretation of the findings require
trained, experienced personnel [10].

These limitations could be overcome by using RGB-Depth
(RGB-D) cameras with integrated 3D body tracking func-
tionality. These cameras are portable, affordable, and do not
require additional expertise or effort, like correct marker
placement. Consequently, several studies have investigated
the validity of different versions of the Microsoft Kinect
camera [11], e.g., for postural control [12], walking, stand-
ing, and sitting [13], [14], upper limb function [15], and
other tasks [16], [17], [18]. However, the validity of the
captured kinematics appears to be limited [11], [13], [16],
[17], task-dependent, [14], [15], and too low for clinical
applications [17], [18]. To exploit the potential of RGB-D
cameras to assess motor functions, we developed a custom
method for markerless full-body motion tracking of children
and adults from RGB-D sequences [19]. Code is available at
https://github.com/nh236/smplify-kids. This method is based
on previous work on infant motion tracking [20] and a
method for estimating body shape and pose from images [21].
In an earlier study, we found the estimated 3D body joint
positions determined with our method were highly accurate
and strongly agreed with a reference 3DMA system in 5 to
29-year-old healthy participants [19]. However, for clinical
applications, kinematic parameters such as maximum joint
angles or qualitative measures like movement smoothness,
are more relevant than joint positions, and small errors in joint
positions can still cause significant errors in other parameters.
Therefore, the main objective of this study was to evaluate
the concurrent validity of clinically relevant motion param-
eters extracted from the previously collected data set [19].
We analyzed the agreement between parameters computed

from kinematics captured with our method and the Vicon
system. Additionally, we evaluated the validity of parameters
computed from the publicly available Azure Kinect Body
Tracking (K4ABT) [22].

II. METHODS
A. PARTICIPANTS
Twenty-three typically developing children and young adults
(14 females, 9 males) were recruited through purposive sam-
pling to include a variety of ages (5 – 29 years, mean
13.2 years) and body sizes (110 – 189 cm). Exclusion cri-
teria were neurological, musculoskeletal, or cardiovascular
diagnoses. Parents and participants were informed verbally
and in writing and had to agree verbally before participating.
Parents and participants aged 14 years and older addition-
ally provided written informed consent. Participants could
withdraw from the study at any time. The Ethical Committee
of the Canton of Zurich approved this study (BASEC-Nr.
PB_2016-01843).

B. MOVEMENT TASKS
We selected five tasks involving different body parts that we
adopted from clinical assessments of motor performance or
that are challenging to track, e.g., due to self-occlusions and
fast movements:

• Reach to the other side: The participant reaches across
bodymidline to roughly shoulder height, returns to start-
ing position, and repeats task with the other arm.

• Trunk bending: The participant bends the trunk to the
left, right, forward, and backward.

• Standing straight leg raise (SSLR): Participant raises one
straight leg and holds for three seconds, then repeats with
the other leg.

• Squats: The participant performs three squats with arms
stretched out to the front.

• Jumping jacks: The participant performs three jumping
jacks.

The tasks were explained to the participants and each task
was demonstrated once. The starting position was upright
standing, with arms hanging down.

C. DATA COLLECTION
The participants were recorded using a Vicon system
with 12 Vero V2.2 cameras at 120 Hz, except for two par-
ticipants who were recorded at 90 Hz. Fifty-one markers
(16 mm diameter) were placed according to the Conventional
Gait Model 2.5 [23], covering the whole body, including the
arms and head. Marker placement was carried out jointly
by two experienced members of our gait lab, who routinely
conduct clinical gait analyses. In addition, RGB-D data were
simultaneously recorded at 30 Hz with the Azure Kinect
Developer Kit (AKDK) in ‘‘NFOV unbinned’’ mode at a
depth resolution of 640× 576 and colour image resolution of
1920×1080. The AKDKwas mounted on a tripod facing the
participant frontally at a distance at which the entire body was
visible (1.5 - 2.9meters). The participants performed the tasks
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once with and a second time without markers (and the Vicon
system). Both camera systems were temporally synchronized
to avoid interference by the active illumination of the Vicon
with the AKDK depth measurements. At the time of writing,
Microsoft has discontinued AKDK, but the same technology
is available from another vendor [24], including the body
tracking component [25].

D. DATA PROCESSING
1) VICON
Marker trajectories were post-processed with Vicon
Nexus 2.10. The joint centers for the head, shoulders, elbows,
wrists, hips, knees, ankles, and feet, as well as the center of
mass were extracted.

2) OUR METHOD [19]
3D point clouds were computed from AKDK depth images
and the camera calibration, using the Azure Kinect SDK [26].
These point clouds served as input to our method, which esti-
mated pose and shape parameters of a parametricmodel of the
body surface, termed SMPL-H [27], so that the virtual body
matched the person in the input data [19]. The SMPL-H body
model has an underlying skeleton, from which we extracted
joint positions corresponding to those of the Vicon system.
In a previous study, we evaluated the validity of our method
with respect to Vicon on the same data set at the level of joint
positions.We found that themean per joint position error over
all joints was 11.7 mm [19]. Pearson correlation coefficients
were>0.95 for non-stationary joints (as opposed to stationary
ones, such as ankle joints during reaching). More than 98%
of the joints had an error below 5 cm, and tracking failures
only occurred when the body occluded entire limbs. For more
details, we refer the reader to [19].

3) K4ABT
Joint positions were extracted from the recorded RGB-D
sequences using the official Azure Kinect Sensor SDK [26]
and K4ABT (version 1.1.2) [22].
Joint positions of our method and K4ABT were trans-

formed to the Vicon coordinate frame as in [19]. To avoid
introducing errors from different definitions of angle com-
putations, angles were calculated as scalar values from joint
positions for all systems similarly, e.g., the elbow angle was
calculated from the shoulder, elbow, and wrist joint positions.
We did not apply smoothing or filtering to the kinematics for
any method.

E. MOTION PARAMETERS
Evaluation criteria in observer-based assessments often do
not provide clearly defined quantitative values, but rather
rough, verbal descriptions. For example, for the ‘‘reach
across midline’’ task in the Trunk Control Measurement
Scale [28], the options are ‘‘child reaches target without
difficulties’’, ‘‘child reaches target, but has difficulties in per-
formance’’, or ‘‘child falls/cannot reach target’’. Experienced

physiotherapists formulated quantitative motion parameters
based on such verbal descriptions, e.g., trunk rotation, elbow
angle, maximum reach distance, and movement smoothness.
We then computed these parameters from the captured kine-
matics. To provide a comprehensive evaluation, we include
time series and peak measurements, because if one parameter
type shows good results, it does not necessarily mean the
other will, too.
Time series measurements
• Trunk rotation (during reach task): angle between line
connecting hip joints and line connecting shoulder
joints, projected to the horizontal plane.

• Angle parameters (reach and squat): angle between three
joints, measured in each frame, e.g., shoulder, elbow and
wrist joints for elbow angle.

• Weight shift (SSLR): 3D displacement of the center of
mass (CoM).

• Upper trunk displacement (squat): 3D displacement of
the midpoint between the two shoulder joints.

• Speed(jumping jacks): derivative of 3D joint positions
(wrists and ankles).

Peak measurements and smoothness of the movement
• Maximum reach distance (reach): maximum wrist dis-
placement with respect to the sagittal plane, which
was calculated from the shoulder joints in the starting
position.

• Maximum trunk angles(trunk bending) were computed
with respect to the frontal and sagittal plane, which
we defined based on shoulder joints and the ‘‘gravity’’
vector (from estimated ground plane).

• Jump height (jumping jacks): overall maximum dis-
tance between ankle position and the estimated ground
plane.

• Smoothness(all tasks except squat) is related to the con-
tinuity and non-jerkiness of movements [29], e.g., the
absence of abrupt changes. We quantified smoothness
with the modified Spectral Arc length (SPARC), which
decomposes a movement speed profile into higher- and
lower-frequency components using the Fourier trans-
form. It then computes a smoothness value using the
assumption that smooth movements mostly contain
low-frequency components, i.e., slow movements, and
less smooth movements contain more high-frequency
components, i.e., fast movements [27]. We computed
SPARC values from the start to the end of specific
movements, which we manually annotated, e.g., from
the onset of arm motion to the maximum reach position.
For rhythmic movements (jumping jacks), we split the
sequence, calculated SPARC values per repetition, and
averaged these, as recommended in [30].

F. STATISTICS
To evaluate the agreement between the parameters measured
with two systems, we calculated Pearson’s correlation coeffi-
cient r for time series measurements. For peak measurements
and smoothness values, we calculated the mean absolute
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FIGURE 1. Scatter plots with line of equality (left sides) and Bland-Altman plots (right sides) for Ours vs. Vicon for peak measurements and smoothness
parameters (corresponding to Table 2). Note that for improved visibility, the aspect ratio of the scatter plots (left sides) is not 1:1.

error (MAE), i.e., the difference between the methods, and
the mean of the measured values for each method. Addition-
ally, we created scatterplots including the line of equality
(x = y) and Bland-Altman plots (Fig. 1). Bland-Altman
plots display the mean difference between the methods
(y-axis) against their mean (x-axis). The average difference,
i.e., the bias, indicates the systematic difference between

the methods, while the bias ±1.96·SD should include 95%
of the differences in case the distribution is normal. The
95% confidence interval is also referred to as the limits of
agreement (LoA), where bias+1.96·SD is the upper LoA and
bias - 1.96·SD is the lower LoA. Motion parameter calculation
and statistical analysis were implemented in Python using the
numpy package.
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TABLE 1. Pearson correlation coefficients for different time series measurements.

III. RESULTS
Twenty-three participants performed the five movement
tasks. Due to technical problems, we had to exclude
8 recordings of three participants with markers, resulting
in 107 recordings. Two participants were only recorded
with markers, resulting in 105 recordings without markers.
We excluded frames for which no body was detected by
K4ABT from the evaluation (K4ABT vs. Ours). Time series
measurements are displayed in Table 1, and peak and smooth-
ness parameters in Table 2. In the following, we will refer
to parameters computed from kinematics that were captured
with our method asOurs, with the Vicon system as Vicon, and
with K4ABT as K4ABT.

A. OURS VS. VICON
The time series measurements correlated highly between
Ours and Vicon (Table 1), with r ≥ 0.95 for all angles, except
for ankle angles during the squat (r = 0.80). Correlations
of displacements were very high (r > 0.99) for directions
with the highest amount of motion, i.e., medio-lateral for
the center of mass during SSLR and vertical trunk displace-
ment for the squat, and slightly lower for other directions
(r > 0.95). Speed parameters had r-values ≥ 0.98. As dis-
played in Table 2 and Fig. 1 peak measurements of positional
data obtained an average MAE between 8.8 and 15.3 mm,
and 1.96·SD between 13.3 and 36.5 mm. Regarding angles,
the average MAE ranged from 1.5 to 5 degrees, and 1.96·SD
ranged from 3 to 6.8 degrees. MAE and 1.96·SD of SPARC
smoothness values ranged from 0.02 to 0.09 and 0.057 to
0.212, respectively. Most parameters showed a small, yet
statistically significant, bias, and somemaximum angles were
slightly underestimated in Ours compared to Vicon (dorsal
and ventral trunk angles, knee angles during squat). Jump
height was slightly overestimated and SPARC values were
consistently marginally lower in Ours, i.e., less smooth.

Examples for the agreement between Ours and Vicon for
single participants are visualized in Fig. 2, left side.

B. K4ABT VS. OURS
Due to marker interference, K4ABT results should not be
compared to the Vicon system directly [19]. To give an
impression of K4ABT capabilities, we compared K4ABT
to Ours, but, since our method cannot be considered a gold
standard method, we only evaluated results on a coarse level.
Correlations were nearly perfect for the knee and hip angles
and the vertical trunk displacement over time during the squat
(Table 1, right). Other joint angles and displacement time
series measurements showed smaller r-values (0.82 – 0.88),
while speed had higher correlations for wrists (r = 0.92) than
for ankles (r = 0.73).

Peak measurements for K4ABT vs. Ours (Table 2, right
side) showed consistently higher error levels than for Ours vs.
Vicon, but within acceptable ranges, and less smooth signals,
i.e., lower SPARC values. These findings are reflected in
visualizations of parameters for single participants in Fig. 2,
where K4ABT measurements (Fig. 2, right side, pink) show
relatively large jumps in some parts of the sequence, while
the values agree very well for other parts.

IV. DISCUSSION
We found excellent agreement between Ours and Vicon, with
most r-values > 0.95. Positional and angle errors, as well as
differences in smoothness values were small (MAE< 16 mm
and ≤ 5 degrees, SPARC MAE ≤ 0.1, respectively). Most
parameters only showed a small (yet statistically significant)
bias, and the 1.96·SD ranges were narrow. This indicates
that our method is valid for extracting motion parameters for
quantitative motion analysis.

Ankle angles during the squat showed the lowest corre-
lations of all parameters (r = 0.8). A visual examination
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TABLE 2. Mean absolute differences (Mean Absolute Error) in measured values for Ours vs. Vicon and K4ABT vs. Ours.

of tracking results revealed that in few sequences, marker
distortions caused deformations of the lower leg in the point
cloud, which led to less accurate fitting of the body model
and resulted in less accurate ankle angles for Ours (see sup-
plementary video).We did not observe this issue in sequences
without markers.

A recent study evaluated a commercial markerless multi-
camera system, ‘‘The Captury’’ [31], with respect to a Vicon
system for fourteen children (3-6 years) performing squats
and standing broad jumps [32]. Results from [32] for param-
eters most similar to those evaluated in the present study
were: Maximum knee flexion during squat with a bias of
-11.7 degrees and 1.96·SD of 11.9 degrees (Ours: bias of
4.8 degrees, 1.96·SD of 5.1 degrees). Jump height during
broad jump had a bias of -8 mm and 1.96·SD of 30 mm (for
maximum jump height during jumping jacks, our method had
a bias of 7.1mm and 1.96·SD of 13.3mm).While these values
are not directly comparable to our results due to differences in
age groups and tasks, we consider our results to lie in similar
(or even lower) error ranges as the commercial multi-camera
system.

The degree of accuracy considered ‘‘good enough’’
depends on the targeted application. For comprehensive
gait analysis, on which surgical decisions are based, error
levels of less than two degrees are considered acceptable,
and those below five degrees are reasonable [33]. Phys-
iotherapists, on the other hand, can only accurately detect
angle changes during slow, single-plane movements that are
above 12 degrees [34]. Our method does not aim to replace
marker-based systems in applications requiring the highest
accuracy, but rather enhance observer-based assessments that
involve visual estimates of joint angles or other qualitative
aspects of movement, such as smoothness. Our method
is best applicable in assessment-like, controlled settings,
with patients being relatively stationary, i.e., standing or
sitting, while facing the camera, and following standard-
ized protocols. It is less feasible to assess patients who
move freely in unrestricted environments. The low cost
and portability of the hardware enable motion measure-
ments outside the lab or in situations where marker-based
methods are not applicable, e.g., robot-assisted gait
therapy [35].
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FIGURE 2. Sample plots of time series measurements. Each row represents measurements of the same participant. Left: Ours (blue) vs.
Vicon (yellow). Right: K4ABT (pink) vs. Ours (blue). a) and b): reach to the other side: reach distance with respect to body midline,
x marking maximum reach distance. c) and d): squat: knee angles. e) and f): SSLR: hip angles, x denotes maximum angle.
g) and h): jumping jacks: wrist speed. While parameters measured with our method highly agree with Vicon results (left), we observed
repeated tracking failures for K4ABT (right), e.g., tracking of the arm lost during reaching (b), inaccurate knee angles during squat (d),
tracking of the leg lost during leg raise (f) and hand tracking failures during jumping jacks (h). Note that the results on the left and the
right sides are from different recordings of the same participant, once with markers (left) and once without markers (right). Best
viewed in colour. Corresponding motion sequences are shown in the supplementary video.

A. COMPARISON K4ABT VS. OURS
The evaluation of K4ABT with our method as a reference
showed that some parameters highly agree between both sys-
tems, while others show less agreement. SPARC values were
consistently lower, i.e., less smooth, in K4ABT compared
to Ours. This is caused by the overall lower accuracy of
K4ABT but also by tracking failures that led to jumps in
measurements (see Fig. 2).

One finding from our previous validation study is not
clearly reflected in the evaluation of motion parameters:
Nearly two-thirds of sequences contained short periods
of tracking errors for K4ABT [19]. In the present study,
we mainly observed good correlations and minor differences
between K4ABT and Ours. Despite losing track of limbs
during movement phases, K4ABT often recovered in the
peak position, leading to relatively correct values for these
parameters (see Fig. 2). However, it cannot be guaranteed
that the tracking result is valid at the time of measurement.
This is in line with previous studies, which concluded that the

overall agreement of K4ABT is acceptable, but its accuracy
is limited, and tracking errors occur repeatedly [12], [16].

B. LIMITATIONS
As in our previous validation study [19], markers of the
reference system directly influence our method’s results and,
therefore, the calculated motion parameters. In some situ-
ations, this becomes evident, e.g., regarding ankle angles
during the squat for some participants, while the effect for
most other parameters is small. In the targeted application,
participants will be recorded without markers, which is why
we consider the presented error values to be an upper limit
for the expected error.

We included only healthy participants in this study
because all participants should be able to execute all five
tasks. To show that our method generalizes across ages
and sizes, we evaluated all participants together. In the
results, we did not observe differences between children and
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adults. Further studies are needed to validate the method in
patients.

We selected movement tasks that covered all body parts
and posed challenges for motion tracking methods. Some
did not have clearly defined quantitative evaluation cri-
teria associated with them, but rather verbal/descriptive
scoring criteria, which is why the computed quanti-
tative motion parameters were chosen to reflect these
descriptions. However, the results of this study and our
previous validation study [19] suggest that the valid-
ity would stay the same for different parameter choices
since our approach provides consistently accurate and valid
measurements.

One limitation of our method is that the skeleton definition
of the SMPL-H model [27] does not conform to the rec-
ommendations of the International Society of Biomechanics
(ISB) on reporting human joint motion. The conversion of
SMPL-H to follow the ISB definitions is not straightforward,
and could introduce an additional source of errors that would
make it harder to assess the capabilities of our method. For
this reason, we evaluate ‘‘simple’’ parameters that might be
insufficient for comprehensive gait analysis, but can support
therapists during clinical assessments with objective, quanti-
tativemeasurements. Recent work has added a biomechanical
skeleton to an adult parametric body model [36] to resolve
this limitation. To apply this model to children, we need to
adapt the skeleton structure to the anthropometrics of smaller
children.

V. CONCLUSION
In this study, we evaluated the validity of our custom method
for markerless full-body motion tracking for extracting clin-
ically relevant motion parameters from RGB-D sequences
of children and young adults for five different movement
tasks. Parameters computed from our method were consis-
tently close to those of the clinical reference standard system,
confirming our previous study on validating ourmethod at the
level of joint positions [19]. We conclude that our method is
valid for quantitative motion analysis in children and young
adults.

This validation study is a step towards translating our
method to clinical practice, where it can fill the gap between
highly accurate 3DMA and routinely applied therapist-rated
clinical assessments. By making the code of our tracking
method publicly available, we want to motivate clinicians,
engineers, and other researchers to use, validate, and extend
the method to support the translation of easy-to-use, quan-
titative motion analysis into clinical routine. In ongoing
studies, we are recording pediatric patients during clinical
assessments of trunk control and upper limb function to
demonstrate that the measurements taken with our method
correspond to the observations of the therapists.

ACKNOWLEDGMENT
The authors would like to thank the participants and
their parents, and the therapists from their gait laboratory.

Nikolas Hesse provides consulting services to Meshcapade
GmbH, but this research was performed solely with Swiss
Children’s Rehab. The other authors report no conflict of
interest.

REFERENCES
[1] B. Kirshner and G. Guyatt, ‘‘A methodological framework for assess-

ing health indices,’’ J. Chronic Diseases, vol. 38, no. 1, pp. 27–36,
Jan. 1985.

[2] E. Jaspers, K. Desloovere, H. Bruyninckx, G. Molenaers, K. Klingels, and
H. Feys, ‘‘Review of quantitative measurements of upper limb movements
in hemiplegic cerebral palsy,’’ Gait Posture, vol. 30, no. 4, pp. 395–404,
Nov. 2009.

[3] P. Eichelberger et al., ‘‘Analysis of accuracy in optical motion capture—A
protocol for laboratory setup evaluation,’’ J. Biomechanics, vol. 49, no. 10,
pp. 2085–2088, Jul. 2016.

[4] S. Armand, G. Decoulon, and A. Bonnefoy-Mazure, ‘‘Gait analysis in chil-
dren with cerebral palsy,’’ EFORT Open Rev., vol. 1, no. 12, pp. 448–460,
2016.

[5] H. Haberfehlner et al., ‘‘Instrumented assessment of motor function in
dyskinetic cerebral palsy: A systematic review,’’ J. NeuroEngineering
Rehabil., vol. 17, no. 1, Dec. 2020.

[6] L. Mailleux et al., ‘‘Clinical assessment and three-dimensional movement
analysis: An integrated approach for upper limb evaluation in children
with unilateral cerebral palsy,’’ PLoS ONE, vol. 12, no. 7, Jul. 2017,
Art. no. e0180196.

[7] M. C. M. Klotz et al., ‘‘Motion analysis of the upper extremity in
children with unilateral cerebral palsy—An assessment of six daily
tasks,’’ Res. Develop. Disabilities, vol. 35, no. 11, pp. 2950–2957,
Nov. 2014.

[8] L. Heyrman et al., ‘‘Altered trunk movements during gait in chil-
dren with spastic diplegia: Compensatory or underlying trunk control
deficit?’’ Res. Develop. Disabilities, vol. 35, no. 9, pp. 2044–2052,
Sep. 2014.

[9] C. N. Gerber, R. Labruyère, and H. J. A. van Hedel, ‘‘Reliability and
responsiveness of upper limb motor assessments for children with central
neuromotor disorders: A systematic review,’’ Neurorehabilitation Neural
Repair, vol. 30, no. 1, pp. 19–39, Jan. 2016.

[10] S. R. Simon, ‘‘Quantification of human motion: Gait analysis—Benefits
and limitations to its application to clinical problems,’’ J. Biomechanics,
vol. 37, no. 12, pp. 1869–1880, Dec. 2004.

[11] R. A. Clark, B. F.Mentiplay, E. Hough, and Y. H. Pua, ‘‘Three-dimensional
cameras and skeleton pose tracking for physical function assessment: A
review of uses, validity, current developments and Kinect alternatives,’’
Gait Posture, vol. 68, pp. 193–200, Feb. 2019.

[12] M. Antico et al., ‘‘Postural control assessment via Microsoft Azure Kinect
DK: An evaluation study,’’ Comput. Methods Programs Biomed., vol. 209,
Sep. 2021, Art. no. 106324.

[13] K. Otte et al., ‘‘Accuracy and reliability of the Kinect version 2 for clinical
measurement of motor function,’’ PLoS ONE, vol. 11, no. 11, Nov. 2016,
Art. no. e0166532.

[14] J. Bertram et al., ‘‘Accuracy and repeatability of the Microsoft Azure
Kinect for clinical measurement of motor function,’’ PLoS ONE, vol. 18,
no. 1, Jan. 2023, Art. no. e0279697.

[15] L. Cai, Y. Ma, S. Xiong, and Y. Zhang, ‘‘Validity and reliability of upper
limb functional assessment using the Microsoft Kinect V2 sensor,’’ Appl.
Bionics Biomechanics, vol. 2019, pp. 1–14, Feb. 2019.

[16] J. Thomas, J. B. Hall, R. Bliss, and T. M. Guess, ‘‘Comparison of Azure
Kinect and optical retroreflective motion capture for kinematic and spa-
tiotemporal evaluation of the sit-to-stand test,’’ Gait Posture, vol. 94,
pp. 153–159, May 2022.

[17] M.Wochatz et al., ‘‘Reliability and validity of the Kinect V2 for the assess-
ment of lower extremity rehabilitation exercises,’’ Gait Posture, vol. 70,
pp. 330–335, May 2019.

[18] S. Springer and G. Yogev Seligmann, ‘‘Validity of the Kinect for
gait assessment: A focused review,’’ Sensors, vol. 16, no. 2, p. 194,
Feb. 2016.

[19] N. Hesse, S. Baumgartner, A. Gut, and H. J. A. van Hedel, ‘‘Concurrent
validity of a custom method for markerless 3D full-body motion tracking
of children and young adults based on a single RGB-D camera,’’ IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 31, pp. 1943–1951, 2023.

VOLUME 12, 2024 587



N. Hesse et al.: Concurrent Validity of Motion Parameters Measured

[20] N. Hesse, S. Pujades, M. J. Black, M. Arens, U. G. Hofmann, and
A. S. Schroeder, ‘‘Learning and tracking the 3D body shape of freely
moving infants fromRGB-D sequences,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 42, no. 10, pp. 2540–2551, Oct. 2020.

[21] G. Pavlakos et al., ‘‘Expressive body capture: 3D hands, face, and body
from a single image,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 10967–10977.

[22] Microsoft. Azure Kinect Body Tracking SDK. Accessed: Nov. 2022.
[Online]. Available: https://docs.microsoft.com/en-us/azure/Kinect-
dk/body-sdk-download

[23] F. Leboeuf, J. Reay, R. Jones, and M. Sangeux, ‘‘The effect on con-
ventional gait model kinematics and kinetics of hip joint centre equa-
tions in adult healthy gait,’’ J. Biomechanics, vol. 87, pp. 167–171,
Apr. 2019.

[24] Orbbec Microsoft Collaboration. Accessed: Jun. 2024. [Online]. Avail-
able: https://www.orbbec.com/microsoft-collaboration/

[25] Orbbec K4ABT. Accessed: Jun. 2024. [Online]. Available: https://
github.com/orbbec/Azure-Kinect-Samples?tab=readme-ov-file#how-to-
quickly-use-femto-bolt-and-femto-mega-to-run-body-tracking

[26] Microsoft. (2022). Azure Kinect Sensor SDK. [Online]. Available:
https://github.com/microsoft/Azure-Kinect-Sensor-SDK

[27] J. Romero, D. Tzionas, and M. J. Black, ‘‘Embodied hands: Modeling
and capturing hands and bodies together,’’ ACM Trans. Graph., vol. 36,
pp. 245:1–245:17, Nov. 2017.

[28] L. Heyrman et al., ‘‘A clinical tool to measure trunk control
in children with cerebral palsy: The trunk control measurement
scale,’’ Res. Develop. Disabilities, vol. 32, no. 6, pp. 2624–2635,
Nov. 2011.

[29] N. Hogan and D. Sternad, ‘‘On rhythmic and discrete movements: Reflec-
tions, definitions and implications for motor control,’’ Exp. Brain Res.,
vol. 181, no. 1, pp. 13–30, Jul. 2007.

[30] S. Balasubramanian, A. Melendez-Calderon, A. Roby-Brami, and
E. Burdet, ‘‘On the analysis of movement smoothness,’’ J. Neuroeng.
Rehabil., vol. 12, no. 1, pp. 1–11, Dec. 2015.

[31] The Captury. Accessed: Nov. 2022. [Online]. Available:
https://captury.com/

[32] S. Harsted, A. Holsgaard-Larsen, L. Hestbæk, E. Boyle, and
H. H. Lauridsen, ‘‘Concurrent validity of lower extremity kinematics
and jump characteristics captured in pre-school children by a markerless
3D motion capture system,’’ Chiropractic Manual Therapies, vol. 27,
no. 1, pp. 1–16, Dec. 2019.

[33] J. L. McGinley, R. Baker, R. Wolfe, and M. E. Morris, ‘‘The reliability
of three-dimensional kinematic gait measurements: A systematic review,’’
Gait Posture, vol. 29, no. 3, pp. 360–369, Apr. 2009.

[34] E. Abbott, A. Campbell, E. Wise, S. J. Tidman, B. S. Lay, and
P. Kent, ‘‘Physiotherapists could detect changes of 12 degrees or more in
single-plane movement when observing forward bending, squat or hand-
over-head: A cross-sectional experiment,’’ Musculoskeletal Sci. Pract.,
vol. 61, Oct. 2022, Art. no. 102594.

[35] F. van Dellen, N. Hesse, and R. Labruyère, ‘‘Markerless motion tracking
to quantify behavioral changes during robot-assisted gait training: A vali-
dation study,’’ Frontiers Robot. AI, vol. 10, Mar. 2023.

[36] M. Keller et al., ‘‘From skin to skeleton: Towards biomechanically accu-
rate 3D digital humans,’’ ACM Trans. Graph., vol. 42, no. 6, pp. 1–12,
Dec. 2023.

588 VOLUME 12, 2024


