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ABSTRACT The objective of this study was to develop a sound recognition-based cardiopulmonary
resuscitation (CPR) training system that is accessible, cost-effective, easy-to-maintain and provides accurate
CPR feedback. Beep-CPR, a novel device with accordion squeakers that emit high-pitched sounds during
compression, was developed. The sounds emitted by Beep-CPR were recorded using a smartphone, seg-
mented into 2-second audio fragments, and then transformed into spectrograms. A total of 6,065 spectrograms
were generated from approximately 40 minutes of audio data, which were then randomly split into training,
validation, and test datasets. Each spectrogram was matched with the depth, rate, and release velocity of the
compression measured at the same time interval by the ZOLL X Series monitor/defibrillator. Deep learning
models utilizing spectrograms as input were trained using transfer learning based on EfficientNet to predict
the depth (Depthmodel), rate (Ratemodel), and release velocity (Recoil model) of compressions. Results: The
mean absolute error (MAE) for the Depth model was 0.30 cm (95% confidence interval [CI]: 0.27–0.33).
The MAE of the Rate model was 3.6/min (95% CI: 3.2–3.9). For the Recoil model, the MAE was 2.3 cm/s
(95% CI: 2.1–2.5). External validation of the models demonstrated acceptable performance across multiple
conditions, including the utilization of a newly-manufactured device, a fatigued device, and evaluation in
an environment with altered spatial dimensions. We have developed a novel sound recognition-based CPR
training system, that accurately measures compression quality during training. Significance: Beep-CPR is
a cost-effective and easy-to-maintain solution that can improve the efficacy of CPR training by facilitating
decentralized at-home training with performance feedback.

INDEX TERMS Cardiopulmonary arrest, sound recognition, deep learning, feedback communications.

I. INTRODUCTION

OUT-OF-HOSPITAL cardiac arrest (OHCA) poses a
major public health burden, having a 1-year survival

rate of only 7.7% [1]. Providing high-quality bystander

cardiopulmonary resuscitation (CPR) is crucial for improving
outcomes in patients with OHCA [2], [3]. Current guidelines
recommend that CPR be performed as quickly as possible
with chest compressions at a depth of 5–6 cm and a rate
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of 100–120/min, ensuring full recoil between compres-
sions [4]. However, despite its critical importance for OHCA
outcomes, the bystander CPR rate remains low [5].
Public CPR training is an effective approach to encour-

age laypersons to perform bystander CPR and to ensure
its proper execution [3]. CPR training plays a crucial role
in empowering individuals with the necessary skills and
knowledge to provide CPR effectively [6]. Historically, CPR
training has primarily involved group sessions conducted at
certified training centers using expensive manikins [7], [8].
However, this approach has several limitations, including
restricted accessibility due to participants’ time constraints,
the finite capacity of group sessions, and the inability to
conduct group training during pandemic situations [9]. For
instance, there were reports of group CPR training ses-
sions being disrupted, postponed, or shortened during the
COVID-19 pandemic [10], [11].

To address the challenges associated with group CPR train-
ing, researchers have proposed several low-cost CPR training
devices that can be used at home [12], [13]. While these
devices offer basic training, they lack quality measurement
capabilities and cannot provide feedback on performance.
One example is the Push Heart, a heart-shaped sponge-
like device that costs around $20 and is easy to carry.
However, this device does not provide feedback on CPR
quality, which resulted in a lower proportion of adequate
compression depth after training compared to training with
feedback [13]. Some CPR training devices emit an audible
‘‘click’’ sound when compressed to a depth of more than
5 cm or when sufficient downward pressure is applied [14],
[15]. However, they cannot differentiate chest compressions
exceeding 6 cm in depth, which is associated with an
increased risk of complications and decreased survival [16],
[17], nor can theymeasure other aspects of compression qual-
ity. Additionally, they do not record a trainee’s performance
throughout a training session, making it impossible to evalu-
ate training efficacy. Nonetheless, these devices have shown
the potential of using sound to assess chest compression
quality.

Recent advancements in deep learning have facilitated
the analysis and classification of various sounds [18], [19].
Hence, the development of a CPR training device capable
of generating distinct sound signals according to different
compression patterns could enable the measurement of chest
compression quality. Leveraging the widespread adoption of
smartphones, the built-in microphone and processing capa-
bilities of these devices can be utilized to capture the audio
signals produced by the CPR training device [20]. These
signals can then be processed using a deep learning model,
and the results can be displayed on the smartphone’s screen
as visual feedback. Therefore, the objective of this study
was to develop and validate a cost-effective and easy-to-
maintain sound recognition-based CPR training system that
can measure compression quality.

FIGURE 1. The Beep-CPR hardware.

II. METHODS
A. DEVELOPMENT of BEEP-CPR HARDWARE
We developed a novel CPR training device called ‘Beep-
CPR’. Beep-CPR is a compressible device that emits a
‘beep’ sound when compressed and released. It was con-
structed using a self-produced holder, a commercially avail-
able spring, and three interconnected accordion squeakers
(Figure 1). Beep-CPR has a diameter of 10 cm, a length
of 20.6 cm, a maximum compression depth of 8 cm, and a
weight of 500 g.

The holder was designed using Inventor 2023 (Autodesk,
Inc., CA, USA) and produced with a 3D printer called
Cubicon Single Plus (HyVISION, Gyeonggido, Republic of
Korea). It consists of an upper and a lower part, which secure
the spring and accordion squeakers. The lower part holds
the base of the spring to prevent it from falling, while the
upper part is fixed on the spring andmakes direct contact with
the trainee’s hands. This design allows force to be transmit-
ted to the spring and accordion squeakers. Additionally, the
lower part of the holder minimizes the horizontal bending of
the spring and accordion squeakers, permitting only vertical
movement.

For the spring, we used a commercially available SWP-A
material spring with a free length of 20 cm, an outer diameter
of 6.5 cm, a wire diameter of 0.55 cm, and a spring constant of
4.68 N/mm. The spring has an inner diameter of 5.4 cm and
is wider than the accordion squeakers, covering them com-
pletely. With a maximum contraction of 14.1 cm, the desired
maximum compression depth of 8 cm can be achieved.

Three accordion squeakers were connected together and
placed inside the spring, secured to both the upper and lower
parts of the holder. When the trainee places their hands on
the upper part of the holder and presses it, the spring and
accordion squeakers are compressed vertically. As a result,
the accordion squeakers produce a distinct, loud, high-pitched
‘beep’ sound when they are compressed or released.
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B. DATA ACQUISITION AND POST-PROCESSING
The ZOLL X Series monitor/defibrillator (ZOLL Medical
Corporation, MA, USA), equipped with Real CPR Help
technology, was used to acquire compression data [21].
The ZOLL CPR-D padz (ZOLL Medical Corporation, MA,
USA), connected to the device was placed on the upper holder
of the Beep-CPR.

The researchers performed compressions on Beep-CPR
with the ZOLL CPR-D padz attached in a closed room
(3.85 m × 3.35 m × 2.60 m). A Galaxy Note 20 smart-
phone (Samsung, Gyeonggido, Republic of Korea) was
placed within 1 m of the Beep-CPR device and was used
to record the ‘beep’ sounds produced during Beep-CPR
compressions using its built-in microphone. To obtain com-
pression data of diverse depths and rates, we followed a pre-
planned data collection schedule with different target depths
(3–5, 5–6, and 6–8 cm) and rates (70–100, 100–120, and
120–150/min), which were determined according to a pre-
vious study (Supplementary Table 1) [22]. The compression
data measured by the ZOLL X Series monitor/defibrillator
was synchronized with the Beep-CPR sounds recorded by the
smartphone using time-based synchronization. This synchro-
nization was initiated by three consecutive compressions on
the Beep-CPR at the start of each session, which served as a
reference point. These initial compressions were followed by
a brief pause. Subsequent compressions were then performed
according to the data collection schedule. The investigators
compressing the Beep-CPR observed the ZOLL X Series
monitor/defibrillator, which displayed the depth and rate of
the compressions, and attempted to adhere to the target depth
and rate. Compression data that did not meet the targets were
not discarded but were also utilized.Wewere not able to apply
a similar process to acquire data with diverse compression
release velocities because release velocity is not displayed
on the monitor. After the experiment, data for each com-
pression’s depth, rate, release velocity, and timestamp were
retrieved from the ZOLLX Series monitor/defibrillator. After
the experiment, data on compression depth, rate, and recoil
velocity, along with the timestamp for each compression,
can be extracted via USB from the ZOLL X Series mon-
itor/defibrillator. We also recorded the ambient sounds of
the room without Beep-CPR compressions, which included
talking, traffic, and music. These ambient sounds were used
to train the model to differentiate noise from Beep-CPR
compressions, preventing the model from making erroneous
predictions when there were no compressions.

We extracted the raw audio files recorded during
Beep-CPR compressions with a sampling rate of 10,000 Hz
and segmented them into 2-second audio fragments using
a sliding window of 0.4 seconds. Each 2-second audio
fragment was then transformed into a spectrogram using
the short-time Fourier transform method. Subsequently, the
portion of the spectrogram corresponding to frequencies
less than 512 Hz was removed, and the spectrogram was
reshaped to (224, 224, 3) for (time, frequency, RGB channel).
Since the frequency of the sound emitted by Beep-CPR was

FIGURE 2. Spectrogram demonstrating chest compression quality.

high-pitched around 1,000 Hz, this process aimed to remove
the effect of low-frequency noise below 500 Hz, including
speech [23]. Each spectrogram was matched with the depth,
rate, and release velocity measured by the ZOLL X Series
monitor/defibrillator for the latest compression that occurred
during the time window of the corresponding spectrogram
(Figure 2). If there was no compression matched to a spectro-
gram, then the spectrogram was labeled as ‘no compression’.

C. DEVELOPMENT of DEEP LEARNING MODELS
A hierarchical structure was employed to classify spectro-
grams and assess the quality of Beep-CPR compressions.
First, we developed a deep learning model (Beep model) to
determine the presence of Beep-CPR compressions (com-
pression vs. no compression) in a spectrogram. The Beep
model used the architecture of ‘‘EfficientNetV2B0’’ except
for the last layer, which was replaced by a global average
pooling layer followed by a fully connected layer with a
sigmoid activation function [24]. We applied transfer learn-
ing, in which the pretrained weights of ‘‘EfficientNetV2B0’’
were used and all its layers were frozen during the training
of the Beep model. If a spectrogram was classified as ‘‘no
compression,’’ no further steps were taken. If a spectrogram
was classified as ‘‘compression,’’ we moved on to the second
step to predict the depth, rate, and release velocity of the com-
pression. Three separate deep learning regressionmodels, one
for predicting compression depth (Depth model), another for
predicting compression rate (Rate model), and the last for
predicting release velocity (Recoil model), were developed.
To develop theDepth, Rate, andRecoil models, we performed
fine-tuning based on ‘‘EfficientNetV2B0’’. The last layer was
removed from the ‘‘EfficientNetV2B0’’ architecture, and the
remaining layers were connected to a global average pooling
layer, followed by two fully connected hidden layers with a
rectified linear unit activation function and a fully connected
layer with a linear activation function. Only the weights of the
last 10 layers of the models were trained, while the weights
of the remaining layers were frozen.
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The total dataset of spectrograms was randomly split into
training, validation, and test datasets at a ratio of 8:1:1. The
deep learning models were trained using the training set with
a learning rate of 0.001 for 50 epochs. Hyperparameter tuning
was performed using the hyperband tuner in the validation set,
with the number of nodes in the fully connected hidden layers
of the models as the hyperparameters [25]. The hyperparame-
ter tuning results for each model are shown in Supplementary
Table 2.

D. CORRELATION BETWEEN SOUND FREQUENCY AND
INSTANTANEOUS VELOCITY in BEEP-CPR COMPRESSIONS
The correlation between the frequency of the sound emitted
by Beep-CPR and the instantaneous velocity during com-
pressions was analyzed. The vertical acceleration of the
Beep-CPR upper holder was measured using an accelerom-
eter 805M1-0020 (Measurement Specialties Inc., Virginia,
USA), and the velocity was calculated by integrating themea-
sured acceleration. The sampling rate was 100 Hz. Sound and
acceleration data were collected during 10 compressions at
random depths and speeds. Pearson’s correlation coefficient
was used to evaluate the correlation between the instanta-
neous compression velocity and the fundamental frequency
of the emitted sound.

E. STATISTICAL ANALYSIS
The performance of Beep, Depth, Rate, and Recoil models
was evaluated on the test set. The Beep model’s accuracy at
classifying a spectrogram as ‘compression’ or ‘no compres-
sion’ was assessed. The Depth, Rate, and Recoil models were
evaluated using the mean absolute error (MAE) and Bland-
Altman plots. Intraclass correlation coefficient (ICC) using
a two-way mixed model was also obtained to assess agree-
ment between the actual and predicted values. The agreement
was interpreted as slight, fair, moderate, substantial, and
almost perfect if the ICC was in the range of 0.01–0.20,
0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81–0.99, respec-
tively [26]. We categorized the regression output of the Depth
model into 3 depth categories (<5, 5–6, >6 cm), the Rate
model into 3 rate categories (<100, 100–120,>120/min), and
the Recoil model into 2 categories (<40, >40 cm/s) [27],
considering the target range for recommendation. Classifi-
cation accuracies of the models were evaluated according to
categorizations.

Continuous variables were reported in terms of means and
standard deviations, while categorical variables were reported
as numbers and proportions. Confidence intervals (CIs) were
calculated by bootstrapping 1,000 samples. Model develop-
ment and statistical analysis were performed using Python
version 3.8 (Python Software Foundation, Wilmington, DE,
USA) and TensorFlow version 2.10.0.

F. EXTERNAL VALIDATION of the BEEP-CPR SYSTEM
To assess the generalizability of the Beep-CPR system,
four types of external validation were conducted. First,

TABLE 1. Number of spectrograms in each dataset.

evaluation of a newly-manufactured device. Second, vali-
dation of a fatigued device after subjecting it to 10,000
compressions via a mechanical compressor. Third, evaluation
using a spring with different stiffness (5.66 N/mm). Finally,
testing in an environment with altered spatial dimensions
(4.75 m × 4.55 m × 2.60 m). In each setting, 3 minutes of
compression data were collected at various depths and rates.
The models’ performance was further assessed following
linear calibration. This calibration was based on the mean
difference between actual and predicted values for the first
five compressions.

G. ETHICS STATEMENT
Institutional Review Board approval was not needed because
this study did not involve any human subjects.

III. RESULTS
A dataset comprising 6,065 spectrograms was generated
from approximately 40 minutes of audio data. The dataset
was randomly split into training (N = 4,582), validation
(N = 607), and test (N = 606) datasets. The distribution of
compression depth, rate, and release velocity in each dataset
can be found in Table 1. Although the preplanned schedule
enabled the acquisition of a dataset with varying compres-
sion depth and rate, the dataset exhibited a slight imbalance
due to the investigators’ inability to consistently achieve the
intended target depth and rate during compressions. The fun-
damental frequency of the sound emitted by Beep-CPR was
linearly correlated (R2

= 0.86) with the instantaneous com-
pression velocity (Figure 3), providing evidence for the use
of Beep-CPR sound spectrograms in predicting compression
depth, rate, and recoil.

The Beep model showed 100% accuracy in discriminating
‘‘compression’’ and ‘‘no compression’’ spectrograms on the
test dataset. The performances of the Depth, Rate, and Recoil
models were assessed using the 497 ‘‘compression’’ spectro-
grams in the test dataset. The MAE of the Depth model was
0.30 cm (95% CI: 0.27–0.33). The predictions by the Depth
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FIGURE 3. Correlation plot between fundamental frequency of sound and
instantaneous compression velocity.

FIGURE 4. Correlation plots and Bland-Altman plots for predicted and
actual values of compression depth, rate, and release velocity.

model and the actual compression depths showed an almost
perfect (ICC = 0.95) agreement (Figure 4a and b). While the
Depthmodel’s classification accuracywas 81.7%,most of the
misclassification occurred on the classification boundaries
(Table 2). The MAE of the Rate model was 3.6/min (95%
CI: 3.2–3.9). The Rate model predictions and the actual com-
pression rates also showed an almost perfect (ICC = 0.98)
agreement (Figure 4c, 4d). The classification accuracy of the
Rate model was 95.6% (Table 3). For the Recoil model, the
MAE was 2.3 cm/s (95% CI: 2.1–2.5) with an almost perfect
(ICC= 0.95) agreement between predicted and actual release
velocity (Figure 4e, 4f, and Table 4).
The Beep model accurately predicted 1,896 (98.9%)

among the 1,917 spectrograms in the overall external

TABLE 2. Classification accuracy of the depth model.

TABLE 3. Classification accuracy of the rate model.

validation dataset (Supplementary Table 3). When vali-
dated using a newly-manufactured device, a fatigued device,
a spring with different stiffness, and in an environment with
altered spatial dimensions, the MAE of the Depth model
was 0.71 cm (95% CI: 0.66–0.76), 0.81 cm (95% CI: 0.76–
0.87), 0.96 cm (95% CI: 0.92–1.01) and 0.79 cm (95% CI:
0.74–0.85) respectively. Substantial agreement (ICC rang-
ing from 0.67 to 0.72) was found between the predicted
and actual depths in all settings except when validating
with a spring of different stiffness (ICC = 0.14). The
MAEs of the Rate model in the same order were 8.7/min
(95% CI: 8.0–9.5), 11.8/min (95% CI: 11.2–12.4), 9.2/min
(95% CI: 8.7–9.8) and 10.2/min (95% CI: 9.5–11.0). The
predicted and actual rates demonstrated substantial to almost
perfect agreement (ICC ranging from 0.69 to 0.83). The
MAEs of the Recoil model in the same order were 8.9 cm/s
(95% CI: 8.6–9.2), 14.3 cm/s (95% CI: 13.6–14.9), 6.4 cm/s
(95% CI: 6.0–6.7) and 9.5 cm/s (95% CI: 9.1–9.8). The pre-
dicted and actual release velocities demonstrated substantial
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TABLE 4. Classification accuracy of the recoil model.

(ICC ranging from 0.61 to 0.80) agreement (Supplementary
Figures 1-4).

Calibration improved the performance of the models in
external validations, except in the setting with a spring of
different stiffness. The MAEs for the Depth, Rate, and Recoil
models were reduced to 0.51–0.58 cm, 6.4–9.1/min, and
3.3–7.3 cm/s, respectively.

IV. DISCUSSION
In this study, we developed a sound recognition-based CPR
training system named Beep-CPR. Beep-CPR assesses the
quality of chest compressions by analyzing the sounds emit-
ted from accordion squeakers inside the device. The audio
data recorded with a smartphone is first converted into a
spectrogram. Deep learning is then applied to this spectro-
gram to create algorithms that predict compression depth,
rate, and release velocity. The predicted values from the
Depth, Rate, and Recoil models exhibited almost perfect
agreement with the actual values in the internal validation.
External validation was conducted to assess the generaliz-
ability of the Beep-CPR system. The models demonstrated
acceptable performance when externally validated using a
newly-manufactured device, a fatigued device, and when
evaluated in an environment with altered spatial dimensions.
These results indicate that Beep-CPR accurately measures
chest compression quality and has the potential to be used
for CPR training in diverse settings.

Beep-CPR shows potential for widespread adoption. First.
Beep-CPR is cost effective. Traditional CPR training systems
use various electronic components to measure the quality
of CPR: 1. Sensors for measuring depth, rate, and release
velocity, 2. A microprocessor to converts sensor signals into
numerical values and transmits them to the smart device,
3. A battery for power supply, 4. Wires connecting all the
components. These electronic components make the system
more expensive (Table 5). For example, the Resusci Anne
QCPR manikin (Laerdal Medical, Stavanger, Norway), one
of the most widely used CPR training manikins, can mea-
sure compression depth with less than 1 mm error but costs
more than $2,000 and cannot measure depths greater than
6 cm [28]. However, Beep-CPR only uses inexpensive accor-
dion squeakers to measure CPR quality (Table 5). Second,
it is easy tomaintain. This reduction in electronic components

TABLE 5. Comparison of materials and costs required to measure the
quality of CPR: beep-CPR versus traditional CPR training system.

not only minimizes potential of failure but also simplifies the
overall structure of the device. In the event that a component
does fail, the system’s design ensures that repairs are both
straightforward and efficient. The parts are modular, mean-
ing that individual components can be easily accessed and
replaced without the need for specialized tools or extensive
technical knowledge. This modularity also allows for quick
identification of faulty components, reducing downtime and
ensuring that the device can be returned to operational sta-
tus rapidly. This innovative system holds the potential for
decentralized CPR training, eliminating the need for expen-
sive, difficult-to-repair manikins and overcoming limitations
related to time and space.

Public CPR training plays a crucial role in elevating
bystander CPR rates and enhancing the outcomes of patients
with OHCA. Numerous studies have demonstrated that vari-
ous types of CPR training effectively enhance the knowledge
and willingness of laypersons to administer CPR [29], [30],
[31]. One study showed that a 5% increase in participation in
CPR training courses resulted in a significant 14% increase
in the 30-day survival rate of OHCA patients [3]. Another
study identified associations between county-level CPR train-
ing rates and improvements in good neurological recovery
rates [32]. However, despite its paramount importance, bar-
riers to CPR training, including issues of accessibility and
financial constraints, can hinder the positive impact [33].

Several previous studies also developed low-cost CPR
training devices, but their ability to provide accurate per-
formance feedback was limited. The Push Heart, while
inexpensive, lacks the capability to assess compression qual-
ity. As a result, CPR training using Push Heart resulted in
a lower percentage of adequate compression depth when
compared to training using Little Anne (1.5% vs. 5.5%) [13].
Another study employed toilet paper for CPR training and
found it to be noninferior to traditional CPR training [12].
Similarly, a study utilizing a foam die and a plastic bag found
no difference in CPR performance after 6 months when com-
pared to conventional CPR training [34]. However, despite
their cost-effectiveness and easy-to-maintain, these devices
cannot measure CPR performance or provide feedback - a
significant limitation given the known benefits of feedback
in improving CPR skill acquisition and retention [35].
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We employed sound recognition based on spectrograms
and deep learning to effectively assess CPR quality. To ana-
lyze these sounds effectively, a method inspired by recent
studies in audio signal processing was utilized. These stud-
ies have demonstrated the effectiveness of converting audio
signals into spectrogram images to be used as input into con-
volutional neural network-based models [18], [19], [36]. This
spectrogram-based approach offers three advantages. First,
spectrograms effectively capture both the frequency distribu-
tion and temporal information of the audio signal. Second,
the spectrogram can potentially predict multiple CPR quality
indicators. Compression depth and release velocity can be
estimated from the spectrogram, as these parameters relate to
the instantaneous velocity integrated over time. Additionally,
the compression rate can be determined by analyzing the
time intervals between the high-pitched sounds emitted by the
squeakers, which are visible in the spectrogram. Third, while
deep learning models pretrained on audio data are relatively
scarce, there is an abundance of pretrained models for image
data [37]. By converting audio to spectrograms, these widely
available image-based models can be leveraged for the audio
analysis task.

External validation demonstrated acceptable model per-
formance; however, an increase in prediction errors was
observed. This degradation in accuracy is hypothesized to
be attributed to subtle variations in the acoustic properties
of the squeakers, potentially arising from manufacturing
variability and material fatigue. As with many sensors that
require calibration before use, the process can be adopted
to mitigate these errors. Additionally, errors are expected
to decrease as Beep-CPR manufacturing becomes indus-
trialized and automated. While other aspects of external
validation were acceptable, the Depth model notably under-
performed when predicting compressions using a spring with
different stiffness. Spectrogram analysis revealed substan-
tial differences in the acoustic spectrum compared to the
data from the original springs used for model development.
These spectral differences can be attributed to changes in
the compression wave patterns caused by variations in spring
stiffness. The altered spring properties likely affected the
dynamics of chest compressions, including the speed and
force of compressions and decompressions. Consequently,
these mechanical changes are assumed to affect the acoustic
properties of the squeakers, resulting in sound signatures
that diverged significantly from those in the original training
dataset.

This study has several limitations that need to be addressed.
First, sound was recorded using only a single smartphone
model. Second, chest compressions were performed by
only two researchers, limiting the variety of compression
patterns reflected in the data. Third, the Beep-CPR is
restricted to use with springs of varying stiffness. Since
patients have various thorax resistances, CPR training using
a single type of spring may be insufficient for trainees
to learn how to perform high-quality CPR for diverse
patients.

In our future research, we plan to develop a more robust
Beep-CPR system by collecting diverse data from various
training environments, diverse trainees, multiple smartphone
models, springs with varying stiffness, and different levels
of background noise. This comprehensive approach to data
collection is expected to enhance the model’s adaptability
and performance across a wider spectrum of real-world con-
ditions. A randomized trial is planned to evaluate the effec-
tiveness, learner experience, and engagement of Beep-CPR
training compared to traditional CPR training in improving
trainees’ CPR knowledge and skills.

V. CONCLUSION
We developed a novel sound recognition-based CPR training
system capable of accurately measuring chest compression
quality during training. The proposed system is cost-effective
and easily repairable, and it has the potential to enhance
the efficacy of CPR training by facilitating decentralized
at-home training and providing feedback on CPR perfor-
mance. By translating this engineering methodology into
real-world use for both community and clinical settings,
we look forward to improving outcomes for OHCA patients.
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