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Abstract—Real hyperspectral images (HSIs) are ineluctably
contaminated by diverse types of noise, which severely limits
the image usability. Recently, transfer learning has been intro-
duced in hyperspectral denoising networks to improve model
generalizability. However, the current frameworks often rely on
image priors and struggle to retain the fidelity of background
information. In this article, an unsupervised adaptation learning
(UAL)-based hyperspectral denoising network (UALHDN) is
proposed to address these issues. The core idea is first learning a
general image prior for most HSIs, and then adapting it to a real
HSI by learning the deep priors and maintaining background
consistency, without introducing hand-crafted priors. Following
this notion, a spatial–spectral residual denoiser, a global modeling
discriminator, and a hyperspectral discrete representation learn-
ing scheme are introduced in the UALHDN framework, and are
employed across two learning stages. First, the denoiser and the
discriminator are pretrained using synthetic noisy-clean ground-
based HSI pairs. Subsequently, the denoiser is further fine-tuned
on the real multiplatform HSI according to a spatial–spectral
consistency constraint and a background consistency loss in an
unsupervised manner. A hyperspectral discrete representation
learning scheme is also designed in the fine-tuning stage to
extract semantic features and estimate noise-free components,
exploring the deep priors specific for real HSIs. The applicability
and generalizability of the proposed UALHDN framework were
verified through the experiments on real HSIs from various
platforms and sensors, including unmanned aerial vehicle-borne,
airborne, spaceborne, and Martian datasets. The UAL denoising
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scheme shows a superior denoising ability when compared with
the state-of-the-art hyperspectral denoisers.

Index Terms—Convolutional neural network (CNN), hybrid
noise removal, hyperspectral images (HSIs), unsupervised adap-
tation learning (UAL).

I. INTRODUCTION

W ITH the discriminative power of spectra, hyperspectral
data acquired from multiple platforms (e.g., unmanned

aerial vehicles (UAVs), and airborne and spaceborne plat-
forms) have extensive applications, such as target tracking [1]
and anomaly detection [2]. Nevertheless, on account of the
drawbacks of hyperspectral sensors, hyperspectral images
(HSIs) are ineluctably corrupted by diverse types of instru-
ment noise, including quantization noise, thermal noise, and
shot noise [3]. Moreover, poor atmospheric conditions are
likely to induce noise, and imperfect calibration is prone to
causing stripe noise in the preprocessing [4], particularly for
spaceborne hyperspectral sensors. This complex degradation
severely reduces the image quality and further limits image
usability in real applications. Therefore, it is vital to remove
the hybrid noise in real HSIs and restore the latent noise-free
HSIs from the noisy observations.

When faced with real HSI denoising, a robust HSI denoiser
should have the following desirable attributes: 1) effectiveness
and efficiency and 2) powerful generalizability for HSIs
obtained from any platform. Such a denoiser should be able
to be directly used to restore high-quality images when the
noise pattern of the HSIs is known. When the noise pattern
is complicated and unknown, as is often the case with real
multiplatform HSIs, the denoiser should still be able to
produce robust denoising results.

However, the state-of-the-art HSI denoising methods are
still limited in effectiveness, efficiency, and generalizability.
The HSI denoising methods can be classified as fol-
lows: filtering-based methods, optimization-based methods,
and learning-based methods. The filtering-based methods,
such as the wavelet-Fourier adaptive filter (WFAF) [5] and
multidimensional Wiener filtering (MWF) [6], can restrain
noise to some degree, but they are intrinsically restricted due
to the fixed transform basis. The optimization-based methods,
such as low-rank matrix recovery (LRMR) [7], are effective in
real HSI denoising with unknown noise patterns, but they do
suffer from several drawbacks. On the one hand, image priors
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may not be compatible with complex image structure repre-
sentation and cannot easily model multitype hybrid noise. On
the other hand, when using the optimization-based methods,
it is necessary to empirically fine-tune the hyperparameters
for each HSI, due to the sensitivity of the model parameters.
However, this is a waste of computational time and resources
from the perspective of practical applications. Last but not
least, an excellent denoising performance typically requires a
time-consuming optimization process.

Deep learning has been applied to the HSI denoising
problem due to its powerful nonlinear representation ability
and high-computational efficiency [8]. Generally speaking,
learning-based methods are aimed at learning the mapping
from the input noisy observation to the matching high-quality
image in a supervised manner, and the denoising performance
is highly reliant on numerous noisy-clean image pairs for the
model training. Unfortunately, real noisy-clean image pairs
are often unavailable for airborne/spaceborne hyperspectral
remote sensing platforms. An alternative solution is to train
a network with synthetic noisy-clean image pairs, which are
generated using ground-based/airborne high-quality HSIs, and
the multitype hybrid noise in airborne/spaceborne degraded
HSIs is simulated. However, on account of the innumerable
imaging scenes, real HSIs tend to cover complex structures
and varied terrain, resulting in an extremely complicated
intrinsic prior. Moreover, the unknown degradation in the
imaging procedure often induces complex hybrid noise in the
observations. Therefore, most of the existing networks trained
with synthetic data are limited in generalizability, and often fail
to obtain a satisfactory denoising performance when migrated
to real data.

Recently, several unsupervised deep denoisers have been
designed for the above issues, for example, Stein’s unbi-
ased risk estimate (SURE) [9], subspace representation deep
prior [10], and low-rank deep prior [11], [12]. Denoisers can
be trained directly on unpaired real data in a self-supervised
manner. Despite the advancement, model performance could
be limited when noise patterns diverge from the predefined
noise assumptions or the constructed priors of these models.
Additionally, training models on each real HSI is time-
consuming without a reasonable strategy in real applications.
Another way to improve model generalizability is to introduce
transfer learning in denoising tasks [13], [14], [15]. This also
involves unsupervised learning on real HSIs, often relying
on specific noise assumptions [16] or specific image priors
like total variation (TV) prior [14] for model fine-tuning.
Although it can improve computational efficiency compared to
the self-supervised denoisers, the limitations related to noise
assumptions and priors persist in the current transfer learning
denoising frameworks. They are less effective in exploring the
deep priors specific to real HSIs with complex noise patterns
and in maintaining the fidelity of background information
during denoising.

To overcome the defects of the existing transfer learning
denoising approaches, an innovative unsupervised adapta-
tion learning (UAL)-based hyperspectral transfer learning
denoising network (UALHDN) is proposed in this article
for multiplatform HSI denoising. The proposed model is

first pretrained to learn an image prior suitable for most
HSIs, and is next adapted to a certain real HSI by learning
the deep priors and retaining background consistency in an
unsupervised manner. Compared with most of learning-based
denoising methods, the proposed model can generalize well
on real multiplatform HSIs, based on easily accessible ground-
based data and one or several real HSIs, without the need to
introduce image priors and extra supervisory data. Following
this idea, the UALHDN framework incorporates a spatial–
spectral residual denoiser, a global modeling discriminator, and
a hyperspectral discrete representation learning scheme, and
are employed across two learning stages, that is, a synthetic
image pretraining stage and a real image adaptation denoising
stage. In the synthetic image pretraining stage, the model is
pretrained on synthetic noisy-clean ground-based HSI pairs in
a supervised manner. Therein, the denoiser is used for general
HSI denoising, and the discriminator is used for determining
whether a denoised HSI is clean or not. Subsequently, the
denoiser is further fine-tuned on real satellite/airborne HSIs
according to the designed UAL loss function. The UAL loss
comprises a spatial–spectral consistency constraint coupled
with a background consistency loss (BC). It aims to both
minimize the loss of essential information in denoised results
and maintain background consistency between real HSIs and
their estimated noise-free components. Furthermore, the hyper-
spectral discrete representation learning scheme is designed
to exclude noise components, extract semantic features, and
estimate noise-free components of real HSIs. Self-construction
and cross-construction constraints are employed in the unsu-
pervised learning scheme to learn the specific priors of real
HSIs. Consequently, the denoiser can maintain high fidelity
of background information and learn a more image-specific
deep prior, effectively increasing the generalizability of the
model. To demonstrate the effectiveness of the proposed model
on real multiplatform HSIs, UALHDN was compared with
the state-of-the-art HSI denoising methods on HSIs obtained
from various platforms and sensors, including the airborne
Washington DC Mall dataset, the WHU-Hi-Baoxie UAV
dataset, a Chinese SPARK hyperspectral satellite dataset, and
a Martian dataset from the compact reconnaissance imaging
spectrometer for Mars (CRISM). The results clearly validate
the superiority of UALHDN in the denoising performance.
Furthermore, the ablation experiments on various datasets
prove that the strategy of UAL can effectively increase the
generalizability of the model on real HSIs. Moreover, the
model used to perform UAL on a given noisy HSI was found
to generalize well without UAL on other HSIs acquired under
similar circumstances via the same sensor. Therefore, the
running time of the UALHDN model can be greatly improved
by using only part of the real data in the fine-tuning stage. On
the whole, the UALHDN framework shows great potential for
real multiplatform HSI denoising applications.

The main contributions of this article can be outlined as
follows.

1) A novel UAL-based hyperspectral transfer learning
denoising framework is proposed for real multiplat-
form HSI denoising. The proposed framework first
learns a general image prior for most HSIs in the
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pretraining stage, and then adapts it to a real HSI by
learning the deep priors and maintaining background
consistency, without introducing hand-crafted priors. A
spatial–spectral consistency constraint and a BC are
designed in the fine-tuning stage to minimize the loss
of essential information while keeping the background
fidelity between real HSIs and their estimated noise-free
components.

2) An innovative hyperspectral discrete representation
learning scheme is designed in the fine-tuning stage
to exclude noise components, extract semantic fea-
tures, and estimate noise-free components of real HSIs.
The scheme incorporates self-construction and cross-
construction constraints into the unsupervised learning
scheme for noisy and clean bands of HSIs, which
facilitates the learning of specific deep priors of real
data.

3) The UALHDN framework achieves exceptional
performance and surpasses the state-of-the-art denoising
methods on a variety of HSIs obtained from different
platforms and sensors, including UAV-borne, airborne,
spaceborne, and Martian datasets, demonstrating
its effectiveness and broad applicability for real
multiplatform HSI denoising.

The remainder of this article is organized as follows. The
related works are introduced in Section II. The proposed model
is depicted in Section III. The experimental results and a
discussion are provided in Section IV. Finally, our conclusions
are summarized in Section V.

II. RELATED WORK

Many learning-based approaches have been proposed
over the last few decades. Therein, some unsupervised
methods have been developed based on transfer learn-
ing [13], [14], [15] or self-supervised learning [9], [10], [11],
[12], [17], [18], [19]. In this section, the two major categories
of HSI denoising methods and transfer learning theory are
briefly introduced.

A. Optimization-Based Methods

Optimization-based methods employ a reasonable prior
for HSIs and evaluate the latent noise-free image from the
noisy observation through an optimization framework [7]. The
inverse optimization problem is well posed by specific priors,
such as TV, sparse representation, and low-rank priors. By
considering the rich spectral information of HSIs, the TV
prior has been applied in HSI denoising [20], [21]. From
the perspective of sparse representation, a noise-free HSI
is supposed to be encoded by a sparse linear combination
of atoms from the over-complete dictionary. Based on this
prior, the spatial–spectral sparse representation model [22] was
developed for HSI noise removal. From the standpoint of the
low-rank prior, a noise-free high-dimensional HSI is located in
a low-dimensional subspace, on account of the highly related
spectral-spatial characteristics of HSIs. Based on the low-
rank conception, 2-D LRMR models [7], [23], [24], [25] have
been developed for HSI noise removal tasks. Viewing HSIs

as tensors, 3-D low-rank tensor approximation models [26],
[27], [28], [29], [30], [31] have been introduced to exploit
both the spectral correlation and spatial geometrical features.
In addition, multiple priors can be combined to obtain more
competitive results [32], [33]. However, image priors may not
be suitable for complex image structures and restrict the model
spatial–spectral representation. In addition, the optimization-
based methods suffer from a high-computational burden due
to the time-consuming optimization process.

B. Learning-Based Methods

As an alternative to manually designing priors for HSIs, the
learning-based methods are aimed at automatically learning
general image priors from a number of noisy-clean training
pairs in a supervised manner via an end-to-end network.
They then restore the latent clean HSIs through a mapping
from the noisy observation to the corresponding high-quality
image [8]. By considering the spectral consistency of HSIs,
the convolutional neural network (CNN)-based HSI denoising
method (HSI-DeNet) [34] and the combined spatial–spectral
deep CNN model [35] utilize multichannel 2-D convolution to
combine neighboring spectral bands. Based on attention the-
ory, a 3-D attention denoising network [36] was developed to
consider global spatial–spectral correlation. Recurrent neural
networks have also been utilized to extract the global spectral
correlation of HSIs [37], [38]. To characterize the physical
constraint and extract deep priors for HSIs, some methods have
integrated various image priors into CNNs [39], [40], [41],
[42]. In addition, Transformer models have been utilized in
hyperspectral denoising [18], [43], [44] to effectively capture
intrinsic global spatial–spectral correlations.

Nevertheless, due to these methods being highly reliant
on lots of noisy-clean image pairs for the model training,
and the absence of image pairs for real HSIs, most of the
learning-based methods generate synthetic image pairs by
simulating multitype hybrid noise and adding it to clean
ground-based/airborne HSIs. Consequently, the structural dif-
ferences and degradation discrepancies between synthetic and
real HSIs cause models trained with synthetic data to have
limited generalizability on real HSIs. Based on the assumption
that CNNs are more likely to converge with clean images
rather than noisy images, a deep hyperspectral prior (DHP)
method [19] was proposed to train a CNN without paired
HSIs. Unsupervised training can also be achieved based on
SURE [9]. The combination of supervised learning and SURE
has been shown to improve the denoising performance on real
data [18]. However, the Gaussian noise distribution assumption
in these methods limits their effectiveness in hybrid noise
removal. By considering adjacent bands as independent noisy
images with the same background information, the two-stage
HSI denoising network model [15] achieves fine-tuning on real
data based on noise-to-noise learning [16]. Moreover, a self-
supervised denoising scheme [17] was developed to generate
noisy-clean image pairs from real HSIs by extracting real
noise samples from noisy spectral bands and then adding the
noise to the other clean bands. Unfortunately, these models
tend to consider band-dependent noise and stripe noise with
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fixed patterns as the background components. A deep external-
internal learning scheme [14] was proposed for noise removal
of ground-based datasets, employing adversarial learning to
explore an authentic deep prior and utilizes a TV prior to
fine-tune the network on real data. low-rank prior [11], [12]
and subspace representation [10] can also be integrated into
self-supervised denoising schemes. However, the image priors
might not always be suitable for cases with various noise pat-
terns and can restrict the spatial–spectral representation of the
model. The effectiveness of the model for real multiplatform
HSIs with more complex noise patterns also remains to be
verified. In addition, a real ground-based dataset [45] with
paired noisy and clean HSIs was collected via controlling the
exposure time of the camera. But the noise of hyperspectral
remote sensing images is more complex in type due to the
difference in the imaging processes of the various sensors
and the influence of the atmosphere. As a result, this dataset
provides very limited guidance for hybrid noise removal in
hyperspectral remote sensing images.

C. Transfer Learning

Transfer learning is aimed at transferring knowledge learned
from the source domain to the target domain [46]. For tasks
with limited real labels, for example, biomedical tasks and
denoising tasks, there is an urgent need for unsupervised
transfer learning. Transfer learning can be conducted by
reusing a portion of a pretrained network and fine-tuning
it with a small set of labeled real data [47]. In addition,
multiscale convolutional sparse coding [48] was proposed for
biomedical classification and provides an unsupervised way
to transfer learned knowledge. Another approach involves
designing a domain classifier [49] to distinguish whether
the extracted features originate from the source or target
domain. The feature extractor can then be trained to reduce the
domain discrepancy by maximizing the domain classification
loss. This mode resembles the generative adversarial networks
(GANs) [50], where a discriminator distinguishes the input.
Following this idea, models trained on synthetic data can be
adapted to real data by adversarial learning in an unsupervised
manner [51]. Denoising also suffers from domain shift, due to
the degradation discrepancies and intrinsic features between
synthetic and real data. For this issue, adversarial learning has
been utilized in time-of-flight data denoising [13] to perform
unsupervised domain adaptation from synthetic to real data.
It is also possible to fine-tune a denoising network on real
ground-based data by a spatial–spectral constraint and TV
prior [14]. In addition, when faced with independent noise,
fine-tuning on real data can be achieved by the noise-to-noise
strategy of adjacent bands [15]. It is worth noting that the
above models tend to introduce image priors and struggle to
retain the fidelity of background information.

D. Discrete Representation

Discrete representation involves transforming data into
distinct and comprehensible components for specific appli-
cations. This technique is particularly useful in tasks like
image restoration and enhancement, where it aids in isolating

elements of degradation factors from main contents. For
instance, distinct encoding methods can differentiate between
the core content of blurred images and the corresponding
blurring attributes [52]. Likewise, in images affected by rain,
this approach can distinguish the primary background from
extraneous elements like rain patterns [53]. Discrete represen-
tation also facilitates the differentiation between information
specific to sensors and components inherent to scenes in image
fusion [54]. Furthermore, this technique proves beneficial in
separating noise elements from observations using unpaired
natural images [55].

This study aims to integrate the benefits of discrete rep-
resentation into the hyperspectral transfer learning denoising
framework. A hyperspectral discrete representation learning
scheme is designed during fine-tuning stage to extract semantic
features and estimate noise-free components, exploring the
specific deep priors of real HSIs in an unsupervised manner.
In addition, a spatial–spectral consistency constraint and a BC
are designed in the fine-tuning stage to minimize the loss
of essential information while maintaining the background
consistency between real HSIs and their estimated noise-free
components.

III. UNSUPERVISED ADAPTATION LEARNING

HYPERSPECTRAL DENOISING NETWORK

The UALHDN framework is designed to retain the fidelity
of background information and learn deep priors of real HSIs.
As shown in Fig. 1, the UALHDN framework is employed
across two learning stages: 1) a synthetic image pretraining
stage and 2) a real image adaptation denoising stage. Full
details are presented below.

A. Problem Formulation

HSIs are inevitably contaminated by diverse types of noise,
including common ones, such as Gaussian noise and stripe
noise [7]. In this article, all the kinds of noise are empirically
assumed to be additive components [22]. The basic model of
HSI degradation is then defined as

Y = X + N (1)

where Y denotes a detected low-quality HSI composed of B
spectral bands with the height of H and the width of W, X
represents the latent high-quality HSI, and N represents all the
additive noise. The ultimate target of the HSI denoising task
is to recover the latent noise-free HSI X from the low-quality
HSI Y . The optimization-based denoising methods are aimed
at solving the following problem:

̂X = argmin
X

�(Y − X) + λ ∗ R(X) (2)

where �(Y−X) represents the data fidelity term, R(X) denotes
the regularization term related to the image priors on X, and
λ controls the balance between the data fidelity term and the
regularization term.

B. Unsupervised Adaptation Learning

Instead of introducing image priors, as in (2), a deep CNN
is employed to directly model the noise pattern of X and learn
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Fig. 1. Overview of the UALHDN framework.

the prior during the network training. To learn a general prior
for most HSIs and adapt to a real noisy HSI, The UALHDN
framework is achieved in two stages: 1) a synthetic image
pretraining stage and 2) a real image adaptation denoising
stage. Detailed descriptions of these stages are presented in
the following sections.

1) Synthetic Image Pretraining: The UALHDN model is
first pretrained on synthetic image pairs in a supervised manner
to obtain a general image prior. In this stage, the discriminator
is trained to determine whether the denoised HSI appears clean
and natural [14]. It aims to solve the following problem:

̂�D = argmin
�D

L+(X) + L−(Y) (3)

where �D represents the trainable parameters of the discrim-
inator, L+(X) denotes the clean HSI loss, and L−(Y) denotes
the denoised HSI loss. When a clean HSI is input into the
discriminator, the result should be clean. L+(X) is then defined
as follows:

L+(X) = 1

n

n
∑

i=1

‖D(Xi;�D) − 1‖2
2 (4)

where Xi denotes the target clean HSI, D(·;�D) denotes the
discriminator network parameterized by �D, and n represents
the number of batches. Similarly, the result can be expected not
to be clean if the input is the denoised HSI from the denoiser
during discriminator training. Therefore, L−(Y) is designed as
follows:

L−(Y) = 1

n

n
∑

i=1

‖D(σ (Yi;�σ );�D)‖2
2 (5)

where Yi denotes the observed HSI in the synthetic training
pairs and σ(·;�σ ) denotes the denoiser module parameter-
ized by �G . On the other hand, the denoiser is trained to
achieve general HSI denoising and aims to solve the following
problem:

̂�σ = argmin
�σ

L2(X, Y) + λ1 ∗ LADV(Y) (6)

where L2(X, Y) denotes the mean-squared error (MSE)
between the output of the denoiser and the target clean HSI,

LADV(Y) represents the adversarial loss, and λ1 controls the
balance between the two terms. The pixelwise MSE loss
L2(X, Y) is as follows:

L2(X, Y) = 1

n

n
∑

i=1

‖σ(Yi;�σ ) − Xi‖2
2. (7)

The output denoising results of the denoiser are expected
to be clean HSIs when they are input into the discriminator.
Therefore, the adversarial loss LADV(Y) is as follows:

LADV(Y) = 1

n

n
∑

i=1

‖D(σ (Yi;�σ );�D) − 1‖2
2. (8)

2) Real Image Adaptation Denoising: To learn the deep
prior and retain background consistency for a specific real HSI,
it is crucial to estimate the background information and fine-
tune the denoiser parameters in an unsupervised manner. To
achieve this, the pretrained parameters of the denoiser �G are
further updated according to the designed UAL loss on the
real HSI. The UAL loss function consists of a spatial–spectral
consistency constraint and a BC, as follows:

̂�σ = argmin
�σ

LSSC
(

Y′) + λ2 ∗ LBC
(

Y′) (9)

where LSSC(Y ′) denotes the spatial–spectral consistency con-
straint, LBC(Y ′) denotes the BC on the real HSIs, and λ2
controls the balance between the two terms. LSSC(Y ′) is
calculated as follows:

LSSC
(

Y′) = 1

n

n
∑

i=1

∥

∥σ
(

Y′
i;�σ

) − Y′′
i
∥

∥

1 (10)

where Y ′
i denotes the real HSI. The constraint of spatial–

spectral consistency is employed to minimize the loss of
critical information throughout the denoising process. It is
important to note that the choice of loss function for the
spatial–spectral consistency constraint differs from the recon-
struction term used in the pretraining stage. On the one
hand, compared to l1-norm loss, the gradient of l2-norm loss
decreases as the error decreases and large errors are heavily
penalized, promoting better convergence during the general
prior training. On the other hand, l2-norm loss suffers from the
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Fig. 2. Structure of the hyperspectral discrete representation learning scheme.

Gaussian noise assumption and the signal-independent noise
assumption. In comparison, l1-norm loss may be more suitable
for hybrid noise removal and perform better in suppressing
possible spotty artifacts in flat regions [56]. Therefore, l2-
norm loss is employed in the reconstruction term of the
synthetic image pretraining stage, and l1-norm is utilized in
the spatial–spectral consistency constraint of the real image
adaptation denoising stage, instead of using l2-norm loss
in both stages [14]. Additionally, LBC(Y ′) is calculated as
follows:

LBC
(

Y′) = 1

n

n
∑

i=1

∥

∥

∥

∥

Bσ

(Fx
(Ey

(

Y′
i;�Ey

);�Fx

))

−Bσ

(

Y′
i
)

∥

∥

∥

∥

1
(11)

where Bσ (·) represents operators associated with Gaussian
blurring. σ denotes the standard deviation of the convolu-
tion kernel, empirically determined to be 15. Ey(·;�Ey) and
Fx(·;�Fx) refer to an encoder parameterized by �Ey for
noisy images and a decoder parameterized by �Fx for clean
images. The noisy encoder and clean decoder, respectively,
aim to extract semantic features from noisy images and
restore noise-free components. The noise-free components
and original observation, after being processed by Gaussian
blurring operators, are assumed to be background information
and should have similar attributes [57]. The design of LBC(Y ′)
aims to maintain consistency in the background between real
images and their respective noise-free components.

To obtain such Ey(·;�Ey) and Fx(·;�Fx), a hyper-
spectral discrete representation learning scheme, inspired
by [55], is formulated for real HSIs, as shown in Fig. 2.
The proposed scheme aims at separating noise attributes
and extracting semantic features from real HSIs based
on self-reconstruction and cross-reconstruction constraints.
Subsequently, rough noise-free components can be restored
from extracted features. To achieve it, the noisy autoen-
coder Ey(·;�Ey) and Fy(·;�Fy), and the clean autoencoder
Ex(·;�Ex) and Fx(·;�Fx) are introduced to model noisy and
clean spectral bands, respectively. An extra noise encoder
EN (·;�EN ) is employed to extract noise attributes. HSIs are
categorized as noisy bands Yk and clean bands Xk based

on noise intensity estimation [58]. The self-reconstruction
constraint for two autoencoders is defined as follows:

LSR(Xk, Yk)

= 1

n

n
∑

k=1

∥

∥Fx
(Ex

(

Xk;�Ex

);�Fx

) − Xk
∥

∥

1+
∥

∥Fy
(Ey

(

Yk;�Ey

) + EN
(

Yk;�EN
);�Fy

) − Yk
∥

∥

1
.

(12)

Semantic features Y
Ey
k and noise attributes NEN

Yk
are

derived from noisy bands Yk by Ey(·;�Ey) and EN (·;�EN ),
respectively. The features are subsequently integrated
into Fy(·;�Fy), yielding the reconstructed noisy bands

Y
Fy
k .Likewise, Ex(·;�Ex) take clean bands Yk as input and

generate semantic features XEx
k .The restored results X

Fy
k are

then obtained from Fx(·;�Fx). Under the self-construction
constraints, both autoencoders are able to extract semantic
features and restore their respective input. To eliminate
noise components from Y

Ey
k while retaining as much noise

as possible in NEN
Yk

, the cross-reconstruction constraint is
introduced as below

LCR

(

X
Fy
k , YFx

k

)

= 1

n

n
∑

k=1

∥

∥

∥Fx

(

Ey

(

X
Fy
k ;�Ey

)

;�Fx

)

− Yk

∥

∥

∥

1
+

∥

∥

∥

∥

∥

∥

∥

Fy

⎛

⎜

⎝

Ex

(

YFx
k ;�Ex

)

+EN
(

X
Fy
k ;�EN

)

;�Fy

⎞

⎟

⎠ − Yk

∥

∥

∥

∥

∥

∥

∥

1
(13)

where the cross restored images X
Fy
k = Fy(X

Ex
k +

NEN
Yk

;�Fy) are generated by incorporated XEx
k and NEN

Yk

into Fy(·;�Fy). Subsequently, semantic features ̂X
Ey
k are

derived from Ey(·;�Ey) and fed into Fx(·;�Fx), generating

the final cross restored images ̂XFx
k . Similarly, the cross

restored images YFx
k = Fx(Y

Ey
k ;�Fx) are obtained by

inputting Y
Ey
k into Fx(·;�Fx). Afterwards, the noise attributes

̂NEN
Yk

= EN (X
Fy
k ;�EN ) and the semantic features ̂YEx

k =
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Fig. 3. Structure of the proposed spatial–spectral residual denoiser. (a) Spatial–spectral residual denoiser. (b) Denoising block (D-block).

Ex(Y
Fx
k ;�Ex) are integrated into Fy(·;�Fy), yielding the

restored images ̂Y
Fy
k .

The optimization process for the hyperspectral discrete
representation learning scheme can be formulated as follows:

̂�E∗ , ̂�F∗ = argmin
�E∗ ,�F∗

λ3 ∗ LSR(Xk, Yk)

+λ4 ∗ LCR

(

X
Fy
k , YFx

k

)

(14)

where �E∗ and �F∗ symbolize the trainable parameters
associated with all encoders and decoders, respectively. λ3 and
λ4 control the balance between two constraints.

C. Hyperspectral Denoising Network Architecture

The UALHDN framework consists of a spatial–spectral
residual denoiser module, a global modeling discrimina-
tor module, and a hyperspectral discrete representation
learning scheme. A residual block and skip connection
are incorporated into the denoiser to retain the spatial–
spectral information, while global pooling is employed in
the discriminator for global contextual information modeling.
Autoencoders are utilized in the hyperspectral discrete repre-
sentation learning scheme. All modules are discussed in detail
below.

1) Spatial–Spectral Residual Denoiser: Unlike in other
applications (e.g., classification [59], anomaly detection [60],
and recognition [61]), low-level features, such as the edge
properties, are critical for HSI restoration. Therefore, a
spatial–spectral residual denoiser is incorporated, based on
the basic architecture of SRGAN [62], to fully utilize the
low-level features in the network. As shown in Fig. 3(a), 12
D-blocks with identical layouts are designed to retain the low-
level features and accelerate the convergence. Each D-block,
illustrated in Fig. 3(b), comprises two convolutional layers
followed by batch normalization layers, with a parametric
ReLU (PReLU) activation function [63] succeeding the first
batch normalization layer. The output of D-block is generated
by adding the extracted features and the input. Moreover,
skip connection with addition strategy is also employed in the
denoiser to accelerate the convergence. To utilize the spectral
correlation of HSIs, multiple bands (10 bands are chosen) are
concatenated as the input of the denoiser. Specifically, each
spectral band is treated as a channel in the convolutional layer
to mine the intraband properties and the interband relevance.
Finally, with the strategy of residual learning, the denoiser
learns the noise pattern and outputs the denoising result.
In the denoiser, the filter size and filter number are set to
3 × 3 and 64, respectively. The filter number of the last

Fig. 4. Structure of the proposed global modeling discriminator.

convolutional layer is set to be the same as the number of input
bands.

2) Global Modeling Discriminator: Exploiting global con-
textual information is essential for learning image priors.
Therefore, the global modeling discriminator is devised
to fully extract the large-scale information. Therein, the
LeakyConv module consists of multichannel 2-D convolution,
batch normalization, and LeakyReLU [64]. As shown in
Fig. 4, the discriminator is comprised of seven LeakyConv
modules with small 3 × 3 kernels, whose number increases by
a factor of 2 from 64 to 512. Following the last convolutional
layer, global pooling is employed to model the global contex-
tual information. Similar to the denoiser, multiple bands (10
bands are chosen) are concatenated as the input for exploiting
the interband correlations. In general, the discriminator unites
the spatial global contextual information and spectral correla-
tion to establish whether the input is a clean and natural HSI
or not.

3) Autoencoders for Discrete Representation: The structure
of the encoders resembles that of the proposed discriminator.
It differs by omitting the final sigmoid activation function
and the global pooling layer. Skip connections are added
between the input and output of the LeakyConv module.
Additionally, the number of filters in each convolutional layer
is set to 64. The filter number of the final layer is configured to
match the quantity of input bands. The design of the decoders
mirrors the architecture of the encoder in a symmetrical style.

IV. EXPERIMENTS AND ANALYSIS

The experiments conducted in this study are presented
in this section, including the multiplatform hyperspectral
datasets, used in the experiments, the primary experimental
settings, the denoising results for both synthetic noisy and
real HSI denoising experiments, the ablation experiments with
various modules, a effectiveness analysis of and l1-norm and
l2-norm loss and a generalization analysis with homologous
data.
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TABLE I
MAIN PARAMETERS OF THE MULTIPLATFORM HYPERSPECTRAL DATASETS CONSIDERED IN THIS STUDY

A. Multiplatform Experimental Hyperspectral Datasets

To demonstrate the superiority of the proposed model,
four multiplatform hyperspectral datasets were adopted in
the experiments, that is, the Washington DC Mall airborne
dataset, the WHU-Hi-Baoxie UAV dataset,1 a Chinese SPARK
hyperspectral satellite dataset, and a CRISM hyperspectral
satellite dataset. These datasets differed in both the spatial and
spectral resolutions, and were contaminated by hybrid noise
with different intensities. Therein, the Washington DC Mall
dataset, considered as a noise-free HSI, was adopted in the
simulated experiment. The main parameters of these datasets
are listed in Table I.

B. Experimental Settings

To test the effectiveness of the proposed model on nontrain-
ing data from a quantitative perspective, the Washington DC
Mall dataset was not used in the pretraining stage. In addition,
the paired training dataset was generated by simulating the
multitype hybrid noise in real HSIs and adding this to 100
clean HSIs selected from the interdisciplinary computational
vision laboratory (ICVL) [65]. Therein, the HSIs were pro-
cessed into patches of size 40 × 40 × 10 with a stride of
40. Moreover, the model was initialized according to [63].
During the training with 500 epochs, the Adam optimizer
was employed with β = (0.5, 0.999) and the learning rate
was initialized to 0.0002. A mini-batch strategy of size 256
was adopted to accelerate the convergence. In the fine-tuning
stage, every 10 continuous bands of the real HSI were split
into the same size as the pretraining data with a stride of
40. The hyperspectral discrete representation learning scheme
is first trained on the real HSI with 50 epochs. The noise
intensity threshold for distinguishing between noisy and clean
bands, was empirically set to 0.02. The mini-batch size was
set to 64 and the learning rate was initialized as 0.0001.
Afterwards, the denoiser was fine-tuned using the noise-free
components estimated through discrete representation. The
settings were similar to those of the discrete representation
learning. Regularization parameters λ1, λ2, λ3, and λ4 were
both empirically set to 0.001, 0.5, 1, and 1, respectively.
In the final denoising process, the real HSIs are split into
their original sizes with intervals of every 10 continuous
bands.

1https://www.rsidea.whu.edu.cn

To demonstrate the superiority of the UALHDN framework,
it was compared with several state-of-the-art hyperspectral
denoising methods, that is, WFAF [5], spatial–spectral TV
regularized local LRMR (LLRSSTV) [23], double-factor-
regularized low-rank tensor factorization (LRTF-DFR) [26],
nonlocal meets global (NGmeet) [30], HSI-DeNet [34],
DHP [19], the 3-D quasi-recurrent hyperspectral denoising
network (QRNN3D) [37], and a nonlocal spatial–spectral
neural network (NSSNN) [38]. Notably, in order to ensure
the fair comparison, the training datasets and the training
settings for all the CNN-based models were consistent with
the UALHDN framework. The codes of all the algorithms
were provided by the authors, and the parameters were set
by default or fine-tuned following the advice of the authors.
The environment was MATLAB R2018a and Python 3.7 with
the PyTorch package. The methods were implemented using
Intel Xeon E5-2690 CPUs (2.60 GHz) and two NVIDIA Tesla
P100 GPUs.

C. Noise Removal Experiments With Synthetic
Hyperspectral Data

The Washington DC Mall dataset, measuring
1208 × 307 × 191, is of high quality. A subimage with
a size of 200 × 200 × 180 was adopted as the simulated
experimental data. To simulated real degradation in HSI
imaging systems, noise simulation targeted the initial bands
(bands 1–10, 400–500 nm) and those most susceptible to
water vapor absorption (bands 91–120 and 1300–1600 nm,
and bands 141–160 and 1800–2000 nm), incorporating three
common noise types, that is, stripe noise, Gaussian noise, and
impulse noise. Five synthetic cases were employed as follows:

Case 1: Stripe noise with varying noise intensities (with
standard deviation σS ∈ [0, 0.05]).

Case 2: Based on case 1, the HSI was degraded by slight
Gaussian noise N(0, σ 2

G1
) (σS ∈ [0, 0.05], σG1 ∈ [0, 0.025]).

Case 3: Based on case 1, the HSI was degraded by
Gaussian noise N(0, σ 2

G2
) (σS ∈ [0, 0.05], σG2 ∈ [0, 0.05]).

Case 4: Based on case 2, the HSI was degraded by slight
impulse noise (σS ∈ [0, 0.05], σG1 ∈ [0, 0.025], P1 ∈
[0, 0.025]).

Case 5: Based on case 2, the HSI was degraded by impulse
noise (σS ∈ [0, 0.05], σG1 ∈ [0, 0.025], P2 ∈ [0, 0.05]).

Both a qualitative visual evaluation and a quantitative
assessment were adopted in the experiments. Three common
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TABLE II
QUANTITATIVE EVALUATION FOR THE SIMULATED NOISE REMOVAL

Fig. 5. Error maps of the synthetic noise removal results for the Washington DC Mall dataset under case 4 (band 5: 440 nm; band 106: 1450 nm; and band
160: 1990 nm, top to bottom) (original image, noisy image, WFAF, LLRSSTV, LRTF-DFR, NGMeet, HSI-DeNet, DHP, QRNN3D, NSSNN, and UALHDN,
left to right).

metrics were employed in the quantitative assessment. The
peak signal-to-noise ratio (PSNR) and the structural similarity
(SSIM) indices [66] were adopted to assess the spatial fidelity
of every band, and the mean values of all the bands are
denoted as MPSNR and MSSIM, respectively. Moreover,
the spectral angle mapper (SAM) was utilized to assess the
spectral consistency. The average value for all the spatial pixels
is denoted as MSAM and is displayed in angle. Generally
speaking, higher-MSSIM and MPSNR values and a lower-
MSAM value manifest a preferable result.

The quantitative assessments for all the synthetic cases are
listed in Table II, where the best results are highlighted in bold,
and the second-best results are underlined. It can be seen that
the UALHDN framework obtains the best-denoising results
under most circumstances.

From the aspect of a visual comparison, the error maps in
case 4 and false-color images in case 5 with several typical
bands are shown in Figs. 5 and 6. Fig. 6(b) shows the false-
color image contaminated by hybrid noise. In the denoising
result of WFAF, the stripe noise and the Gaussian noise are
somewhat alleviated. However, WFAF is limited in the impulse
noise removal and introduces tone distortion, which is obvious
in Fig. 6(c). LLRSSTV and NSSNN remove the Gaussian
noise and impulse noise, and suppress the stripe noise partly.
Nevertheless, there are still some residual stripes in the images.
For the denoising results of LRTF-DFR, NGMeet, HSI-DeNet,

DHP, and QRNN3D, all the noise is removed, but at the cost of
unexpected blurring. In comparison, the proposed UALHDN
framework obtains a superior hybrid noise removal result with
excellent spatial–spectral detail conservation.

D. Noise Removal Experiments With Real Hyperspectral
Data

Three hyperspectral datasets acquired via diverse platforms,
that is, UAV, Earth satellite, and Mars satellite platforms, were
employed in the real HSI denoising experiments, to further
demonstrate the superiority of the UALHDN framework on
real HSIs. Due to the absence of reference images, both visual
appearance and the no-reference HSI quality assessment met-
ric [67] were employed to assess the denoising performance.
Generally speaking, a lower score indicates a better-denoising
result. The running time and the no-reference HSI quality
assessment scores are detailed in Tables III and IV. It is
worth noting that the time for the fine-tuning and discrete
representation learning of UALHDN is not included in the
running time but is shown in brackets. The reason for this is
that only part of the real HSIs will be used in the UAL for
homologous data in practical denoising tasks. More details are
provided in the generalization analysis with homologous data.

1) WHU-Hi-Baoxie UAV Dataset: The first experiment was
conducted on the WHU-Hi-Baoxie UAV dataset. A subimage
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(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 6. Synthetic noise removal results for the Washington DC Mall dataset under case 5 (false-color image (R: band 160: 1990 nm; G: band 94: 1330 nm;
and B: band 6: 450 nm)).

TABLE III
RUNNING TIME (SECONDS) FOR THE REAL HYPERSPECTRAL DATASET NOISE REMOVAL

TABLE IV
NO-REFERENCE HSI QUALITY ASSESSMENT SCORES FOR THE REAL HYPERSPECTRAL DATASET DENOISING EXPERIMENTS

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. Denoising results for the WHU-Hi-Baoxie UAV dataset (R: band 270: 1000 nm; G: band 15: 431 nm; and B: band 5: 408 nm). (a) Original image.
(b) WFAF. (c) LLRSSTV. (d) LRTF-DFR. (e) NGMeet. (f) HSI-DeNet. (g) DHP. (h) QRNN3D. (i) NSSNN. (j) UALHDN.

of size 400 × 400 × 270 was employed in the experiment.
Fig. 7 presents the denoising results obtained in multiple
bands for visualization. For the denoising results of WFAF
and HSI-DeNet, there is still residual random noise. The
hybrid noise models of LLRSSTV are limited in destriping,
which can be ascribed to the unconformity between the
noise modeling in the regularization and the realistic noise
distribution in real HSIs. There is also residual stripe noise

in the result of QRNN3D and NSSNN. While LRTF-DFR,
NGMeet, and DHP are effective in hybrid noise removal,
they fail to retain the local details and tend to blur the
terrain boundaries. In comparison, the proposed UALHDN
framework acquires the best-denoising performance, further
demonstrating the robustness and effectiveness of the proposed
model for UAV datasets with both high spectral and spatial
resolutions.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8. Denoising results for the SPARK hyperspectral dataset (R: band 80: 539 nm; G: band 67: 518 nm; and B: band 30: 458 nm). (a) Original image.
(b) WFAF. (c) LLRSSTV. (d) LRTF-DFR. (e) NGMeet. (f) HSI-DeNet. (g) DHP. (h) QRNN3D. (i) NSSNN. (j) UALHDN.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9. Denoising results for the CRISM dataset (R: band 480: 3510 nm; G: band 440: 3244 nm; and B: band 10: 423 nm). (a) Original image. (b) WFAF.
(c) LLRSSTV. (d) LRTF-DFR. (e) NGMeet. (f) HSI-DeNet. (g) DHP. (h) QRNN3D. (i) NSSNN. (j) UALHDN.

2) Chinese SPARK Hyperspectral Satellite Dataset: The
second experiment adopted a subimage of size 200 × 200 × 80
from the SPARK-02 satellite product. As a result of the
corruption with severe stripe noise and random noise, the
quality of the SPARK dataset is severely downgraded, as
shown in Fig. 8(a). The WFAF method is adept at stripe noise
removal, but it tends to become less effective in real hybrid
noise removal. On the other hand, LLRSSTV, QRNN3D, and
NSSNN can effectively suppress the random noise. However,
there is severe residual stripe noise in the results. For the
denoising results of LRTF-DFR, NGMeet, and DHP, even
though almost all the noise is suppressed, severe spatial
distortion can be observed in Fig. 8(d), (e), and (f). HSI-DeNet
is effective in hybrid noise removal. Nevertheless, residual
stripes and slight random noise are evident in the water region
of the upper-right corner, as presented in Fig. 8(e). In contrast,
UALHDN yields the best-denoising result since it suppresses
almost all the noise while simultaneously retaining most of
the spatial information.

3) CRISM Dataset: A subimage of size 400 × 400 × 490
from the CRISM dataset was employed in the third real
denoising experiment. The original calibrated images suffer
from stripe noise and random noise, as presented in Fig. 9(a).
The filtering-based WFAF method is less effective on the

CRISM dataset. For the results of LLRSSTV, the random
noise appears to be effectively suppressed. However, residual
stripe noise is obvious in the results. While LRTF-DFR,
NGMeet, and DHP remove all the noise, excessive blurring
is introduced in the results. Although HSI-DeNet, QRNN3D,
and NSSNN show good denoising performance, slight noise
corruption can be still observed in the results. In contrast,
the proposed UALHDN framework obtain convincing denois-
ing performance with the CRISM dataset. Moreover, the
UALHDN framework obtains excellent results in the no-
reference HSI quality assessment scores, as shown in Table IV,
indicating that it is practical for real applications.

E. Ablation Experiments With Various Modules

To demonstrate the effectiveness of UAL and the other
modules, a comparative analysis was conducted using twelve
models. These models were selected from various combina-
tions of the following components: the discriminator (DIS),
l2-norm spatial-special consistency constrain (SSC-L2), the
proposed l1-norm spatial-special consistency constrain (SSC-
L1), TV regularization, and the proposed BC. Therein, DIS,
SSC-L2, and TV are the modules proposed in [14]. The
performance of these models was evaluated on the datasets
used in the denoising experiments. The quantitative results
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TABLE V
EFFECTIVENESS ANALYSIS OF VARIOUS MODULES FOR THE WASHINGTON DC MALL DATASET WITH SYNTHETIC NOISE UNDER CASE 5

TABLE VI
EFFECTIVENESS ANALYSIS OF THE DESIGNED LOSS FUNCTIONS FOR THE NO-REFERENCE HSI

QUALITY ASSESSMENT SCORES ON THE REAL DATASETS

TABLE VII
EFFECTIVENESS OF L1 LOSS AND L2 LOSS IN DIFFERENT STAGES

for case 5 of the Washington DC Mall dataset are listed in
Table V. Improvement was observed across all three quan-
titative assessment indicators with either the spatial–spectral
constraint or the BC. The proposed SSC-L1 achieves higher
accuracy among them. In addition, better performance is
obtained with the combinations of discriminator and SSC-
L1/BC, while the combination with SSC-L2 has no obvious
improvement. The full model proposed in [14] adopts the
combination of DIS, SSC-L2, and TV, which yields relatively
poor accuracy. The improvement of denoising performance is
achieved after substituting SSC-L2 with the proposed SSC-
L1 or swapping out TV with the proposed BC. The fully
integrated proposed UALHDN framework, which combines
DIS, SSC-L1, and BC, demonstrates superior accuracy in
comparison to the other configurations. The no-reference HSI
quality assessment scores obtained on all the real datasets are
listed in Table VI, where the scores for the WHU-Hi-Baoxie
dataset and the CRISM dataset are improved significantly with
the DIS, SSC-L1, and BC. In contrast, the models employing
SSC-L2 and TV show limited improvement in denoising
performance. Therefore, this indicates that the proposed UAL,
consisting of SSC-L1 and BC, outperforms the previous
modules used for fine-tuning. It effectively improves the
generalizability of the model on real HSIs.

F. Analysis of the Selection of l1-Norm and l2-Norm Loss

In this section, four strategies employing l1-norm and
l2-norm loss in different stages, that is, l1-norm form of
the reconstruction term in the pretraining stage and l1-norm

form of the spatial–spectral consistency in the fine-tuning
stage (l1/l2), l1/l2, l2/l2, and l2/l1, were adopted to perform
denoising on case 5 of the Washington DC Mall dataset. As
shown in Table VII, the model employing l2-norm loss in
the pretraining stage outperformed those using l1-norm loss
after the fine-tuning. In addition, all the models using the l1-
norm spatial–spectral consistency obtain better performances
than the corresponding models employing the l2-norm form.
Compared with the other strategies, l2/l1 obtains the best-
denoising result, which demonstrates the superiority of this
strategy, and also provides guidance on how to combine
l2-norm and l1-norm loss functions to improve the model
performance in other HSI restoration tasks.

G. Generalization Analysis With Homologous Data

In this analysis, UAL was performed on a single noisy HSI,
based on the UALHDN framework. To verify the general-
izability of UALHDN, the model learned the image-specific
deep prior on Image 1 from the WHU-Hi-Baoxie dataset
and performed denoising without UAL on two subscenes
obtained over different geographical locations. As presented in
Fig. 10, the random noise and stripe noise can be effectively
suppressed, and the terrain boundaries are clearly legible.
This demonstrates that the UALHDN framework possesses
good generalizability, in that the model used to perform
UAL on a given noisy HSI can also obtain an excellent
denoising performance without UAL on other HSIs acquired
under similar circumstances via the same sensor. Therefore, to
effectively improve the running time of the UALHDN model
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(a) (b) (c) (d) (e) (f)

Fig. 10. Generalization analysis for the UALHDN framework on various subscenes of the WHU-Hi-Baoxie dataset (R: band 270; G: band 15; and B: band
5). (a) Image 1. (b) Image 2. (c) Image 3. (d) UALHDN (Image 1). (e) SSRD-DIS (Image 2). (f) SSRD-DIS (Image 3).

when performing denoising on homologous data, only some
of the real HSIs need to be utilized in the fine-tuning stage.

V. CONCLUSION

In this article, an innovative UALHDN has been proposed
for real multiplatform HSI denoising. A spatial–spectral con-
sistency constraint and a BC are integrated into a transfer
learning denoising framework to retain fidelity of background
information and learn deep priors of real HSIs. A novel hyper-
spectral discrete representation learning scheme is designed
in the fine-tuning stage to extract semantic features and
estimate noise-free components, exploring the deep priors
specific for real HSIs in an unsupervised manner. To our
knowledge, the UALHDN framework is the first to explore
the deep priors of real data based on discrete representation
learning in multiplatform HSI noise removal. The extensive
experiments conducted on the airborne Washington DC Mall
dataset, the WHU-Hi-Baoxie UAV dataset, a Chinese SPARK
hyperspectral satellite dataset, and a Martian dataset from
CRISM confirmed the excellent denoising performance of the
UALHDN framework. Moreover, the UALHDN framework
represents a promising approach for other CNN-based image
restoration methods to increase their generalizability on real
HSIs. The limitation of UALHDN framework is that signal-
dependent noise tends to be considered as signal components.
In the future, new discrete representation learning methods
should be explored to handle all types of noise corruption.
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