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Cross-Subject EEG Feedback for Implicit
Image Generation

Carlos de la Torre-Ortiz , Michiel M. Spapé , Niklas Ravaja , and Tuukka Ruotsalo

Abstract—Generative models are powerful tools for producing
novel information by learning from example data. However,
the current approaches require explicit manual input to steer
generative models to match human goals. Furthermore, how these
models would integrate implicit, diverse feedback and goals of
multiple users remains largely unexplored. Here, we present a
first-of-its-kind system that produces novel images of faces by
inferring human goals directly from cross-subject brain signals
while study subjects are looking at example images. We report
on an experiment where brain responses to images of faces were
recorded using electroencephalography in 30 subjects, focusing
on specific salient visual features (VFs). Preferences toward VFs
were decoded from subjects’ brain responses and used as implicit
feedback for a generative adversarial network (GAN), which
generated new images of faces. The results from a follow-up user
study evaluating the presence of the target salient VFs show that
the images generated from brain feedback represent the goal of
the study subjects and are comparable to images generated with
manual feedback. The methodology provides a stepping stone
toward humans-in-the-loop image generation.

Index Terms—Brain–computer interfaces, electroencephalog-
raphy (EEG), generative models, image generation.

I. INTRODUCTION

GENERATIVE image models have recently enabled cre-
ative tasks by exhibiting the capability to produce

previously nonexisting visual information. However, user con-
trol over specific visual features (VFs) remains challenging.
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For example, while these models can generate photorealistic
human faces, users may find it challenging to manipulate
subjective semantic features, such as perceived gender. Many
approaches have tackled the issue of controlling generative
models, relying on manually provided input and additional
model training using separately labeled data [56], [70], [75].
Others have proposed interface designs that allow the expres-
sion of goals via text [49], sketching [17], or other example
images [13]. However, it is unrealistic to assume an interface
design that allows for manipulating each possible salient
feature in an image. Alternatives like text-to-image models
offer broader control but provide very coarse control over
features. In addition, they often depend on the user’s ability
to describe their intended output accurately or require prompt
engineering [35]. Even if we could train generative models
where we could adjust every VF, we would face challenges
when considering the subjective nature of visual perception:
what we perceive as “old” or “young” changes as we age, and
more abstract concepts (e.g., “trustworthy”) can vary widely.
Therefore, gathering feedback from multiple individuals is
essential to represent a concept as conceived and judged by a
group of users.

In all cases, naturally expressing whether an image displays
the VFs we associate with a semantic label is significantly
easier than articulating reasons for our judgment. Human-in-
the-loop generative systems iteratively leverage this capability,
constantly refining the model’s output to align with the desired
outcome. However, manually providing such iterative feedback
can be laborious and impractical, particularly for systems
that require dozens of iterations to converge to even simple
VFs [68]. What if we could harness the swiftness of our
instinctive judgments to infer the presence of desired VFs?
Visual cognition allows us to evaluate stimuli in fractions of
a second [34], indicating an opportunity to leverage these
immediate responses or “gut feelings” related to attention [53].
In particular, brain–computer interfacing (BCI), specifically
electroencephalography (EEG), efficiently captures immediate
“first impression” responses at scale. Moreover, BCIs avoid
the manual labor associated with “explicit methods” of feed-
back [10], which involve direct communication of intention
through manual interaction. EEG constitutes implicit feedback,
which relies only on the user’s attention to stimuli and offers a
streamlined and user-friendly approach to guiding generative
models.

EEG-mediated information generation offers a novel
human-in-the-loop approach using natural responses to visual
stimuli. In this process, users’ collective and implicit reactions
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Fig. 1. EEG feedback from several individuals is captured as implicit feedback for salient VFs that individuals attend to (e.g., blond-haired and dark-haired
images of faces). Then the recorded signals are classified to detect target and nontarget salient VFs in the images. Finally, the feedback is used to steer a
generative adversarial neural network (GAN) to produce novel images of faces that represent the target salient features of the group of users (e.g., generate a
novel image with intermediate and light brown hair features).

influence the output of generative models. These models
integrate diverse feedback, including conflicting inputs that
represent divergent preferences (e.g., combining “female”
and “male” facial features), enabling collaborative input in
generating computer-aided information.

In this context, we ask the following research questions:
RQ1: Can we infer the presence or absence of salient visual

facial features of interest from EEG responses?
RQ2: Can implicit cross-subject EEG feedback be used to

steer a generative model to produce novel images of faces
capturing the mental targets of individuals?

RQ3: How do the number of users, the complexity of the
image feature space, and potentially conflicting target VFs
affect the quality of generated images of faces?

To answer the research questions, we demonstrate a proof-
of-concept implementation of the methodology for sourcing
cross-subject brain feedback, followed by generating new
images of human faces with different VFs using a generative
adversarial network (GAN). Data were collected in an EEG
study where subjects viewed artificially generated images
of human faces. Given the pioneering, early state of the
technology, we design our experiment in a controlled setting:
we instruct subjects to concentrate on a specific salient image
feature intended to be in the output image, such as specific
hair color, (normative) gender, age, or affective features, such
as smiling. Machine learning models are then used to directly
identify the presence or absence of such features in an image
from brain responses. The corresponding latent representation
of the image serves as feedback to modify the output of a
generative model. This model is updated to produce entirely
new images of faces that reflect VFs inferred to meet the
subject’s goals (Fig. 1).

We report a series of simulations to demonstrate the effi-
ciency of an EEG-based image generation system based on
input collected from a group of subjects in three image gener-
ation scenarios: 1) for generating images of faces containing
a particular VF; 2) for producing images that combine several
VFs simultaneously; and 3) finally, to resolve feedback with
conflicting VFs, defined as those that are mutually exclusive,
e.g., old and young.

To determine the efficiency of our cross-subject BCI for image
generation, we evaluated them against two baselines: random
feedback and explicit manual feedback. External assessors

evaluated the output images generated using the different
feedback models in a double-blind experiment. Our results
show that the computer-generated images represent the target
visual facial features nearly perfectly, are significantly higher
quality than outputs resulting from a random process, and are
comparable to those generated with explicit manual feedback.

The contributions of the research can be summarized as
follows.

1) We present the first-of-its-kind methodology using
implicit judgments inferred directly from cross-subject
EEG responses to generate new visual information with
artificial neural networks. Our approach contrasts with
other generative BCI systems, which have been designed
to only satisfy generation goals for a single subject.

2) We conducted experiments to integrate the assessments
of visual information from a cohort of users via EEG,
and generated novel images that satisfy a range of
realistic yet controlled image generation tasks.

3) We investigated the effects of task complexity and the
number of subjects providing EEG feedback on the
quality of the generated images of human faces.

4) We evaluated the system’s ability to reconcile simulta-
neous EEG feedback for VFs in conflicting semantic
categories.

II. BACKGROUND

Generative Modeling: Advances in generative models have
made it possible to generate realistic and novel images.
In particular, progressive training of generative adversarial
neural networks [3], [15] has shown remarkable performance
in image generation in several domains [30], [36]. While
generative models have produced impressive output, their
representations do not always correctly capture semantic fea-
tures or concepts familiar to humans. In other words, these
models learn latent representations, which may not directly
match the human understanding of VFs. State-of-the-art GAN
architectures, such as StyleGAN [29], address this challenge
of matching more generalized features (the “style”) of other
images. While this approach aims to close the gap between
human and model representation of VFs, it still does not
control the generative process. The question of how human
input can be considered in the parametrization of latent
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representations to provide control over the generative process
remains unsolved.

Recent research has also focused on gaining interactive
control over generative models in creative tasks. For example,
a generative model was used to complete a freely formed
sketch of the intended final image. The generative model
completed the picture with shapes and other features from the
user’s original sketch [38]. Research has also demonstrated
approaches using text input for image synthesis. In this line
of research, the system takes a text description as an input,
and the generative model produces an image that fits the
features of the text input [73]. Similarly, researchers have
been using feedback on intermediate images to generate
an image that better matches the user’s intention in the
subsequent iterations [68]. These approaches showcase the
potential of generative models in visual information generation
and other creative efforts. Nevertheless, they still rely on
explicitly tailoring a specific model for a particular task.
As the system undergoes supervised training, it learns to
control the latent space by mapping interpolations between
labeled features to the representation space. In addition, the
visual information generation and manipulation task usually
encompass an iterative process in which successive evaluations
in the feedback loop bring user intentions and the visual
perception of the output closer to each other [23]. Users can
often provide diverse perception critiques of visual works, with
advantages over peer feedback, such as avoiding an overly
positive bias [65].

Neurophysiological Feedback: Online collaboration for
design feedback has already benefited from including novel
ways of interaction, such as video feedback [40]. Indeed, a
more recent line of research has used BCI for affective com-
puting [51], [52] or recognition tasks [10]: human cognition
can be exploited in implicit tasks to obtain simple opinions or
recognition signals. Thus, there is potential to utilize natural
responses from users, where a system captures their immediate
first impressions via neurophysiological data as passive input.
This approach contrasts with other approaches in BCI, which
aim to exert direct control of the computer by replacing motor
movement (e.g., moving a mouse cursor) with a more limited
range of applications [9].

Human cognition processes complex visual stimuli
swiftly [62]. To an extent, categories and objects are
also quickly recognized in EEG studies, which have
facilitated emotion recognition [74] and motor imagery
detection [7], [45]. However, object classification from
EEG recordings (“EEG decoding”) has proven exceedingly
challenging [2], where only relationships between stimuli
classes and neural responses have been successfully modeled,
rather than decoding the category per se [25]. EEG signals
can be used effectively to infer task relevance and reliably
classify a limited set of binary and multiclass labels, enabling
tasks, such as decoding user intention [72]. However, the
performance is typically highest and most robust in a
binary classification setting [8], distinguishing between target
and nontarget outcomes. Indeed, direct interfacing with
human cognition holds promise beyond simple recognition
or image classification [27], [28], [55] tasks. Since such

first impressions have a lasting effect on cognition, affect,
and decision-making [64], detecting immediate stimulus
evaluations directly from the brain can provide optimized
estimates for many tasks that benefit from rapid and binary
human feedback on visual content.

Connecting EEG With GANs: Electrophysiological data can
provide these immediate stimulus evaluations by detecting the
degree to which displayed features implicitly match the target
features that a user has in mind. For example, the event-
related potential (ERP) is an electroencephalographic metric
that quantifies brain activity synchronized to external events,
such as the onset of images. Therefore, EEG can provide
feedback on perceived visual information.

While current EEG-based approaches may not reveal com-
plex goals or high-level outcomes, it is possible to detect
whether an image contains VFs relevant to the user. In
particular, the P3 is a late parietal positivity in the EEG,
which is well-established in cognitive neuroscience to be
particularly evoked by infrequent, task-relevant stimuli [11].
The P3 may therefore provide an implicit biomarker for
enhanced processing of target stimuli, such as VFs, even in the
absence of overt, physical responses. Another line of research
has approached feedback on brain signals using the entire
ERP, which includes the P3 [5], [12], possibly responding to
more complex activity patterns. Recent work has aimed at
connecting GANs with neurophysiological signals [10], [18],
[58], [67]. For other research in this direction see [31], [44],
[57], [63]; however, later replication work has shown that
they exploit the block structure of their experimental design,
and therefore the results have been questioned [1], [4], [33].
Indeed, multiple features of the EEG signal are naturally
affected by the temporal order of the block design; therefore,
adding all target stimuli at the end of the experimental blocks
produces an artificial positive classification. In reality, this is a
confound with the natural temporal properties of EEG rather
than stimulus-related activity [2], [33]. In contrast, we care-
fully control for these effects in our work with a randomized
design that follows the “oddball” EEG paradigm [60]. Our
experimental design uses complete randomization of both tar-
get and nontarget stimuli classes within the same experimental
block.

As a result, here we put forward a first-of-its-kind method-
ology that enables a direct interface between implicit EEG
feedback from many individuals and a generative model
of images. Reactions from a cohort of users are obtained
directly from their brain responses, which are then used as
collaborative brain feedback to generate new images of faces
that match the target VFs by the individuals.

III. METHODOLOGY

This study employs a methodology consisting of five phases.
1) We collected neurophysiological EEG data from 30 sub-

jects in response to an image presentation task while
keeping a mental target (facial feature) in mind.

2) We trained a classifier that maps each image onto the
target and nontarget classes using the brain signals.
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3) We used the classifier feedback to update latent estimates
with positively classified stimuli within the VF space
learned by a GAN.

4) We simulate a group image generation task, which used
updates from several individuals to update the GAN
estimates and then generate visual information from the
GAN along image generation goals defined as having
single, multiple, or conflicting VFs.

5) Finally, we evaluated the performance of the EEG-
based group image generation process against control
processes based on random and explicit feedback.

A. Neurophysiological Data Acquisition

Thirty study subjects (13 female, 17 male; self-reported)
volunteered to participate in the neurophysiological experi-
ment. They were, on average, 28.2 (SD = 7.1) years old, with
no restrictions on age range eligibility, although participation
was advertised to a university population. They all had normal
or corrected-to-normal vision and no history of using neu-
ropharmaceuticals. The ethical review board in humanities and
social and behavioral sciences of the University of Helsinki
approved the study. It complies with the protocols laid out
by the declaration of Helsinki. Subjects were fully informed
of the study and their rights, including the right to withdraw
at any point, and signed a consent form before participating.
They received cinema vouchers for their time and efforts.

Stimuli and Apparatus: We used a pretrained GAN
architecture1 based on celebrity photographs to generate stim-
uli [30]. It produced an initial set of ca. 10 000 stimuli by
random sampling latent vectors with a multivariate Gaussian
distribution across the 512-D space. These were then manually
inspected to filter out visual artifacts, following which they
were categorized into eight discrete VFs: blond- and dark-
haired; (normative) female and male; nonsmiling and smiling;
and old and young. These features were selected as we
expected all study subjects to understand and recognize them
easily, and they were well-represented in the model. Of these,
260 stimuli on average per feature were selected for use in
the study, such that each subject saw more than 2000 different
images of faces in the experiment. To normalize the stimuli
across unrelated dimensions, we applied an ellipse cut-out
frame such that mainly the foreground containing the central
face was showing (Fig. 2). Furthermore, to improve timing
accuracy during image presentation, we down-sampled the
1024 × 1024 images to half this resolution.

We presented the images using a rapid serial visual
presentation paradigm (RSVP) developed in E-Prime 3 [59] to
optimize the presentation timing and physiological recording
synchronization. The setup used a 24” LCD screen with a reso-
lution of 1920×1080 @ 60 Hz situated around 60 cm from the
subject to display stimuli. A BrainProducts QuickAmp USB
32 amplifier digitized the data at 1,000 Hz from 32 passive
silver/silver-chloride electrodes placed on an EasyCap system
to ensure optimal equidistant placement at sites FP1, FP2, F7,
F3, Fz, F4, F8, FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, Cz,

1https://github.com/tkarras/progressive_growing_of_gans

Fig. 2. (Left) Setup of the neurophysiological data acquisition in which EEG
is recorded in response to viewing images of faces. (Right) Average ERP plots
for all subjects are shown with the standard deviation for the Pz channel in the
−200–800-ms window and topographic maps of the averaged scalp electric
potential within 0–200, 200–400, and 400–600-ms post-stimulus windows.

C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8,
O1, O2, and Iz, with AFz as ground.

Procedure: Following hardware setup and signing of the
informed consent, study subjects started the data acquisition
session by observing images of faces in RSVP sequences.
They were tasked to keep a mental target based on one
of our eight selected VFs (e.g., blond-haired, dark-haired,
female, male) in mind throughout each series of 70 images.
Subjects simply concentrated on the images that presented the
target feature while limiting unnecessary mental or physical
activity. For example, subjects concentrated on images of
blond individuals in the task involving “blond-haired” features
as a target. Images were divided into those labeled as target
(∼30%, e.g., blond-haired) and nontarget (∼70%, e.g., dark-
haired) categories, where target images were intentionally
under-represented and spaced to evoke P3 potentials. We
expect this ERP to be the main contributor to signal clas-
sification performance for downstream analyses, and these
potentials are known to be amplified by relatively rare and
task-relevant stimuli.

Each trial included 70 images, with 20 labeled as target
and 50 as nontarget stimuli. We presented images at 500-ms
intervals without an interstimulus interval, and each image
was displayed once per trial. Following each trial, a 500-
ms gray mask appeared, leading to a self-terminated break.
For instance, in a “blond-haired” block, each subject viewed
80 unique images of blond individuals and 200 dark-haired
ones, with the reverse setup for a “dark-haired” task. The
order of tasks was counter-balanced and randomized among
subjects. A complete session involved displaying 2240 images,
spanning approximately one hour, excluding time for setup
and instructions.

EEG Preprocessing: EEG data was preprocessed to reduce
noise and improve signal quality. It included band-pass filter-
ing, time-locking to stimulus onset, subtraction of the average
prestimulus value to correct for baseline, and removal of
artifacts via a thresholding technique. First, continuous EEG
data were band-pass filtered between 0.2 and 35.0 Hz to
reduce slow drifts and high-frequency noise. Then, they were
time-locked to stimulus onsets and segmented into 1100-ms
EEG epochs, including 200 ms before the stimulus [19], [26].
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Finally, we removed EEG epochs containing strong artifacts
related to eye movements, blinks, and muscle activity from the
dataset. In particular, we used a thresholding technique that
relied on individualized maximum absolute voltage cut-offs:
we first selected the 0–50-ms post-stimulus window of the
first 2000 epochs. Then, we picked the 200th highest-absolute
value per subject and constrained (clipped) these thresholds to
values between 10 and 80 µV. As a result, this approach tagged
11.36% of epochs as artifactual on average and removed them
from the analysis.

Following preprocessing, we recorded each subject’s data
in a e×c× t tensor (e epochs, c channels, and sampled points
in time t). Then, we divided each epoch into 7 equidistant
time windows per channel on the 50–800-ms post-stimulus
period, based on previous studies [26] and a liberal estimate of
the known time window of the P3 [19]. Finally, we averaged
all data within each time window for each time frame, with
all existing channels and time frames combined to produce
spatiotemporal vectors.

B. Classification

Classification Setup: Randomly sampled images were
shown to the study subjects during the neurophysiology data
acquisition while their EEG signal was registered, simulating
an independent calibration step across subjects. In sum, the
classification step aimed to assign a target/nontarget class
label to an ERP independent from the analyzed VF category.
We trained regularized linear discriminant analysis (LDA)
single-trial ERP classifiers for each subject and VF. In partic-
ular, we used the Scikit-learn implementation with the least
squares solution combined with automatic shrinkage using the
Ledoit-Wolf lemma [5], [47]. To minimize false positives, we
considered only predictions with a confidence score higher
than 0.7 for the target class based on the training performance.

Data Preprocessing and Classifier Input: Models processed
input vectors composed of time series data concatenated over
multiple epochs, where each series represented the voltages
recorded across all channels. We assigned the manual binary
class membership labels (target or nontarget) to the vectorized
representations of the ERPs, which together were used as input
to train the classifiers. Thus, the evoked potentials should be
positively classified when looking at an image containing the
target VF (e.g., “Look for blond hair” → image of a blond-
haired individual). Otherwise (e.g., “Look for blond hair” →
image of a dark-haired individual), the stimulus and associated
ERP should be classified as nontarget.

Classification Tasks and Dataset Partitioning: In total, we
trained eight independent classifiers, one per visual task,
ensuring that they learned from all tasks and, at the same
time, were agnostic to specific VFs. Each classifier used data
collected during all tasks, excluding the target class and its
opposite (e.g., blond- and dark-haired) as the training set and
the target class as the test set (e.g., blond-haired) as depicted
in Fig. 4. . For example, a classifier for the “young” VF
was trained using data from the “blond-haired,” “dark-haired,”
“female,” “male,” “nonsmiling,” and “smiling” features, but
not from the “young” and “old” tasks. Therefore, our approach

aimed for a rigorous data split by also excluding from training
any VFs that belong to the same broader category as the
target class, e.g., age. As a result, we ensure that no task-
related features unrelated to the stimuli class would affect
the classifier performance [33]. Such exclusion ensures that
the classification performance was not inadvertently enhanced
by learning to classify the opposite VF in the same stimuli
class. As a result, we split the data into a training set (75%
of the samples, average 1497.52 per visual task and subject)
and a test set (12.5% of the samples, average 249.59) based
on the VFs and subject. The remaining 12.5% of the samples
corresponding to the opposite VF were not used.

C. Generative Modeling

We first recorded the neural signals in response to the
subject’s perception of a generated image, categorizing them
as “target” or “nontarget.” The system then used the task
membership label, together with the corresponding latent
representation of the image, and combined the feedback of
many individuals to generate an output image. Thus, the
GAN uses a neuroadaptive approach similar to [26], [71], such
that feedback updates the estimate of a target image in the
generative model’s latent space. Both the classification and
generative steps utilize the same eight single VFs.

Generative Model: The generative model (GAN [15]) pro-
vides a mapping between the latent space and the stimulus
(image) space. GANs are a type of artificial neural network
composed of a discriminator D and a generator G during
training. G attempts to achieve generative performance to
output images that cannot be told apart from training exam-
ples. By comparison, D requires distinguishing whether input
images belong to the training dataset or are a G falsification.
Consequently, G and D are involved in adversarial training
until D cannot reliably discriminate between training samples
and G output. We can exclude D at this stage and assume G
is fully trained. As a result, the generative model has a latent
representation of training data.

The generative model we used was pretrained with images
of celebrity faces (CelebA-HQ data set) [30]. This dataset is
a higher-resolution variant of the CelebA dataset [37]. The
output of the GAN are 1024 × 1024 px realistic images
of faces generated from 512-D latent vectors. Therefore, the
model provides a mapping of G : Z → X, such as G(zn) =
xn, where zn ∈ Z is a point in a latent space Z and xn ∈ X
is graphical information perceivable by humans (images of
faces). To that end, the generator creates images (x0, . . . , xn)

from vectors (z0, . . . , zn) taken from the latent space.
Feedback and Model Updating: The goal of our framework

is to steer the generator G within the latent space Z to find a
point ẑ where the intended VFs are represented. This point is
such that G(ẑ) = x̂ aligns closely with the group’s collective
mental VF(s). As more subjects contribute their feedback,
latent vectors classified as “target” ẑn progressively refine
the estimation of ẑ: each successive iteration G(ẑn) = x̂n is
expected to reflect the intended VFs more accurately than the
previous G(ẑn−1).
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In detail, the technique for updating the generative model
is as follows. We sampled a stimulus image from a latent
vector from the GAN with an increasing the number of
subjects. The sampling strategy ensured that nontarget vectors,
those corresponding to the opposing VF, are over-represented
compared to the target class. This requirement enabled images
with desired features to evoke intensified brain potentials when
presented with those without them. Moreover, this is a realistic
scenario in which target VFs are not favoring the output by a
majority vote effect on the classification step.

Responses update the latent estimation with a variant of the
well-known Rocchio algorithm [50], chosen as the simplest
vector interpolation. That is, the latent vectors of images cor-
responding to target classifications update the GAN estimate,
so the generative output captures the group’s opinion. We
determine the average of the image vectors as those positively
classified and designate zavg for the corresponding vector. Then
we update the zn vector by having zn+1 = zn + zavg, where a
new randomly chosen subject provides zn+1, but without any
sequential dependencies between each zn. The zn point can
now shift step-wise in Z and finally reach the ẑ position as
positive classifications from new users updating the feedback
pool. This final ẑ produces the G(ẑ) image with the target VFs
in consensus with the user group.

D. Composing User Groups With Divergent Goals

Combined Visual Feature Simulation: We simulated the
combination of VFs by integrating input feedback correspond-
ing to the individual VFs. Consequently, we collected the
appropriate cross-subject feedback sequentially from multiple
VFs in the form of latent vectors z. For example, for a
combined image with “male” and “old” VFs, positively clas-
sified vectors from the “male” class were used to update
the latent space, followed by vectors from the “old” class.
In these simulations, we omitted combinations that would
include opposing VFs (e.g., “smiling” + “nonsmiling”), as
these features conflict with each other.

For example, if we simulated study subjects contributing
feedback for a combination of VFs, e.g., half of them would
focus on “smiling” faces and the other half on “blond-haired”
faces. In this case, we would expect the generated image to
be the face of a smiling blond person.

Conflicting Visual Feature Simulation: In an experiment
independent of the previous, we generated image pairs for each
set of two opposite, or conflicting, VFs with EEG feedback
from all subjects. Such pairs of mutually incompatible features
were formed from our set of visual tasks, for example,
simultaneous feedback from both “smiling” and “nonsmiling”
VFs. Therefore, we simulated conflicting feedback by updating
the generative model with equal brain feedback from each
opposing VF. In the previous example, we would select 15
randomly sampled and positively classified latent vectors for
the “smiling” VF and 15 randomly sampled and positively
classified latent vectors for the “nonsmiling” VF. The resulting
mean vector was used as input for the generative model,
resulting in one output image. The process yields sets of
three images: two corresponding to the opposing VFs and one

representing the conflicting scenario. Therefore, our total of
eight VFs result in four sets of images, as seen in Fig. 6.

E. Evaluation

We employ different evaluation methods to measure the
classification performance and image generation quality, which
we explain below.

Evaluation of Classification Performance: Classifier
performance was measured by area under the ROC curve
(AUC) and validated by a permutation test. In the permutation
test, we obtained permutation-based p-values by contrasting
task classifiers’ AUC scores with those of classifiers trained
with randomly permutated class labels [43], accounting for
unbalanced classes. We determined a minimum theoretical
p-value of 0.01, performing k = 100 permutations per
subject [44]. Finally, we computed the AUC of predicted
labels for the target VF (test data) against ground truth labels
manually assigned for each stimulus image (manual VF
annotations).

Control Models and Evaluation Protocol: We introduced
two additional feedback baselines to assess the semantically
salient VFs relevant to the task in generated images. First,
a random process was designed to represent the empirical
lower bound of our approach’s performance. In this model,
the classifier’s labels assigned to each stimulus image were
randomly shuffled, distorting the EEG-based target versus
nontarget label and image pairs. Second, an explicit feedback
model was used to represent an empirical upper-performance
limit. Here, each image was assigned its manual ground
truth label for the same target versus nontarget classification,
effectively bypassing brain-based inputs. Therefore, positive
feedback was assigned to images that correctly match the VFs
set as the target for each task.

Generating Images That Combine Visual Features: We
generated and evaluated images combining 1, 2, 3, and 4 VFs
of faces, covering all 4×4 feature combinations. Each subject
contributed one VF to the global target image generation
goal (e.g., Subject A contributed “blond-haired” and Subject
B contributed “male” for “blond male”). The model then
combined feedback from single VF targets into a cross-subject
output. Fig. 5 shows images generated by combining several
VFs using the brain, random and manual feedback models,
and increasing the number of subjects. Individual contributions
were used as feedback to update vectors in the GAN latent
space, outputting an image that combined all target VFs.

Two external annotators evaluated the generated images—
one self-reported as female and 57 years old, and the other as
male and 25. They had not participated in the neurophysiology
experiment. The images were displayed together with their
corresponding task (VF description), and one evaluator rated
them on a discrete scale: “no match” (0), “partial match”
(0.5), and “total match” (1). In the evaluation, the order of
the images was randomized, meaning that the annotator did
not know which of the three processes produced each image.
Therefore, the process was blind, and it objectively determined
the performance of the processes. To ensure the reliability
of the annotations, another evaluator assessed 100 randomly
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selected images. The resulting Cohen’s Kappa shows a high-
inter-rater agreement between the annotators (κ = 0.76).

Evaluation of Generated Images With Conflicting Goals:
Additional external assessors evaluated the generative outcome
of the conflicting visual feedback simulation in another anno-
tation study that included ten independent annotators (mean
= 41.6, SD = 13.6 years old; two female, eight male, self-
reported). A larger pool of evaluators was used because the
images were intentionally generated with conflicting feedback
and their match with the categories was more nuanced. This
study design ensured that annotations would represent a more
general opinion and result in a more reliable estimate of
the quality of the generated images. In the evaluation, we
presented the annotators with three images: two with the
opposite tasks and one combining these conflicting tasks.
For example, one image with feedback on “young,” one
image with feedback on “old,” and one image with conflicting
feedback on both “young” and “old” (same amount for each
feature).

The annotators then evaluated the image with conflicting
feedback on a continuous scale from 0 to 1. For example,
in the “young,” “young-old,” and “old” image set, a score
of 0 would mean conflicting output completely matching the
“young” image features. A score of 0.5 would mean a perfect
intermediate between the “old” and “young” VFs. A score
of 1 would mean conflicting output completely matching the
shown “old” image features. Each evaluator assessed all four
conflicting images.

IV. RESULTS

A. Neurophysiological Findings

A dissociation between target and nontarget stimuli may be
observed from ca. 250 ms after onset, as shown in Fig. 2.
We observed this over centro-parietal sites and gradually grew
in magnitude (maximum difference of 2.36 µV at 464 ms,
t(30) = 11.80, p < 0.00001) until well after the onset of the
subsequent stimulus (at 500 ms). Brain responses to target
images of faces showed a third positive peak with a latency of
ca. 380-ms absent in brain responses to nontarget images. We
observed a similar positivity across tasks within the 250–450-
ms range. Thus, the latency, topography, and task dependence
suggested that the effect of target stimulus detection reflected
a P3 response [48], which is expected to be seen in such an
oddball detection task.

B. Classification Performance

The training procedure was in the milliseconds range for
all subjects and visual tasks (N = 240) with mean 61.15 ms
(SD = 82.31, min = 45.82, max = 1329.46, and N =
240). To evaluate the classifiers, we computed the mean
AUC, precision, recall, and F1 score over the study subjects.
Table I shows the average performance per VF. Throughout,
the median classifier AUC was above 0.7, indicating accept-
able classification performance [41]. The high precision and
moderate recall score in Table I indicate that models are
conservative to avoid false positives, as expected from the
selected confidence score.

TABLE I
ROC AUC, PRECISION, RECALL, AND F1 SCORES FOR INDIVIDUAL AND

AGGREGATED (AVERAGE) VISUAL STIMULI TASKS (BLOND-HAIRED,
DARK-HAIRED, FEMALE, MALE, NONSMILING, SMILING,

OLD, AND YOUNG)

C. Quality of Generated Images

The image quality convergence was evaluated by increasing
the number of subjects, as shown in Fig. 3. In general, adding
feedback from an increasing number of subjects enhanced the
performance of the generative model across all VF combina-
tions. Performance increased steadily with EEG and explicit
feedback as a function of the number of subjects, showing
that increased subject count provided additional feedback for
the generative model, improving the latent space estimate for
the target VFs. Increasing the task complexity (the number
of concurrent VFs) entailed lower quality and convergence
speed. Nonetheless, concerning the user evaluation of image
generation quality, using several target features simultaneously
also increased the likelihood of producing a partial match.
Contrarily, due to a class imbalance favoring the negative
class, the performance of the random baseline based on label
permutation decreased as the number of subjects increased.

Table II shows data for all combinations of VFs, signif-
icance, and improvement in output quality across feedback
models. We computed the statistical significance of quality
scores via a t-test, and Bonferroni corrected for multiple
testing. When all feedback was available to the generative
model, we observed image generation performance near parity
between the brain and explicit feedback models. The quality of
the generated images was comparable to those resulting from
explicit manual feedback.

D. Quality of Generated Images With Conflicting Goals

We evaluated the generative outcome in case of conflicting
image generation goals. The system generated images of faces
with equal brain feedback for opposing VFs (e.g., “smiling”
and “nonsmiling”) and resolved cross-subject disagreement
by displaying intermediate VFs (Fig. 6). Conflicting feed-
back for “blond-female” and “smiling-nonsmiling” output
tended to produce an output image close to a perfect
intermediate between the two extreme features. On the other
hand, the “young-old” simulation tended to produce images
with features closer to “young.” The output of a conflicting
“female-male” tended to produce a female, but with facial
features tending androgynous features, as indicated by the
disagreement from evaluators. With previous observations of
generative output per study subject, some VFs tended to be
over-represented, e.g., faces with “female” or “young” VFs
were generated more often than “male” or “old” features,
probably as those features are correlated in the GAN’s training
images and thus in its learned space.
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Fig. 3. Image quality across VF combinations (1 to 4 as columns) and feedback models: brain (green), random (blue), and explicit (orange). (Top) Mean
quality score and its 95% confidence interval as the number of subjects increases. (Bottom) Mean quality score achieved by the maximum number of subjects
in the experiment (N = 30).

TABLE II
QUALITY OF THE GENERATIVE OUTPUT FOR DIFFERENT AMOUNTS OF VF COMBINATIONS (#VF) AND FEEDBACK MODELS (N = 30; R : RANDOM,

B : BRAIN, E : EXPLICIT; FB : FEEDBACK). MEAN VALUES RANGE FROM 0 TO 1 (HIGHER IS BETTER) AND ARE SHOWN WITH STANDARD

DEVIATION, THE PERCENTAGE DIFFERENCE IN THE GENERATIVE OUTPUT BETWEEN THE BASELINE AND FEEDBACK METHODS (�),
BONFERRONI CORRECTED p-VALUES, AND RESPECTIVE T -STATISTICS BETWEEN THE CONDITIONS

V. DISCUSSION AND CONCLUSION

We presented an implicit BCI system for image generation.
To this end, we reported a proof-of-concept system and
experiments in which an individual or a group of subjects
can provide implicit feedback to a generative model pro-
ducing novel images of faces matching cross-subject mental
targets. The approach demonstrates computer-generated visual
information from EEG feedback without explicit human input;
human subjects only pay attention to VFs relevant to their
target image generation goal.

A. Answers to Research Questions

We asked three research questions to study whether BCI for
visual information generation is possible and how it performs
compared to random and explicit feedback. Here, we discuss
the results accordingly.

RQ1: Can we infer the presence or absence of salient visual
facial features of interest from EEG responses?

Our findings demonstrate that subjects recognize specific
VFs and that the brain signals evoked by this recognition
are consistent with previously reported neurophysiological
findings [12]. The machine learning experiments show that the
feedback can be reliably decoded and that the performance
of the single-trial ERP classifiers trained using brain sig-
nals significantly outperforms random classifiers and shows
an average classification performance (AUC) of above 0.7.
Although the models are personalized and trained individually
for each study subject, thus requiring personalized calibration,
the average performance of the group of subjects is remarkably
high.

RQ2: Can implicit cross-subject EEG feedback be used to
steer a generative model to produce novel images of faces
capturing the mental targets of individuals?

The approach was shown to control the generative process
toward target VFs adequately. The quality of images of faces
generated with implicit EEG-based feedback is comparable
to manual selection and significantly better than a random
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(b)(a)

Fig. 4. (a) EEG epoch feature engineering into spatiotemporal vectors in response to a target (red) or nontarget (gray) stimulus. Feature vectors are separated
according to the VF task they were recorded in. (b) Training and test data splitting for the example “blond-haired” task. The training set includes all data but
the target visual task and its opposite. The test set includes only data for the target visual task. This conservative setup avoids confounds of training on brain
responses of the same visual category.

Fig. 5. Examples of generated images of faces combining 2, 3, and 4 VFs
(VF) using the three feedback models: brain (B), explicit (E), and random (R).
Generative performance increases with the number of subjects, especially for
more challenging tasks, such as combining more VF or VF over-represented
in the model’s training data. Brain and explicit feedback produce images that
match the group’s goals.

baseline, including scenarios in which multiple VFs, are
combined.

RQ3: How do the number of users, the complexity of the
image feature space, and potentially conflicting target VFs
affect the quality of generated images of faces?

Fig. 6. Image generation output with conflicting VFs. Blocks display a pair
of opposing VFs generated from all subjects. The middle image was generated
with sampled half feedback pool from the opposing visual tasks. Results are
shown as the mean and standard deviation of similarity to the edge examples
(for a VF—middle image; 0: equivalent to the respective left image; and 1:
equivalent to the respective right image).

The number of users is shown to affect the quality of
the generated images significantly. For models trained with
multiple users, as few as ten subjects are enough to provide
high-quality generative output that is not significantly different
from the output obtained with 30 subjects. This suggests we
can effectively capture diverse mental targets in creative tasks
through implicit feedback, even with as few as ten subjects
contributing to the process.

Our results also show that the results generalize to image
generation scenarios with complex multidimensional goals.
While study subjects focus on individual VFs (e.g., “smile”),
the results from simulations in which different VFs are
combined (e.g., creating a smiling face of a dark-haired young
male) show that the methodology generalizes to multifeature
scenarios. As expected, the VF space’s complexity affects
the generated images’ quality, but the general image quality
remains very high.

The results indicate that our approach can generate images
of faces despite conflicting goals and tolerates conflicting
cross-subject feedback. However, balancing the contributions
of individual subjects in these scenarios remains challenging.
Some conflicting goals, such as blond- and dark-haired, were
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better accounted for than others, such as young and old.
Our Rocchio feedback approach may have been too simple
to capture the scale invariance in latent spaces, resulting in
imbalanced feedback and imbalanced presence of VFs in the
output images. Another possible explanation is that the latent
GAN space does not capture the dimensions equally and leads
to the collapse on some of the target features. Despite these
shortcomings in combining conflicting feedback, our results
show that the models adequately reflect the user’s mental
targets and can lead to high-quality output even in more
complex image generation scenarios.

B. Limitations and Future Work

Stimulus Selection and the P3: Our experiments focus
specifically on the VFs of images, particularly of human
faces, which leverages our natural human ability to discern
and categorize facial features. Furthermore, it allows the
investigation of complex visual categories like “old” or “male”
in a context that study subjects can intuitively understand.
In addition, we base our approach on the subcomponents of
ERPs that reflect the target relevance of features appearing
in stimuli. Therefore, our approach is not dependent on any
particular stimulus feature, and the presented methodology
has the potential to work on different datasets, image types,
and tasks. Indeed, the targeted ERP components are known
to occur across visual, auditory, tactile, and even olfactory
modalities [42], [61]. However, we did not experiment with
other forms of image generation beyond facial features.
Therefore, we cannot entirely exclude the possibility that
other datasets and generative models might lead to differ-
ences in performance, which is an exciting avenue for future
work.

Also, for experimental reasons so that the outputs generated
in response to feedback could be objectively evaluated, our
methodology used VFs that are a priori objective, easy to
recognize by users, and with an assigned opposite feature (e.g.,
“smiling” versus “nonsmiling” rather than “liking” versus
“disliking”). However, there is still a subjective component
in interpreting some of these. For example, our perception of
“old” versus “young” can change as we age. Even with manual
explicit feedback, it can prevent reaching maximum evaluated
performance ratings in the image generation task.

It is noteworthy that the system does not decode the identity
of the stimulus from the brain signal. Instead, it detects
whether the VFs of interest are salient in a particular stimulus
or not, and thus, we expect the P3 to be sensitive to the
general saliency of features in our BCI design. Therefore,
the methodology should generalize to other types of visual
stimuli and even other modalities. As part of our preanalysis,
our results report that feature relevance indeed shows an
ERP oddball effect with a clearly amplified P3 component.
However, the classifiers use the entire ERP and do not
necessarily rely only on the P3, but we expect the P3 to
contribute notably to the models.

Classification and Generative Modeling: Concerning stim-
uli selection, EEG responses to the negative class were

over-represented due to the design of the neurophysiolog-
ical data acquisition. A random classifier with such class
imbalance will easily learn to predict the majority class.
Consequently, the feedback would cause the latent vector
to diverge from the target, and, as a result, the generative
model would be more likely to generate images that match the
opposite task, e.g., “dark-haired” features in the “blond” task,
thus decreasing image quality with random feedback. As a
result, correctly classifying the positive target class with such
imbalance makes the task even more difficult, the expected
random performance lower, and our final image generation
task more difficult. Despite this imbalance, we observe high-
classification performance and image generation performance
comparable to explicit feedback.

Demographic factors, such as the user’s age and gender,
could influence the accuracy of decoding visual preferences
and downstream generative modeling performance. However,
we believe that these factors do not diminish the significance
of our findings. In addition, while our approach shows promise
for broader applications across various generative models, such
as variational autoencoders [32] or diffusion models [22], this
initial work did not extend to such comparative analyses.
However, for our contribution, the particular choice of gener-
ative model is secondary, and we anticipate that it would lead
to subtle differences in performance only. Exploring additional
sources of variability and assessing the generalizability of our
methodology across different generative modeling techniques
constitute a key direction for future research.

Usability and Deployment in the Wild: Our approach lever-
ages cross-subject implicit feedback to produce novel visual
information, also improving the EEG signal-to-noise ratio.
While our approach was implemented as a proof of concept,
we relied on a separate experiment to collect data and analyze
image generation results. Our methodology allows online
adaptation but was not implemented for the present models and
stimuli selection. In practice, the time for classifier training
and updating the system based on feedback was negligible,
whether the aggregated feedback contained multiple and/or
conflicting VFs. The most significant software bottlenecks
were related to EEG preprocessing and image generation,
reflecting current technological constraints rather than our
methodology. Therefore, an online scenario with an adaptive
stimuli sampling strategy is subject to future work but has
been demonstrated to be feasible in the simulations.

The comfort, calibration, and general acceptability of wear-
able sensors could limit an online experiment to work outside
of laboratory environments. However, we expect the hardware
to become more comfortable, wireless [6], [21], [69], and
easier to calibrate and wear due to the adoption of dry
electrodes. Moreover, we foresee further advantages from lines
of research, such as self-calibrating BCI systems [16] and
classifier-free generative modeling [66]. These advancements
could make use of more nuanced EEG responses, smoothly
altering the VFs of GAN’s outputs.

Applications of EEG-Based Interaction Modalities: We
already anticipate some immediate advantages of this
interaction modality compared to traditional interfaces. Our



DE LA TORRE-ORTIZ et al.: CROSS-SUBJECT EEG FEEDBACK FOR IMPLICIT IMAGE GENERATION 6115

method is better suited for collecting fast and intuitive eval-
uative feedback, not scenarios with prolonged complex tasks
or fine-grained control. We also expect that in our approach
the mental effort alone will be less demanding than that of
the motoric and mental load of manual methods. However, we
did not record self-reported measures to compare mental and
physical load, such as [20], [39]. Thus, we envision a future in
which similar EEG-based methods will coexist with traditional
interfaces, and the present study should be considered the
first-of-its-kind proof of concept. Similarly, our system has
unique advantages: it detects feature presence based on first
impressions and allows fully implicit interaction. However, a
detailed comparison to other input methods requires further
experimentation and investigation of usability in more realistic
scenarios.

Collectively generating images from brain signals enables
various applications to create personalized visual experiences.
In such scenarios, preferences from many users can be
combined into a final output that captures both diversity and
agreement. For example, users from a specific demographic
could provide feedback and shape an image toward a brand
feeling, as implicitly understood by such a crowd.

Ethical Considerations: Finally, we identified two main
ethical challenges: 1) due to a bias in the generative model and
2) related to the use of BCIs. First, as shown in Figs. 5 and 6,
the output of the generative model shows a predisposition to
generate certain features since the model was pretrained on
a database of images of celebrities. Likewise, specifying or
controlling other attributes was out of the scope of the present
study but should be considered in follow-up research. Also,
we advertised and enrolled study subjects from a university
population in Finland. A more diverse group of subjects should
be considered for future studies.

Second, an important concern arises from the nature of
BCI systems. Despite the current technological limitations
for real-world applications, the regular or pervasive use of
wearables could raise serious privacy concerns and potential
misuse of the technology [54]. While these technologies are
not inherently harmful, collecting physiological data intro-
duces the potential for misuse, such as accumulating large
datasets of sensitive signals, fingerprinting, and inappropriate
consent procedures, among other issues [24]. Furthermore, the
preambles of the European Parliament legislative resolution
for the Artificial Intelligence Act [46] identify brain–machine
interfaces as potential enablers of deceptive content that could
challenge individuals’ autonomy through a high degree of
personalization of content. Given this significant potential for
misuse, there is a need for research and further development of
guidelines that ensure the open and democratized development
of these technologies.

C. Conclusion

To the best of our knowledge, we present the first-of-its-
kind cross-subject system for image generation using implicit
feedback. Our system uniquely utilizes implicit feedback
directly from the brain, effectively integrating diverse and
potentially conflicting goals from multiple individuals. Our

approach takes advantage of the very first, immediate reactions
occurring within less than a second, from which users form
their opinion, by directly capturing this effect from neurophys-
iological signals. Furthermore, we close the loop by producing
novel visual information that meets people’s intuitive, visceral
responses simply by observing their brain potentials. We
exemplify this proof of concept work with the case of auto-
mated image generation in several user studies and evaluations.
Our approach successfully aggregates the natural reactions
of a cohort of subjects as evaluative feedback and generates
new visual information matching those, achieving remarkable
performance across tasks. With this, we envision an intriguing
future in which users can make images matching their mental
targets aided by responses directly captured from the brain.
The presented results open avenues for collaborative forms
of AI as tools that naturally integrate with human cognition
and allow collaboration directly from brain signals, especially
in the settings of visual information generation. As a result,
implicit EEG feedback displays potential for breakthrough
applications that support image generation tasks, aggregating
users’ opinions when perceiving visual information in novel
human-in-the-loop approaches.
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