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Dynamic Coupling for Underactuated Compliant
Arms With Not Well-Defined Relative Degree

Michele Pierallini , Member, IEEE, Franco Angelini , Member, IEEE, and Manolo Garabini

Abstract—Soft robots are deformable, compliant, and underac-
tuated systems. During any task, due to their enormous capability
of body deformation, the relative degree may not be well-defined.
Since the applicability of the large majority of the state-of-the-
art control techniques depends on this property, they frequently
encounter singularities. This fact can jeopardize the system’s
safety, prevent the correct task execution, or reduce performance.
In this work, we investigate the relative degree of dependence for
a class of compliant underactuated arms. Our method leverages
the well-known strong inertial coupling hypothesis that, if holds,
guarantees a constant relative degree of two. We generalize it
by introducing coupling conditions where the relative degree is
assured to be piecewise constant and greater than two. Relying on
the design parameters, we analyze the dynamic evolution of the
coupling conditions, which are then used to synthesize a classic
input–output feedback controller. We also prove the stability of
the closed-loop system. Finally, we validate the efficacy of the
approach in simulation and on real hardware using a two and
three degrees of freedom underactuated compliant arms with
varying stiffness profiles, tasks, and disturbances.

Index Terms—Flexible structures, motion control, nonlinear
systems, robots.

I. INTRODUCTION

SOFT robots are characterized by deformable or continuous
bodies and elastic elements [1], [2]. A subclass of soft

robots is the compliant underactuated arms [3]. They are
designed with lightweight, e.g., [3], or deformable/continuous
material, e.g., [4], and exploit novel properties, such as adapt-
ability [5], deformability [6], and shock absorption, which are
crucial to operate and interact in real-life scenarios, e.g., agri-
food [7] and healthcare [8].

Despite the great effort into the fabrication of soft struc-
tures [9], [10], the modeling [11], [12], [13] and the control
problems are yet to be solved [14]. Recalling the so-called
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Fig. 1. Block diagrams picturing the relative degree dependence problem
and the proposed approach for compliant underactuated arms, top and bottom,
respectively. In red, we highlight the singularity problem for the input–output
feedback linearization controller using a relative degree equal to two. In the
bottom scheme, the main contribution of this article is highlighted in blue. We
derive coupling conditions by selecting the robust relative degree r′ leveraging
the stiffness and damping matrix.

control-oriented models [12] that derive from a discretization
approach of the continuous beam, we focus on the con-
trol problem. The challenge, posed by the underactuation,
lies in the fact that the relative degree of compliant arms
is not well-defined leading to unbounded and dangerous
control action. The compliant arm class, treated in this
article, relies on the intersection of the two main players
in the soft robot scenario: 1) continuum and 2) articulated
robots [15]. They can be articulated with a generic num-
ber of passive joints [3] or continuous with lightweight
materials [4].

To deal with the control of soft robots, two different
approaches have been proposed. The first is a learning-based
method [16], [17], [18], [19], [20], [21], [22], while the
second is a classical model-based technique [14], [15], [23],
[24], [25]. Both approaches are successfully exploitable if the
relative degree is well defined [3], [14], [26], [27], [28]. For
instance, Spong [26] proposed a condition, namely strongly
inertially coupled (SIC), that guarantees a fixed relative degree.
The same condition is employed in a soft continuum robot
with affine curvature [29]. However, this limits the method’s
applicability, especially in the case of a generic number of
passive joints. Therefore, what can one guarantee when the
relative degree changes?

In the literature of underactuated systems control [30], [31],
the effect of the relative degree dependence has been
addressed but not yet solved for compliant robots. In [32], the
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classic Feedback Linearization controller deals with multibody
mechanical systems and the applicability of the method,
i.e., fixed relative degree, is guaranteed by design solutions
that solve the nonminimum phase problem. However, not
always the robot’s design can be changed. The relative degree
challenge can be tackled from the control perspective. The
first technique is the approximation feedback linearization
(AFL) [33], [34], [35], [36], [37]. The idea is to modify
the drift and/or the control vector field to achieve a well-
posed canonical form and a fixed relative degree. In [37], this
paradigm is applied to a compliant underactuated manipulator;
however, the Authors consider a fixed relative degree equal to
two and a linear output function. None of [33], [34], [35], [36],
and [37] tackle the problem from a generic number of actuated
joints in the chain. The second algorithm is the dynamic
extension (DE) [38], [39]. The idea is to keep deriving the
system’s dynamics until a well-conditioned Byrnes–Isidori
form is achieved. In [39] and [40], DE deals with a flexible
link and joint robots respectively, while [38] tackles the control
of a vessel. The third class of algorithm is the Sliding mode
ones [41]. In [42] and [43], the method is experimentally
applied to flexible link robots and planar n degrees of
freedom (DoFs) with one passive joint, respectively. The well-
definiteness of the relative degree is guaranteed thanks to the
sliding policy. Other types of controllers are the Learning
(also from demonstration) strategy, e.g., [17], [44], and [45],
virtual input-based, and output redefinition-based dynamic
inversion [38]. However, these techniques result in a substan-
tial modification of the robot dynamics or are time-consuming.
In addition, due to the complex system’s dynamics and the
learning paradigm, the change of the relative degree at some
point of the manifold is often unknown.

This article studies the relative degree changes in a com-
pliant underactuated arm class among any task and output
function deriving controllability-like conditions. In particular,
this article’s main contribution is the study of the relative
degree of dependence for control purposes of compliant
underactuated robots and, for the first time, we link it to the
compliant robot’s dynamics with the following steps.

This article studies the relative degree changes in a com-
pliant underactuated arm class among any task and output
function deriving controllability-like conditions. In particular,
this article’s main contribution is the study of the changes
of the relative degree for control purposes in compliant
underactuated robots and, for the first time, we link it to the
compliant robot’s dynamics with the following steps.

1) We derive new coupling dynamic conditions generaliz-
ing the SIC one [26] by taking into account high-order
derivatives of both the (freely chosen) output function
and the underactuated robot dynamics.

2) We study the relationship between the compliant under-
actuated robots’ dynamic and high-order terms w.r.t.
design choices.

3) We use a classic model-based output feedback controller,
i.e., AFL [36], proving the reliability of both the new
conditions (1) and the high-order dynamic terms evolu-
tion (2). As a minor contribution, we prove the stability
of the closed-loop system using (1) and (2).

Points (1)–(3) are theoretical and represent the contribu-
tion of this article. The method’s effectiveness is tested in
simulations and on real hardware. We simulate a three-DoF
lightweight robot and a continuum one. Experiments use a
two-DoF lightweight robot. Only the first state is active in all
the arms, and we vary the stiffness profile, task, relative degree,
and disturbances. Moreover, we compare the performance with
standard controllers applicable to underactuated systems.

Notation: Let 0n, In ∈ R
n×n be the zero and the identity

matrix, respectively. For any matrix A ∈ R
n×m, the symbol

Aij indicates its (i, j)th element and, let q(t) : [0, t] → R
n,

we define ∇qA(q)q̇ �
∑n

i=1 ∇qiA(q)q̇i. The symbol ‖(·)‖
indicates the ‖(·)‖1. Let be f (·), g(·) : R

n → R
n, Lf g(x)

stands for the Lie derivative and adf g(x) indicates the Lie
brackets, i.e., adf g(x) = Lf g(x)− Lgf (x) = (∂g(x)/∂x) f (x)−
(∂f (x)/∂x) g(x) = ∇xg(x)f (x)− ∇xf (x)g(x). For any function
f (·) : Rn × [0, tf ] → R

n, the symbol f (i)(x(t)) indicates its ith
time derivative. O(·) indicates the approximation order of (·).
Finally, D(·) indicates any compact set of (·).

II. PROBLEM DEFINITION

We refer to the model of a compliant underactuated arm [3]
modeled using lumped parameters (LP) [3] and a piecewise
constant curvature (PCC) description [4], which combines one
actuated state and a generic number of unactuated ones, i.e.,

M(q)q̈ + χ(q, q̇)+ G(q)+ Dq̇ + Kq = Fu (1)

where q, q̇, q̈ ∈ Dq ⊂ R
n are the Lagrangian variables posi-

tion, velocity and acceleration vectors, respectively. M(q) ∈
R

n×n is the symmetric inertia matrix, such as M(q) 	 0 ∀q ∈
Dq. χ(q, q̇) ∈ R

n and G(q) ∈ R
n are the Coriolis and gravity

vector, respectively. D ∈ R
n×n and K ∈ R

n×n are the damping
and spring matrix, such as K, D 	 0 and ||K|| > 1. u ∈ R

is the control input, and F ∈ R
n is the underactuation matrix,

i.e., rank{F} = 1, hence the number of the passive state is
n − 1.

The dynamics model (1) describes a great variety of com-
pliant underactuated arms. In this article, we will validate our
method using an LP [3] and a PCC model [4], [46], [47]. LP
usually describes lightweight flexible link robots, while PCC
refers to soft continuous robots, and both robots belong to the
complaint underactuated arms class described in (1).

Let Dx ⊂ R
2n be a compact set, and let x � [q�, q̇�]� ∈

Dx be the state of the system, we can rearrange (1) in the
affine state-space form representation, i.e.,

{
ẋ(t) = f (x(t))+ g(x(t))u(t) (2)

y(t) = h(x(t)) (3)

where x0 � x(0) is the initial condition, t ∈ [0, tf ] is the time
variable, f (·) : Dx × [0, tf ] → R

2n with f (x0) = 02n×1 and
g(·) : Dx × [0, tf ] → R

2n are the drift and control vector field,
respectively, i.e.,

f (x) =
[

q̇
−M−1(q)N(q, q̇)

]

, g(x) =
[

0n×1

M−1(q)F

]

(4)

with N(q, q̇) � χ(q, q̇)+G(q)+Kq+Dq̇. y ∈ R is the output of
the system, and h(·) : Dx × [0, tf ] → R is the output function.
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The system (2) and (3) has a not well-defined relative degree
r within the task. This means that it varies for some t ∈ [0, tf ],
and x ∈ Dx (e.g., [48]). In addition, let us indicate with r′ the
robust relative degree (e.g., [34]). Note that it holds r′ ≥ r [34].
Now, let us assume what follows.

Assumption 1: Recalling (2) and (3), f (·), g(·), h(·), Lk
f h(·),

and LgLk−1
f h(·) for k = 1, . . . , 2n are locally Lipschitz with

constant f0, g0, h0, Lk
f h0, LgLk−1

f h0, i.e., ||f (x1) − f (x2)|| ≤
f0||x1 − x2|| ∀x1, x2 ∈ Dx.

Assumption 1 is a classic one. Recalling [49] and (1), there
exist constants, such as μm ≤ ||M(q)|| ≤ μM, ||χ(q, q̇)|| ≤
μC(‖q̇‖ + ‖q‖), and ||G(q)|| ≤ μG‖q‖. Hence, one has that
f0 = μ−1

m (μC+μG+||K||+||D||). Since μm, μC � 1, μG ≈ 1,
and ||K|| > 1, then it holds that f0 > 1. Note that f0 depends
on the system’s physical design, material, and geometry of
the robot. Moreover, it hold that g0 = μ−1

m > 0, and
h0 > 0.

Assumption 2: The output function y(·) : [0, tf ] × Dx → R

in (3) is Cr′
([0, tf ]) and it can be written as a (nonlinear)

combination of the joint positions, i.e.,

y = h(x(t)) = h(q(t)) . (5)

Moreover, we assume that ∇(l)
q h(q)|q �= 01×n, for l = r, . . . , r′

and almost all q ∈ Dq.
We highlight that output functions in the form of (6)

are very common in robotics. An example is a combination
of the joint [3] or the Cartesian coordinates of the robot
end-effector [14], which are smooth functions belonging to
Cr′

[0, tf ].
Assumption 3: For (2), the controllability condition holds

true for x0 ∈ Dx, i.e., rank{g, adf g, , . . . , ad2n−1
f g}(x0) = 2n.

Assumption 3 is a controllability condition, which guarantees
the existence of a control action from an equilibrium x0 to a
certain state xf in finite time, i.e., tf . However, it is well known
that the compliant underactuated arms in (1) are small-time
locally controllable [50], [51], [52], but they do not satisfy the
necessary condition to be fully linearized via input to the state
controller, i.e., rank{g, ad2

f g}(x) < rank{g, adf g}(x) for some
x ∈ Dx, see [34], [36], [53]. In other words, a controller, that
moves the system up to a certain state in finite time, exists, but
it cannot be designed in an input-to-output fashion. Therefore,
one can proceed by approximating the system (2) and (3) with
one being input-to-state linearizable, and it would be possible
to design the controller [36].

Finally, the goals of this work are the following.
Goal 1: Generalization of the SIC condition [26] by

developing controllability conditions, which ensure dynamic
coupling between the active and passive joints for (1) and (5).

Goal 2: Analyze the high-order dynamic terms evolution
in (1) and (5) highlighting the role of stiffness and damping
terms.

Goal 3: Let yd(t) : [0, tf ] → R be the desired output
function which is Cr′

([0, tf ]). Use a classic model-based
feedback controller relying on G1 and G2 to guarantee the
stable tracking of yd(t) with tf < +∞.

In the following two sections, we aim to exploit the
compliant underactuated arm dynamics in two ways. First, we

derive dynamic conditions to guarantee a coupling between the
active and unactuated joints in (1), (2), and (5) (Section III).
Second, we propose a control law, which solves the trajectory
tracking problem with a bounded error (Section IV).

III. ON THE RELATIVE DEGREE OF COMPLIANT

UNDERACTUATED ARMS

In this section, differentiating the arbitrarily chosen output
function (5), we derive a local diffeomorphism to approximate
the system (2)–(5) and transform it into one written in canon-
ical form. Then, we propose dynamic conditions generalizing
the well-known SIC one in [26]. Finally, we highlight the
contribution of the physical parameters, such as stiffness and
damping term in (1) in the relative degree variation.

A. Motivational Example

Classic model-based controllers assume that the relative
degree r of the system is fixed along the desired task. This
is sufficient to guarantee the boundedness of the control
input [3], [15], [26]. However, when the robot is soft or
underactuated, the relative degree is not well-defined among
the whole manifold and the naive use of model-based feedback
controllers close these singularities leads to unbounded control
action. A clear example is the pendubot, i.e., two DoFs
arm [26] also in the case of elastic joints [3]. Let q =
[q1, q2]� ∈ R

2 be the configuration and let y = q1 + q2
be the output function. Then, the relative degree is equal
to r = 2 iff LgLf h(q) = b2 cos(q2)/detM(q) �= 0 ∀q ∈
R

2, where b2 ∈ R is an inertial parameter and detM(q) �=
0 ∀q ∈ R

2. Clearly, LgLf h(q) vanishes when the relative
position of the second joint, i.e., q2, is q2 = π/2. Therefore,
the classic feedback linearization control law [48], i.e., u(t) =
(v − L2

f h(x))/LgLf h(x) where v is an additional control input
to be selected, becomes unbounded when q2 → π/2. It is
worth mentioning that this is a robot inertial property, and
that q2 approaches π/2 more frequently while decreasing the
robot stiffness. In Section V-A, we will report the simulation
showing this peculiarity.

Considering a PCC model [4], selecting, as output func-
tion (5), the orientation of the robot’s tip. The problem of
relative degree affects the PCC model in the vertical configura-
tion, where LgLf h(x) → 0 leads to unbounded control action.
Please refer to Section V-A for further details.

B. Derive Approximated Diffeomorphism

We determine a diffeomorphism w.r.t. the relative degree.
Let us suppose that, the system (2)–(6) has relative

degree r for some x ∈ Dx, i.e., y(r) = Lr
f h(x) −

LgLr−1
f h(x(t))u. However, for some other x ∈ Dx, it holds

that |LgLr−1
f h(x(t))| ≈ 0. Thus, model-based input–output

controllers become divergent (e.g., [48]) but, in general, no
control action can affect the output’s evolution, i.e., loss of
controllability. To avoid this, one can keep differentiating the
output function (6), gaining new coupling conditions to design
a well-defined new control action.
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Differentiating the output function (3) w.r.t. time, one has
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = h(x) = φ0(x)
· · ·

y(r) = Lr
f h(x)+ LgLr−1

f h(x)u = φr(x)+ ψr(x)u
y(r+1) = φr+1(x)+ ψr+1(x)u + θr+1

(
x, u2

) + ωr+1(x, u̇)
· · ·

y(r
′) = φr′(x)+ ψr′(x)u + θr′

(
x, u2, . . . , ur′−r+1

)

+ωr′
(

x, u, u2, . . . , ur′−r, u̇, . . . , u(r
′−r+1)

)

(6)

where φ0(x) � h(x), and for k = 1, . . . , r′, we have

φk(x) = ∇xφk−1(x)f (x)

= ∇qφk−1(x)q̇ − ∇q̇φk−1(x)M
−1(q)N(q, q̇). (7)

The terms ψi(x) represent the affine terms in the control action
in (6). They are computed such that ψi(x) = 0 for i =
0, . . . , r − 1, while for i = r, . . . , r′, one has

ψi(x) = ∇xψi−1(x)f (x)+ ∇xφi−1(x)g(x)

= ∇qψi−1(x)q̇ − ∇q̇ψi−1(x)M
−1(q)N(q, q̇)

+ ∇q̇φi−1(x)M
−1(q)F. (8)

Analogously, the terms θj(x, ·) in (6) are such that θj(·) = 0
for j = 0, . . . , r, while for j = r + 1, . . . , r′, one has

θj(x, u2, . . . , uj−r+1) = ∇xψj−1(x)ug(x)u

+ θj−1(x, u2, . . . , uj−r)(f (x)+ g(x)u). (9)

Finally, the terms ωj(·) group the time derivatives of the
control action derived by the control input powers in θj−1(·)
and ψi(x) for i = r, . . . , r′, i.e., ωj(·) = 0 for j = 0, . . . , r
while for j = r + 1, . . . , r′, one has

ωj(x, ·) = ψj−1(x)u̇ + d

dt

∂

∂u
θj−1(x, ·)+ dωj−1(x, ·)

dt
. (10)

In the following, we often refer to φk(·), ψi(x), and ωj(·) = 0
for k, i, j = r, . . . , r′ as high order terms of the system (2)–(5).

Assumption 4: The functions ωj(x, ·) for j = r + 1, . . . , r′
in (6) are O(x), i.e., limt→tf |ωj(x(t), ·)|/‖x(t)‖ = 0.
Assumption 4 is reasonable thanks to Assumptions 1 and 3.
From a practical perspective, this means that a smooth control
action exists whose derivatives are almost null and multiplied
from an even small value.

Recalling the system (2), (6), and (6), we assume the exis-
tence of nonlinear local diffeomorphism 	(·) : Dx → Dz ⊂
R

2n, such as det{∇x	(x)} �= 0 ∀x ∈ Dx e.g., [34] and [36].
Note that this implies that the diffeomorphism does not
change during the task preserving the dynamics of the
robots and it preserves the manifold’s dimension. Recalling
Assumption 4, we neglect ωj(·) for j = r + 1, . . . , r′, and
define the new coordinates z � 	(x) = [ξ�, η�]� =
[ξ0, . . . , ξr′−1, η0, . . . , η2n−r′−1]� ∈ Dz ⊂ R

2n with ξ ∈
Dξ ⊂ R

r′
and η ∈ Dη ⊂ R

2n−r′
. We set ξi = φi(x), i =

0, . . . , r′ − 1 and select ηj = ηj(x), j = 0, . . . , 2n − r′ − 1 to

guarantee rank{∇x	(x)} = 2n ∀x ∈ Dx. Hence, the system (2)
and (3) becomes

⎧
⎪⎨

⎪⎩

ξ̇ = Aξ +�(ξ, η)u +

(
ξ, η, u2, . . . , ur′−r+1

)

η̇ = p(ξ, η, u)
yξ = [

1, 0�
2n−1×1

]
ξ � Cξ z

(11)

where Aia,ja = 0 ∀ia, ja = 1, . . . , r′, if ia = ja − 1 then
Aiaja = 1, �(·) : Dz → R

r′
collecting ψi(x) for i = r, . . . , r′,


(·) : Dz × R × · · · × R → R
r′

stacking θj(·) for j = r +
1, . . . , r′, and p(·) : Dz × R → R

2n−r′
. The robust relative

degree r′ affects the dimension of the zero-dynamics η̇ =
p(η, ξ, u) in (11) [54], [55].

C. Dynamic Coupling Conditions

In this section, we aim to solve G1. To this end, we derive
dynamic conditions between the active and passive joints.
Recalling (1) and differentiating the output function (6), we
define controllability conditions highlighting the damping and
stiffness contributions. We show that there exists a design
choice to ensure a certain condition to be true ∀x ∈ Dx.

Let us twice differentiate the output function (6) w.r.t. time,
then we introduce the following definition.

Definition 1: The system (1)–(3) is said to be SIC
(SIC=SC2) iff rank{ψ2(x)} = 1, where

ψ2(x) = LgLf h(x) = ∇qh(q)M−1(q)F . (12)

It is worth noting that when (12) is not fulfilled, controllers,
such as partial feedback linearization (e.g., [26]), encounter
singularities.

Recalling (6), one can keep differentiating the output func-
tion w.r.t. time. This leads to the following definition.

Definition 2: The system in (1)–(3) is said to be Strongly
Coupled3 (SC3) iff rank{ψ3(x)} = 1, where

ψ3(x) =
[
3∇2

q h(q)q̇ − ∇qh(q)M−1(q)
(∇q̇χ(q, q̇)+ D

)]

× M−1(q)F + ∇qh(q)
(
∇qM−1(q)q̇

)
M−1(q)F . (13)

Similarly, we compute the fourth output derivative w.r.t.
time, and we define what follows.

Definition 3: The system (1)–(3) is said to be Strongly
Coupled4 (SC4) iff rank{ψ4(x)} = 1, where

ψ4(x) = ∇q

[
3∇2

q h(q)q̇ − ∇qh(q)M−1(q)
(∇q̇χ(q, q̇)+ D

)

× M−1(q)F + ∇qh(q)
(
∇qM−1(q)q̇

)
M−1(q)F

]
q̇

−
[
3∇2

q h(q)M−1(q)F − ∇qh(q)M−1(q)∇2
q̇χ(q, q̇)M−1(q)F

+ ∇qh(q)∇qM−1(q)F
]
M−1(q)N(q, q̇,K)

−
[
3∇3

q h(q)q̇2 − ∇q

(
∇qh(q)M−1(q)

(∇q̇χ(q, q̇)+ D
))

q̇

− ∇q

(
∇qh(q)M−1(q)N(q, q̇,K)

)
−

[
2∇2

q h(q)q̇ − ∇qh(q)

× M−1(q)
(∇q̇χ(q, q̇)+ D

)]
M−1(q)

(∇q̇χ(q, q̇)+ D
)−

[
2∇2

q h(q)q̇ − ∇qh(q)M−1(q)∇2
q̇χ(q, q̇)

]
M−1(q)N(q, q̇,K)

]

× M−1(q)F . (14)
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Remark 1: The condition (12) depends on the output func-
tion (6) and inertial property of the system (1) and (2). In
addition, (13) depends also on the damping matrix and joint
velocities, and (14) is also a function of the stiffness of the
system.
Finally, recalling (6)–(9), one can state what follows.

Definition 4: The system (2) and (3) is said to be Strongly
Coupledr′

(SCr′
) iff rank{ψr′(x)} = 1.

D. On the Stiffness and Damping Influence in the Relative
Degree Variation

We study how the system’s relative degree is affected by
the system’s physical properties, e.g., stiffness and damping.
This introduces a novel element in the study w.r.t. [26], [35].

Proposition 1: Let us consider the system (1), the output
function (6) and Assumption 2. There exists a design choice to
guarantee the system to be SCi for i = 3, . . . , 2n ∀̃.1x ∈ Dx.

Proof: To achieve the proof, we show that there exists a
design choice that makes the terms ψi(·) : Dx → R in (6),
such as ψi(x) �= 0 ∀̃x ∈ Dx with i = 3, . . . , 2n.

Let us analyze the time derivatives of the output
function (6), i.e., (6), inductively. Recalling (1), (13),
i.e., r = 3, and Assumption 2, the term ψ3(x) =
∇qh(q)M−1(q)DM−1(q)F �= 0 ∀̃x ∈ Dx. ψ3(x) depends
linearly on the damping matrix D.

Similarly, recalling (14), i.e., r = 4, it holds that both
the terms ψ4(x) = ∇qh(q)M−1(q)KM−1(q)F �= 0 and
∇qh(q)M−1(q)DM−1(q)DM−1(q)F �= 0 ∀̃x ∈ Dx. ψ4(x)
depends linearly on K and quadratically on D.

Iteratively, one can use (8) noting that the term linear in K
and D are present in ψi(x) for i = 4, . . . , 2n. Therefore, the
thesis follows.

It is worth mentioning that the design of the damping
matrix is typically more complex w.r.t. the stiffness one. In
addition, D is usually such that ‖D‖ ≈ 0, thus (13) could
fail for some x ∈ Dx. Hence, one can design the stiffness to
guarantee (14).

The relative degree does not affect the performances in the
case of a rigid link, i.e., Kmm → +∞ ∀m = 1, . . . , n. This
is an intuitive way to understand the claim of Proposition 1.

Proposition 2: Let us consider the system (1), (2), and
output function (6). Let jB(jx) ⊂ Dx be, such as jB(jx) = {jx =
[jq�, 0�

n×1]� ∈ Dx | |ψj(
jx)| = 0} with j = r, . . . , r′.

Then, it exists a design choice such that jB(jx) ∩
j+1B(j+1x) = ∅ ∀j = r, . . . , r′ − 1.

Proof: Let us proceed by induction on the differentiation
order of the output and let s be the inductive index.

s = r = 2 leads to ψ2(x) in (12), and ψ2(
2x) = 0.

s = r + 1 = 3 leads to ψ3(x) in (13), such that ψ3(
2x) =

−∇qh(q) |2q M−1(2q)DM−1(2q)F �= 0 ∀2x ∈ 2B(2x), thanks
to the presence of the damping matrix, i.e., Proposition 1.

Let be the inductive hypothesis true. Note that this guaran-
tees that r′−2B(r

′−2x) ∩ r′−1B(r
′−1x) = ∅. Therefore, it holds

that ψr′−2(
r′−1x) �= 0 ∀r′−1x ∈ r′−1B(r

′−1x).

1Note that the expression ∀̃ �for almost all derives from the output
function (3) and Assumption 2.

s = r′ −1, recalling (8), leads to ψr′−1(x) = ∇qψr′−2(x)q̇+
∇q̇φr′−2(x)M−1(q)F−∇q̇ψr′−2(x)M−1(q)N(q, q̇), and, substi-
tuting x̃ � r′−1x, it holds that

ψr′−1(x̃) = ∇q̇φr′−2(x̃)
∣
∣
∣
x̃
M−1(q̃)F − ∇q̇ψr′−2(x)

∣
∣
∣
x̃

× M−1(q̃)(G(q̃)+ Kq̃) = 0. (15)

Then, two solutions exist for (15), namely:
(A) if both ∇q̇ψr′−2(x)|x̃ = 01×n and ∇q̇φr′−2(x)|x̃ = 01×n

and
(B) If for x̃ ∈ r′−1B(x̃) it holds that

∇q̇φr′−2(x)
∣
∣
∣
x̃
M−1(q̃)F = ∇q̇ψr′−2(x)

∣
∣
∣
x̃
M−1(q̃)(G(q̃)+ Kq̃).

(16)

Therefore, let us consider s = r′, the objective is to show that
ψr′(x̃) �= 0 ∀x̃ ∈ r′−1B(x̃), which leads to r′−1B(x̃)∩r′

B(r
′
x) =

∅. Recalling (7) and (8), one has

ψr′(x) = ∇qψr′−1(x)q̇ + [∇q
(∇qψr′−3(x)q̇ − ∇q̇ψr′−3(x)

× M−1(q)N(q, q̇)
)

− ∇q̇∇qψr′−2q̇

− ∇q̇∇q̇ψr′−2M−1(q)N(q, q̇)

− ∇q̇

(
∇qψr′−3(x)q̇ − ∇q̇ψr′−3(x)M

−1(q)N(q, q̇)
)

M−1(q)

× (∇q̇χ(q, q̇)+ D
)]

M−1(q)F − [∇q̇∇qψr′−1(x)q̇

+ ∇q̇∇q̇φr′−2(x)M
−1(q)F − ∇q̇∇q̇ψr′−2(x)M

−1(q)N(q, q̇)

∇q

(
∇qψr′−3(x)q̇ + ∇q̇φr′−3(x)M

−1(q)F − ∇q̇φr′−3(x)

× M−1(q)N(q, q̇)
)

− ∇q

(
∇qψr′−3(x)q̇ + ∇q̇φr′−3(x)M

−1(q)

× F − ∇q̇φr′−3(x)M
−1(q)N(q, q̇)

)
M−1(q)

(∇q̇χ(q, q̇)+ D
) ]

× M−1(q)N(q, q̇). (17)

We here analyze the solution (A).
1) Case A: Recalling (17) and evaluating it in x̃ yield

ψ
A)
r′ (x̃) = ∇q̇ψr′−3(x)

∣
∣
∣
x̃
M−1(q̃)FM−1(q̃)F

− ∇q∇q̇
(
ψr′−3(x)+ φr′−3(x)

)∣∣
∣
x̃
M−1(q)

× (Kq̃ + G(q̃))M−1(q̃)F − ∇q̇
(
ψr′−3(x)+ φr′−3(x)

)∣∣
∣
x̃

× M−1(q)
(
Kq̃ + G(q̃)+ K + ∇qG(q)

∣
∣
x̃)

)
M−1(q̃)F

+ ∇q̇∇q̇ψr′−2(x)
∣
∣
∣
x̃
M−1(q̃)(Kq̃ + G(q̃))M−1(q̃)(Kq̃ + G(q̃))

− ∇q̇∇q̇φr′−2(x)
∣
∣
∣
x̃
M−1(q̃)(Kq̃ + G(q̃))M−1(q̃)F .

Thanks to the inductive hypothesis, ∇q̇ψr′−3(x) and
∇q̇φr′−3(x) in x̃ are not null, while ∇q∇q̇ψr′−3(x) and
∇q∇q̇φr′−3(x) are such that ∇q∇q̇ψr′−3(x) ≈ ∇q∇q̇φr′−3(x) ≈
01×n. Similarly, one has ∇q̇∇q̇φr′−2(x) ≈ ∇q̇∇q̇φr′−2(x) ≈
01×n. Therefore, the stiffness matrix K can be properly
selected to gain ψA)

r′ (x̃) �= 0.
We here analyze the solution (B).
2) Case B: Recalling (16) and (17), one has

ψ
B)
r′ (x̃) = −∇qφr′−3(x)

∣
∣
∣
x̃
M−1(q̃)F − ∇q̇φr′−3(x)

∣
∣
∣
x̃
M−1(q̃)

× DM−1(q̃)D −
[

∇q̇φr′−3(x)
∣
∣
∣
q̃
∇qM−1(q)

∣
∣
∣
q̃
F − ∇q̇ψr′−3(x)

∣
∣
∣
x̃
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×M−1(q̃)

(

∇qG(q)
∣
∣
∣
q̃
+ K

)

+ ∇q̇ψr′−3(x)
∣
∣
∣
x̃
M−1(q̃)

×DM−1(q̃)D − ∇q̇ψr′−3(x)
∣
∣
∣
x̃
M−1(q̃)D

]
M−1(q̃)(Kq̃ + G(q̃)).

Similarly to the case A, we can conclude that ψB)
r′ (x̃) �= 0 ∀x̃ ∈

r′−1B(x̃) ⊂ Dx, and the proof is completed.
Proposition 2 states that if the system is not SCj for some

x ∈ Dx, it is SCj+1 ∀j = r, . . . , r′ − 1. This achieves G1.

IV. CONTROL DESIGN

In this section, we investigate the properties of compliant
underactuated arms to tackle the control problem properly.
Recalling (6) and Assumption 4, we analyze the dynamic
evolution of the high-order terms, namely φk(·) for k =
0, . . . , r′, ψi(·) for i = r, . . . , r′ and θj(·) for j = r +1, . . . , r′.
Then, we use a classic controller, which copes with the high-
order terms. Note that we do not assume that high-order terms
are uniformly high-order [34], or negligible [36].

Finally, relying on well-establish control techniques [36],
we achieve G2 by solving the trajectory tracking problem, i.e.,
G3. Based on the dynamic analysis, we prove the tracking
error boundedness for the system class under analysis and a
standard control algorithm.

A. Preliminary to Control Design for Complaint Robots

Recalling Assumption 1, (7), and (8), we start noting that
one can write the following inequalities iteratively:

|φk(x)| ≤ φk0‖x‖, φk0 � f k
0 h0 (18)

|ψi(x)| ≤ ψi0‖x‖, ψi0 � (i − r + 1)f i−1
0 h0g0. (19)

∀x ∈ Dx, for k = 0, . . . , r′, and i = r, . . . , r′.
Lemma 1: Let us consider the system (1), (2), (6), and (6),

under Assumptions 1, 2, and 4, then ∀x ∈ Dx, it holds that

|φk(x)| >
∣
∣φj(x)

∣
∣ ∀k > j k = 0, . . . , r′. (20)

Moreover, it holds that
∣
∣
∣
∣
φk−1(x)

φk(x)

∣
∣
∣
∣ ≤ 1

f0
< 1, k = 1, . . . , r′. (21)

Proof: Let us employ the induction principle on the differ-
entiation order of (6), and let s be the inductive index.

s = 0 leads to φ0(x) = h(x). Recalling Assumption 1, one
has |h(x)| ≤ ||∇xh(x)||||x|| � ||∇xφ0(x)||||x|| ≤ h0||x||.

s = 1 leads to φ1(x) = Lf h(x). Recalling Assumption 1, one
has φ1(x) = ∇xh(x)f (x) and |φ1(x)| ≤ h0f0||x|| = |φ0(x)|f0,
which implies (|φ0(x)|/|φ1(x)|) ≤ (1/f0) < 1.

Let the inductive hypothesis be true.
s = r′ leads to φr′(x) = Lr′

f h(x). Recalling (6), one has
|φr′(x)| = ||∇xφr′−1(x)||‖f (x)‖ ≤ |φr′−10 |f0||x||.

Lemma 2: Let us consider the same Assumptions of
Lemma 1, then it holds that

|ψi(x)| > |ψm(x)| ∀i > m i = r, . . . , r′. (22)

Moreover, it holds that
∣
∣
∣
∣
ψi−1(x)

ψi(x)

∣
∣
∣
∣ ≤ 1

f0

(
i − r

i − r + 1

)

< 1 i = r + 1, . . . , r′. (23)

Proof: With analogous arguments of Lemma 1, recall-
ing (20), (8), and Assumptions 1, we derive (22). Finally,
recalling (19), (23) directly follows.

Recalling (6), let us analyze θj(·), for j = r + 1, . . . , r′.
Lemma 3: Let us consider the system (6)

under Assumptions 1, 2, and 4. The terms
θj(x, u2, . . . , uj−r+1) : Dx × R × · · · × R → R for j =
r + 1, . . . , r′ are such that

∣
∣
∣θj

(
x, u2, . . . , uj−r+1

)∣
∣
∣ ≤ θj0

(
u2, . . . , uj−r+1

)
‖x‖ (24)

with the Lipschitz-like constant equal to

θj0

(
u2, . . . , uj−r+1

)
�

j−r−1∑

i=1

(j − r)f j−i−1
0 h0gi+1

0 |u|i+1

+ f r−1
0 h0gj−r+1

0 |u|j−r+1. (25)

Proof: Recalling (18) and (19), it holds that

θr+10(·) ≤ f r−1
0 h0g2

0|u|2
θr+20(·) ≤ 2f r−1

0 h0g2
0|u|2 + f r−1

0 h0g3
0|u|3 (26)

which leads directly to (25).
Lemma 4: Under the same Assumptions of Lemma 3, the

terms θj(x, u2, . . . , uj−r+1) for j = r +1, . . . , r′ can be written
such as

θj

(
x, u2, . . . , uj−r+1

)
=

j∑

i=r+1

jαi−r+1(x)u
i−r+1 (27)

where jαi−r+1(·) : Dx → R for j = r + 1, . . . , r′ is

jαi−r+1(x) =
jbi−r+1∑

k=1

j
i−r+1βk(x) (28)

where j
i−r+1βk(·) : Dx → R is locally Lipschitz and jbi−r+1 ∈

N indicates the number of elements of each jαi−r+1(·) ∀i, j.
Moreover, it holds that

∣
∣
∣
∣
∣

j
i−r+1βk(x)

ψj(x)

∣
∣
∣
∣
∣
≤

(
j − r

j − r + 1

)
gi

0

f i
0

< 1. (29)

∀j = r, . . . , r′ ∀i = r + 1, . . . , j ∀k = 2, . . . , j ∀x ∈ Dx.
Proof: We proceed by induction on the output differentia-

tion. Let s indicates the inductive step.
s = r+1 leads to θr+1(x, u2) = L2

gLr−1
f h(x)u2 = r+1α2(x)u2

with r+1
2β1(x) = r+1α2(x).

Let the inductive hypothesis be true.
s = r′ leads to (9) with j = r′. The term θr′(·) is

composed of two elements: the first is ∇xψr′−1(x), which
has no dependence on the controller by construction, and the
second is θr′−1(x, u2, . . . , ur′−r), which can be written, such
as (27) and (28), thanks to the inductive hypothesis.

Finally, (29) comes directly recalling (19) and (25). The
proof is completed.

Remark 2: Analogous results of Lemma 1 also can be
derived for the terms θj(·) with j = r + 1, . . . , r′, formally
|θr′(x, ·)| > · · · > |θr(x, ·)| ∀x ∈ Dx. This can be proved
via (9) and using the same inductive approach of Lemma 1–3.
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B. Control Design: Inverse Dynamic Controller

The following Theorem presents the classic input-state
feedback controller [36] coping with the evolution of high-
order terms in (6).

Theorem 1: Let us consider the system (2) and (3), with
normal form (6)–(11), under Assumptions 1–4. Let the feed-
back controller be [36]

u(z, ξd) = v(r
′)(ξ, ξd)− φr′(z)

ψr′(z)
(30)

where v(r
′) ∈ R is an additional control input equal to

v(r
′) = ξ

(r′)
d +ϒe(r

′) , e(r
′) = [

e0, , . . . , er′−1
]� ∈ R

1×r′

(31)

with the error e(r
′) ∈ R

r′
, such as e(r

′)
m � ξ

(m)
d − ξ (m) for

m = 0, . . . , r′ −1, and the control gain ϒ ∈ R
1×r′

and ϒ 	 0.
Then, the following inequalities hold:

‖�(z)u‖|u(z) ≤ ψ

∣
∣
∣v(r

′) − φr′(z)
∣
∣
∣, ψ

�
(

r′ − r

r′ − r + 1

)
1

f0
< 1 (32)

‖
(z, ·)‖|u(z) ≤ θ

r′−r∑

i=1

∣
∣
∣v(r

′) − φr′(z)
∣
∣
∣
i+1

θ �
(
r′ − r

)(
r′ − r − 1

)

(r′ − r + 1)2
1

f r′
0 h0

< 1. (33)

Proof: Recalling (11), substituting it in (30), by means of
Lemma 3, one has

ξ̇l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξl+1 if l = 1, . . . , r − 1

ξl+1 + ψl(z)

(
v(r′)−φr′ (z)
ψr′ (z)

)

if l = r

ξl+1 + ψl(z)

(
v(r′)−φr′ (z)
ψr′ (z)

)

+∑l
i=r+1

∑lbl
k=1

l
i−r+1βk(z)

×
(

v(r′)−φr′ (z)
ψr′ (z)

)i−r+1

if l = r + 1, . . . , r′ − 1

−ϒξ
+∑l

i=r+1
∑lbl

k=1
l

i−r+1βk(z)

×
(

v(r′)−φr′ (z)
ψr′ (z)

)i−r+1

if l = r′.

(34)

Starting from (34), and Lemmas 1–3, one can write the
following inequalities for l = r . . . r′ − 1:

|ψl(z)|
|ψr′(z)| ≤

(
l − r + 1

r′ − r + 1

)∣
∣
∣
∣
∣

1

f r′−l
0

∣
∣
∣
∣
∣

(35)

|θl(z, ·)|
∣
∣
u ≤

l−r−1∑

i=1

(l − r)f l−i−1
0 h0gi+1

0
(
(r′ − r + 1)f r′−1

0 h0g0

)i+1

∣
∣
∣v(r

′) − φr′(z)
∣
∣
∣
i+1

+ f r−1
0 h0gl−r+1

0
(
(r′ − r + 1)f r′−1

0 h0g0

)l−r+1

∣
∣
∣v(r

′) − φr′(z)
∣
∣
∣
l−r+1

. (36)

Thanks to th results of Lemma 3 and 4, we know that the
largest coefficient among the ones in the summation in (36)
appears for i = 1. Therefore, recalling (36), one can derive
the following inequality with l = r + 1, . . . , r′:

|θl(z, ·)| ≤ (l − r − 1)(l − r)f l−2
0 g2

0h0
(
(r′ − r + 1)h0g0f r′−1

0

)2

l−r−1∑

i=1

∣
∣
∣v(r

′) − φr′(z)
∣
∣
∣
i+1

+ f r−1
0 h0gl−r+1

0
(
(r′ − r + 1)f r′−1

0 h0g0

)l−r+1

∣
∣
∣v(r

′) − φr′(z)
∣
∣
∣
l−r+1

.

(37)

Finally, considering (34), (36), and (37) one has
∣
∣
∣
∣ξ̇

∣
∣
∣
∣ ≤ ||ϒ ||||ξ || + ψ

∣
∣
∣v(r

′) − φr′(z)
∣
∣
∣

+
(
r′ − r

)(
r′ − r − 1

)

(r′ − r + 1)2
1

f r′
0 h0

r′−r∑

i=1

∣
∣
∣v(r

′) − φr′(z)
∣
∣
∣
i+1

= ||ϒ ||||ξ || + ψ

∣
∣
∣v(r

′) − φr′(z)
∣
∣
∣ + θ

r′−r∑

i=1

∣
∣
∣v(r

′) − φr′(z)
∣
∣
∣
i+1

(38)

where ψ, θ ∈ (0, 1) is, such as in (32) and (33).
Theorem 1 achieves G2.
Let us consider the trajectory tracking problem employing

the classic controller (30) and the error (31). To achieve G3,
we introduce the following theorem.

Theorem 2: Let us consider the system (2) and (3), with
normal form (6) and (11), under Assumptions 1–4. Let (30)
be the feedback controller. Let Acl ∈ R

r′×r′
be the closed-

loop matrix when applying (30) to (11). Let P,Q ∈ R
r′×r′

be
symmetric such that P,Q 	 0, and PAcl + A�

clP = −Q. Let us
suppose that eig{∂p(·, η)/∂η} are stable.

If the following inequality holds true:

ψ

∣
∣
∣υ − f r′

0 h0

∣
∣
∣ + θ

r′−r∑

i=1

∣
∣
∣υ − f r′

0 h0

∣
∣
∣
i+1 ≤ ‖Q‖/(2‖P‖) (39)

then the controller (30) solves the trajectory tracking problem
for the system (2) and (3) with a bounded error O(e(r

′)).
Proof: Let us consider the closed-loop system

ė(r
′) = Acle(

r′) +�
(

e(r
′), η

)
⎛

⎝
v(r

′) − φr′
(

e(r
′), η

)

ψr′
(
e(r′), η

)

⎞

⎠

+ 

(

e(r
′), η, u2, . . . , ur′−r+1

)∣
∣
∣
u= v(r

′)−φr′
(

e(r
′),η

)

ψr′
(

e(r
′),η

)

� Acle(
r′) +�cl

(
e(r

′), η
)

+
cl

(
e(r

′), η
)

(40)

where Acl is such that Aclij = 1 if j = i + 1, Aclij = υj−1
if i = n ∧ j = 1, . . . , 2n, and Aclij = 0 otherwise. Recalling
Assumption 3, there exists a proper choice of υm for m =
0, . . . , r′ − 1, which makes the matrix Acl Hurwitz. Note that

cl(·) depends on the power of the control input.

Let be V(z) = V(e(r
′), η) = Ve(e(r

′)) + Vη(η), such as
Ve(e(r

′)) = e(r
′)�Pe(r

′) a Lyapunov function, i.e., V(·) : Rr′ ×
R

2n−r′ → R, V(02n−r′×1) = 0, and V(e(r
′), η) > 0 ∀z �=
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02n−r′×1. Differentiating the Lyapunov candidate leads to
V̇(e(r

′), η) = V̇e(e(r
′))+V̇η(η), with V̇η(η) < 0, and V̇e(e(r

′)) =
2e(r

′)�Pė(r
′), i.e.,

V̇e(e
(r′)) = 2e(r

′)�PAcle
(r′)

+ 2e(r
′)�P(�cl(e

(r′), η)+
cl

(
e(r

′), η
)
)

≤ −∣
∣
∣
∣e(r

′)∣∣
∣
∣2‖Q‖

+ 2
∣
∣
∣
∣e(r

′)∣∣
∣
∣‖P‖

(∣
∣
∣
∣�cl

(
e(r

′), η
)∣
∣
∣
∣ + ∣

∣
∣
∣
cl

(
e(r

′), η
)∣
∣
∣
∣
)
.

(41)

To complete the proof, one has to show that V̇ ≤ 0, i.e.,

||Q||∣∣∣∣e(r′)∣∣
∣
∣/(2||P||)

≥ ψ

∣
∣
∣v(r

′) − φr′
(

e(r
′), η

)∣
∣
∣ + θ

r′−r∑

i=1

∣
∣
∣v(r

′) − φr′
(

e(r
′), η

)∣
∣
∣
i+1

(42)

therefore, recalling the inverse triangular inequality2 on the
right side of (42), the following holds:

⎛

⎝ψ
∣
∣
∣υ − φr′

0

∣
∣
∣ + θ

r′−r∑

i=1

∣
∣
∣υ − φr′

0

∣
∣
∣
i+1

⎞

⎠
(∣
∣
∣
∣e(r

′)∣∣
∣
∣ + ∣

∣
∣
∣η

∣
∣
∣
∣
)

≤ ||Q||(∣∣∣∣e(r′)∣∣
∣
∣ + ∣

∣
∣
∣η

∣
∣
∣
∣
)

2||P|| (43)

which leads directly to (39) via (18). Relying on the LaSalle
invariant principle, one can guarantee the asymptotic trajectory
with an O(e(r

′)) error devoted to the neglected terms ωj(·) with
j = r + 1, . . . , r′ in Assumption 4.

Remark 3: Recalling (30) with r′ = r, then (30) is the
classic input–output feedback linearization controller see [48].

Remark 4: Recalling (30) with r′ = 2n, then (30) is similar
to the approach proposed in [36] or [35], but with different
ψr′(z). However, in this work, we exploit the mechanical
properties of the compliant arms, and we do not require any
strong assumptions on both ψi(x) for i = r, . . . , 2n, and θj(·)
with j = r + 1, . . . , 2n.

Remark 5: Recalling (30), if it relies on a switching policy
w.r.t. the relative degree, i.e., (6), then the controller is similar
to the one proposed in [34]. Therefore analogous results of
Theorem 2 could be derived requiring the slow switching
hypothesis w.r.t. relative degree, [34]. The main differences
between this work and [34] are the ones listed in Remark 4

Remark 6: The controller (30) requires knowledge of the
model and real-time output derivatives. However, thanks to
Proposition 1 and 2, the number of the order of the derivative
can be selected to be 4. In addition, the model itself could be
used to derive the high-order derivatives.

V. VALIDATION

In this section, we test the analysis effectiveness in both
simulations and real hardware.

Simulations and experimental tests are performed on two
and three DoFs arms, namely RR [56], RRR [3], and 3PCC, in

2∀a, b ∈ C
n, it holds |a − b| ≥ |‖a‖ − ‖b‖|.

Fig. 2. Experimental setup, namely RR. The robot is composed of one elastic
active joint (red circle) and one passive elastic joint (white circle).

which only the first elastic joint is active while the others are
unactuated. Note that the two systems, namely RR and RRR,
are modeled with an LP model and they are articulated robots
with one or two unactuated join. Conversely, the third robot
is a continuum one, which is still an underactuated system
and composed of 3 PCC segments model [4]. For the RR
and RRR, the dynamic parameters for each link are mi =
0.55 kg, Ji = 0.01 kg m2, li = 0.089 m, ai = 0.085 m, kii =
1 Nm/rad, and dii = 0.1 Nms/rad are the mass, inertia, length,
center of mass distance, spring, and damper of each link,
respectively for i = 1, 2, 3; note that S = [1, 0]� and
S = [1, 0, 0]� for RR and RRR, respectively. Assumption 3
holds for all the compliant arms selected by direct
computation.

For the 3PCC, we have three PCC segments, where
m1 = 0.25, mi = 0.15 kg, l1 = 0.25, li = 0.15 m, Ji =
1(1/12)mil2i kg m2, kii = 1 (Nm/rad), and dii =
0.1 (Nms/rad) with i = 1, 2, 3 and the usual meaning; note
that S = [1, 0, 0]�.

The output function (6) is the robot tip orientation, i.e.,

y = [
11×n 01×n

]
x , y ∈ R. (44)

We employ three different reference trajectories.
1) A constant trajectory solving the classic swing-up task,

i.e., from y0 � y(0) = 0rad to yf � y(tf ) = π rad in
tf = 10s.

2) A constant trajectory from y0 = 0rad to yf = 1rad (≈
60◦) with tf = 5s.

3) A constant trajectory from y0 = −π/6rad to yf =
π/3rad with tf = 5s.

4) A minimum crackle starting from y0 = 0rad and
reaching yf = (π/2)rad in tf = 1s, i.e., [57].

Note that Section III tackles the trajectory tracking problem.
However, the regulation task is a special case of tracking one.

We employ the control law (30) with gains ϒ ∈ R
1×r′

,
which are chosen depending on the task and summarized by
Table I.

Finally, it is worth noting that the method’s effectiveness
is validated by varying tasks, systems, number of passive
joints, relative degrees, and stiffness profiles. We also com-
pared the results with classic state-of-the-art controllers for
underactuated robots, i.e., proportional derivative [58] and
AFL [35].
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(a) (b) (c)

(f)(e)(d)

Fig. 3. RRR simulation results for the swing up task. We test different robust relative degrees and compare the results with the PD controller. (a) Error
evolution over time. (b) Output tracking performance. (c) Control action. (d) [ψ2(x)/ψ4(x)], [ψ3(x)/ψ4(x)], and [ψj(x)/ψ6(x)] for j = 2, . . . , 5. (e) Joints
evolution over time. (f) Joints evolution over time.

TABLE I
CONTROL GAINS

A. Simulation Results RRR

In this section, the capability of the controller (30) to deal
with more than one passive joint is tested. To this end, the
dynamics of a three DoFs robot with only the first elastic joint
active is simulated with unstable vertical equilibrium [19].
Recalling (6), the robust relative degree is r′ = 4, 6, the output
function is (44), and the task is the swing-up, i.e., 1).

We also compare the results with a classic proportional-
derivative (PD) controller, i.e., u = KP(yd − y) + KV(ẏd − ẏ)
with KP = 1 and KV = 0.53.

Fig. 3 shows the simulation results. Fig. 3(a) depicts the
error’s time evolution, Fig. 3(b) reports the output, Fig. 3(c)
shows the control action, Fig. 3(d) shows the high-order
terms time evolution, and Fig. 3(e) and (f) depicts the joints
evolution. Finally, Fig. 6(a) shows a photograph-sequence of
the swing-up task with r′ = 6, i.e., a complete change of
variables (6).

Simulation 3PCC

In this section, the capability of the controller (30) to deal
with a continuum robot and more than one passive joint is

3The gains are selected in such a way to avoid numerical singularity.

tested. Recalling (6), the robust relative degree is selected,
such as r′ = 3 the output function is (44), and we perform a
regulation task, i.e., 3). We also compare the computed torque
case, i.e., r′ = r = 2.

Applying (6) and recalling Definitions 2 and 3, it holds that
ψ2(x) = q1

3PCCψ2(x) and ψ3(x) = (q1 + q̇1)
3PCCφ3(x) where

3PCCψ2(x), 3PCCψ3(x) collect the rest of the expression. Thus,
one has that if q1 → 0 then, ψ2(x) → +∞, i.e., crossing
the vertical equilibrium; conversely, if it holds that q̇1 �= 0,
the controller (30) is well defined in crossing the vertical
equilibrium.

Fig. 4 reports the output, Fig. 4(a) shows the output regula-
tion performances, and Fig. 4(b) depicts the joints’ evolution.
Finally, Fig. 4(c) shows a 3-D visualization for 3PCC in the
case of r′ = 3.

B. Experiment Results RR

We here compare the simulations and experimental results
for the RR system depicted in Fig. 1.

Fig. 1 shows the experimental setup, which uti-
lizes qb-Move Advanced [59] actuators. This is a
variable stiffness actuator with elastic torque τe =
2ιl cosh (κδs) sinh (κ(q − δe)) and nonlinear stiffness profile
σ = 2κιl cosh (κδs) cosh (κ(q − δe)), where κ = 6.7328 1/rad,
and ιl = 0.0222 Nm. Note that δs tunes the desired stiffness,
and, to approximate a serial elastic actuator in (1), it is
set constant. The second link is punctuated, i.e., a qbMove
Advanced actuator with δs constant and δe null. Thus, we have
a passive joint with a torsional spring and a position encoder
sensor. Note that in (1), the stiffness is assumed to be linear,
while the real one is not. Therefore, the actuator model is not
exact and introduces an error in the controller (30).
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(a) (b) (c)

Fig. 4. 3PCC simulation results for the regulation task. We test different robust relative degrees, i.e., r′ = 2, r′ = 3. The case r′ = 2 leads to the classic AFL
controllers. In Fig. 4(c), the transparent robot displays the arm in its initial condition. (a) Output tracking. (b) Joints evolution over time. (c) 3-D visualization.

(a) (b) (c) (d)

Fig. 5. RR simulation and experimental results for the regulation task. We test different robust relative degrees and compare the result with a PD control.
(a) Error evolution over time. (b) Output tracking performance. (c) [ψ2(x)/ψ3(x)] and [ψj(x)/ψ4(x)] j = 2, 3. (d) Joints evolution over time.

Fig. 6. Photograph sequence showing the execution of the swing-up task RRR sim Fig. 6(a) and regulation RR experiment Fig. 6(b). (a) Sim. RRR swing-up.
(b) Exp. RR regulation.

In the simulations, the value of the robust relative degree is
r′ = 3, 4. At the same time, in the experiment, it is r′ = 4, i.e.,
full state approximation (6), the output function is (44), and
both the desired trajectories are performed, namely regulation
with tf = 5 s, i.e., 2, and trajectory tracking, i.e., 4. In the
former δs = 25◦, in the latter, δs = 20◦. This leads to kii =
2.7 Nm/rad and kii = 1.5 Nm/rad, with i = 1, 2, respectively.

1) Regulation Results: This task is compared with a PD
controller, i.e., u = KP(ydes − y)+ KV(ẏdes − ẏ) with KP = 5
and KV = 0.5.

Fig. 5 compares the results of the simulation and the
experiment for the trajectory 2). Fig. 5(a) depicts the error
evolution, Fig. 5(b) reports the output, Fig. 5(c) shows the time
evolution of the high-order terms in (6), and Fig. 5(d) depicts
the joints evolution. Finally, Fig. 6(b) shows a photograph-
sequence of the regulation task execution.

2) Trajectory Tracking Results: This task is compared with
an approximating computed torque controller, i.e., fixing r =
r′ = 2. In particular, ψ2(x) = [b2 cos(q2)/detM], where
b2, detM ∈ R, [56]. We implement an AFL controller
modified the g(x) field [58], i.e., ψ2(x) ≈ (b2/detM). Note
that this leads to no singularities.

Fig. 7 compares the results of the simulation and the
experiment for the trajectory 4. Fig. 7(a) depicts the error
evolution, Fig. 7(b) reports the output, Fig. 7(c) shows the
time evolution of the high-order terms, and Fig. 7(d) depicts
the joints evolution.

C. Discussion

Results show that the controller can reach the desired
position Figs. 3–5 and track the desired trajectory Fig. 7.
Results show good performances while executing fast and
challenging tasks, with satisfying values of the tracking error
Figs. 3(a), 5(a), and 7(a).

The feedback controller (30) can compensate for the passive
elements in the arm rejecting oscillation and achieving the
goal. It is worth noting that leveraging high-order dynamics
terms in the control action (30) leads to an always well-defined
relative degree during the whole task. Conversely, in the case
of r = 2, the controller encounters singularity during the task
execution (Fig. 5).

We highlight that the value of f0 is such that f0 ≈ 3. Then,
choosing Q = Ir′ , and υ, depending on the task (Table I), lead
to fulfill the inequality (39).
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(a) (b) (c) (d)

Fig. 7. RR simulation and experimental results for the trajectory tracking task. We test different robust relative degrees, we compare the results with
r = r′ = 2, i.e., computed torque controller. (a) Error evolution over time. (b) Output tracking performance. (c) [ψj(x)/ψ4(x)] for j = 2, 3. (d) Joints evolution
over time.

The controller (30) deeply relies on both the model accu-
rateness and the precise estimation of the output derivatives.
Therefore, the convergence of the error is smoother in sim-
ulations where both the knowledge of the model and the
numerical estimation of the derivatives are accurate. However,
satisfying tracking performances are achieved also in the
experimental cases and very challenging scenarios, e.g., Fig. 7.
Furthermore, the diffeomorphism is well defined throughout
all tasks.

The derivation of the coupling condition is purely model-
based as well as the controller (30). Thus, it is sensitive to error
modeling and is time-consuming when increasing the number
of robot’s DoFs. However, relying on Propositions 1 and 2,
one can reshape the stiffness profile to fix the robust relative
degree. This is demonstrated with the RRR robot Fig. 3.

Propositions 1 and 2 are verified thanks to the fact that the
swing-up task is achieved with r′ = 4, 6 in Fig. 3; as well as
the regulation one for r′ = 3, 4 in Fig.5. In addition, Figs. 3
and 5 show how the case r = 2 encounters singularities. Note
that the choice r = 4, 6 can also be a user’s design choice of
the controller.

The applicability of the conditions from Definitions 1 to 4
is twofold. One is to derive well-defined control actions
in a model-based paradigm. The second is to study the
singularity of a compliant underactuated robot and, thus, create
strategies to avoid them. In other words, the condition can be
employed as a debugging tool, which may be embedded into
an optimal framework [60]. Moreover, Propositions 1 and 2
can serve to ensure a correct synthesis of the conditions from
Definitions 1 to 4 as well as of the diffeomorphism (11). The
coupling conditions enable the possibility to control multiple
typologies of robots, i.e., lightweight with unactuated joints
and continuum ones, which we call compliant underactuated
robots. It is worth noting that the control action in Fig. 4 is
very demanding, but it can compensate for the singularity in
the control action.

The PD controller in Fig. 5 does not need any description
of the model in most practical cases, however, it performs
poorly. It is worth noting that the model-free nature of such
a PD controller may not fulfill the coupling conditions from
Definitions 1 to 4. Moreover, the AFL with r = 2 leads to
lacking dynamics description in the controller which reduces
performance. For the RRR, the PD controller does not solve
the swing-up task, Fig. 3. This implies that considering only
the inertial term in the control action does not manage the

relative degree leading to singularities of the controller. In
other words, the inertial-based controller is too aggressive
and creates a strong motion displacing the passive joints and
leading to control singularities. PD and AFL are state-of-the-
art controllers for controlling underactuated systems [29], [35],
[36], [58].

Finally, the high-order terms in (6), i.e., ψi(x) for i =
r, . . . , r′ and θj(·) for j = r + 1, . . . , r′, are small as depicted
in Figs. 3(d), 5(c), and 7(c). Thus, Assumption 4 and the
thesis of Theorem 2 are verified leading to good tracking
results. Note that the terms θj(·) for j = r + 1, . . . , r′ are not
reported in the Figs. 3, 5, and 7 since |ψi(x)| > |θj(·)| ∀i =
r, . . . , r′ and ∀j = r + 1, . . . , r′, i.e., Lemmas 1–3. Finally,
the error is comparable with the value of the high-order terms
Figs. 3(d), 5(c), and 7(c).

VI. CONCLUSION

In this work, we proposed new controllability-like condi-
tions for a class of compliant underactuated arms coping with a
not well-defined relative degree. We generalize the well-known
strong inertial coupling condition guaranteeing a piecewise-
constant relative degree greater than two. We investigate the
role of the stiffness and damping matrices in the change of
relative degree. Then, we use a classic input–output feedback
linearization controller to solve the trajectory tracking problem
relying on the new dynamic conditions proving its closed-
loop stability. Finally, the effectiveness of the approach is
tested both in simulation and on real hardware using varying
underactuated compliant arms, stiffness profiles, and tasks.
Future research will focus on designing a switching policy
due to the relative degree of dependency and machine learning
approximation [20] to estimate the φk(·), k = r, . . . , r′ terms
considering the actuator dynamics and 3-D robot’s motions.
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