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Melanoma Breslow Thickness Classification
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Distillation With Semi-Supervised
Convolutional Neural Networks
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Abstract—Melanoma is considered a global public health
challenge and is responsible for more than 90% deaths
related to skin cancer. Although the diagnosis of early
melanoma is the main goal of dermoscopy, the discrimina-
tion between dermoscopic images of in situ and invasive
melanomas can be a difficult task even for experienced
dermatologists. Recent advances in artificial intelligence
in the field of medical image analysis show that its ap-
plication to dermoscopy with the aim of supporting and
providing a second opinion to the medical expert could
be of great interest. In this work, four datasets from differ-
ent sources were used to train and evaluate deep learning
models on in situ versus invasive melanoma classification
and on Breslow thickness prediction. Supervised learning
and semi-supervised learning using a multi-teacher ensem-
ble knowledge distillation approach were considered and
evaluated using a stratified 5-fold cross-validation scheme.
The best models achieved AUCs of 0.8085+0.0242 and of
0.8232+0.0666 on the former and latter classification tasks,
respectively. The best results were obtained using semi-
supervised learning, with the best model achieving 0.8547
and 0.8768 AUC, respectively. An external test set was
also evaluated, where semi-supervision achieved higher
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performance in all the classification tasks. The results ob-
tained show that semi-supervised learning could improve
the performance of trained models in different melanoma
classification tasks compared to supervised learning. Au-
tomatic deep learning-based diagnosis systems could sup-
port medical professionals in their decision, serving as a
second opinion or as a triage tool for medical centers.

Index Terms—Breslow thickness, deep learning, know-
ledge distillation, melanoma, semi-supervision.

[. INTRODUCTION

ELANOMA is a malignant skin neoplasm that emerges

from melanocytes; these cells are located in the basal
layer of the epidermis and produce the pigment melanin.
Melanoma is responsible for more than 90% of deaths related
to skin cancer [1]. Thus, it continues to be nowadays a global
public health challenge, reaching in 2020 a total of 325,000
new melanoma cases and 57,000 deaths [2]. Unlike other solid
malignant tumors, the incidence of malignant melanoma is
still growing [3], with global incidence rates of 11.5 and 11.3
cases per 100,000 inhabitants in men and women, respectively. '
Despite the fact that melanoma mortality appears to stabilize,
it should be noted that incidence and prevalence in the United
States have increased from the beginning of the 1990s to 2019.
In the latter, melanoma was reported to be the skin cancer with
the highest comorbidity, showing a disability-adjusted life-years
rate of 64.4 [4]. The delay in diagnosis is directly correlated
with a poor prognosis, making early detection the cornerstone
of successful treatment of melanoma [5]. Dermoscopy is a
non-invasive and cost-effective tool used in the daily clinical
practice of dermatologists for the diagnosis of melanoma. It
has shown its reliability and sensitivity in detecting early stage
skin cancer, effectively minimizing unnecessary excisions or
biopsies [6]. Dermoscopy allows the identification of asymmetry
in the cutaneous structures, even before it could be clinically ap-
preciated. This helps to detect melanomas even in the epidermal
layer (in situ melanomas) [7]. From top to bottom, the epidermis
is one of the layers of human skin, followed by the dermis
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Scheme of normal skin, in situ melanoma, invasive melanoma, and measurement of Breslow thickness. From top to bottom we represent

all the layers of the skin (epidermis, dermis, and hypodermis) and all the sublayers of the epidermis. On the left, a scheme of the histological aspect
of normal skin is represented. In the middle part of the image, an in situ melanoma can be seen, with all melanocytes confined to the epidermis
without exceeding the basement membrane. The right side of the image shows an invasive melanoma with spreading tumor melanocytes that
reach the basement membrane and invade the dermis. Breslow thickness is represented as the measurement from the stratum granulosum to the
deepest invasive melanocyte of an invasive melanoma. Brown cells represent melanocytes. The stratum lucidum (between the stratum corneum
and the stratum granulosum) was not represented, as it can only be found in the palms and soles. SC: Stratum corneum; SG: Stratum granulosum;
SS: Stratum spinosum; BL: Basal layer; BM: Basement membrane; mm: Millimeters.

and hypodermis. Likewise, the epidermis is divided into five
sublayers: the stratum corneum, the stratum lucidum, the stratum
granulosum, the stratum spinosum, and the basal layer. The
basement membrane is an essential structure that connects the
epidermis to the dermis. When tumoral melanocytes are confined
to the epidermis without exceeding the basement membrane, it
is known as in situ melanoma (Mis). In contrast, if a tumor cell
extends to the dermis, beyond the basement membrane, it is
known as invasive melanoma (Miv) (Fig. 1).

Considering the significant correlation between melanoma
thickness and prognosis, the detection of thinner melanomas
could be related to a lower expected death rate and economic
burden [8]. When a melanoma is suspected, an excisional biopsy
removing the entire tumor in a first surgical step followed by
histopathology is the gold standard for diagnosis and appropriate
surgical treatment [9]. The thickness of the melanoma, the
so-called Breslow thickness (BT), is objectively measured by
a dermatopathologist using an optical micrometric scale. BT is
considered the main prognostic factor for primary cutaneous
melanoma, as it stands for microinvasion of the tumor in mil-
limeters from the granular layer of the skin to the deepest layer of
tumor invasion. In this sense, it is possible to differentiate a Mis
from a Miv and quantify the microinvasion of Miv. Although
an accurate diagnosis of early melanoma is the main goal of
dermoscopy, the discrimination between dermoscopic images
of Mis and Miv can be a difficult task even for experienced
dermatologists. Dermoscopic structures such as irregular hyper-
pigmented areas and prominent skin margins could be predictors

of Mis in a preoperative setting compared to atypical nevi, which
is a benign lesion [10]. In the case of Miv, indicators such as
a blue-white veil, multicomponent, or rainbow pattern could
be found [11]. However, the dermoscopic features mentioned
above are not sufficient to indirectly predict the microinvasion
of melanoma. Decision making in the perioperative setting is one
of the crucial points in the day-to-day of dermatology surgeons,
since, depending on whether we are dealing with a Mis or a
Miv, there could be variation in the surgical margins in the
first surgical excision, triaging, and the patient’s prognosis. In
the case of Mis, after excisional biopsy of primary melanoma,
current guidelines recommend performing a two-step surgical
procedure to widen the surgical margins by 5 mm [1], [12].
Thus, one-step surgery could be a curative option, saving time
and reducing costs and discomfort in patients [13]. On the other
hand, in Miv, wider surgical margins are required, including
sentinel node biopsy when the BT threshold is > 0.8 mm or
associated risk factors such as ulceration are present. Due to
the difficulty in differentiating between Mis and Miv, artificial
intelligence has emerged as a useful ancillary support tool to
select optimal surgical margins and tumor staging in cutaneous
melanoma based on dermoscopic images. However, histopatho-
logical confirmation of BT would be necessary once excision
has been performed in all patients, as it is the gold standard.
The field of deep learning research as a diagnostic decision
support technique has increased in recent years in the context
of dermatology [14]. Convolutional neural networks (CNNs)
are the basis by which deep learning performs a computational
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analysis of images. CNNs take images as input that go through
various hidden layers of artificial neurons to render a final
output, like a prediction or a diagnosis. In the state-of-the-art,
the performance shown by CNNs is similar to that of expert
dermatologists in the diagnosis of skin cancer using clinical
and dermoscopic images [15]. However, deep learning could
involve a higher computational cost compared to other methods,
such as deep transfer learning (DTL), which has become a
popular option within the field of health. This significantly
reduces the amount of required data and training time using
pre-trained CNNs. The knowledge distillation-based approach
(KD) is a novel deep learning method to reduce computational
costs, making it easier to build decision support system models
in a clinical setting. Khan et al. [16] successfully performed
a KD approach to detect melanoma using dermoscopic images.
However, to our knowledge, KD has not been developed or tested
to predict microinvasion, measured as BT, using dermoscopic
images of melanoma.

The main contributions of this study are as follows:

® The use of an offline response-based Multi-Teacher KD
algorithm together with semi-supervised deep CNNs to
predict the BT of melanoma.

e The models were trained and evaluated on heterogeneous
data obtained from 4 different datasets using stratified 5-
fold cross validation.

e Semi-supervision with the teacher-student paradigm out-
performs supervised learning in both Mis versus Miv
classification and BT classification tasks.

¢ All the code and data have been made available in a public
repository, including a novel dataset.

The rest of the work is structured as follows: first, in Section II,
the state-of-the-art in the classification of BT and the analysis
of image-based melanoma is presented. Then, in Section III, the
materials and methods used in this work are introduced, focusing
on the datasets (Section III-A) and the pre-processing applied to
the samples and the way they were partitioned (Section III-B),
together with the different deep learning approaches considered
for training and evaluating (Section III-C), as well as the metrics
used to measure the performance of the models (Section III-D)
and the framework used (Section III-F). Subsequently, the results
of the two different classification tasks considered are presented
in Section IV. Finally, in Section V, the results obtained are
discussed, and in Section VI, the conclusions of this work are
presented.

Il. RELATED WORKS
A. Melanoma Classification

In recent years, several studies have developed de novo CNNs
to classify between Mis or Miv, but, these methods require a
significant amount of data to train and need a notable compu-
tational cost. Therefore, to overcome the mentioned disadvan-
tages, DTL has been proposed as a machine learning technique
that uses CNN models that have already been pre-trained on
large image datasets such as ImageNet. This technique shares
this knowledge for a related classification task, although at
a lower computational cost. DTL is especially useful when

there is a lack of training data, such as in the field of health,
where obtaining large, annotated datasets is complex and time
consuming. Regarding de novo CNNs, Polesie et al. [17] de-
veloped a CNN with seven convolutional layers and a single
dense layer to differentiate Mis and Miv using 1551 close-up
images of melanoma. Although this work took the first step
towards automatic classification between Mis and Miv, the
0.72 area under the ROC curve (AUC) achieved by the model
was outperformed by seven dermatologists with an AUC of
0.81. Gillstedt et al. [18] trained a de novo CNN using 1137
melanoma dermoscopic images, again outperformed by seven
dermatologists with an AUC of 0.76 and 0.81, respectively.
According to previous work, Gillstedt et al. [19] developed a
de novo CNN combining close-up (6 convolutional layers) and
dermoscopic images (7 convolutional layers) obtaining lower
results than the six independent dermatologists, with an AUC of
0.73 compared to the 0.80 registered by human readers. Polesie
et al. [20] conducted a direct comparison between a de novo
CNN, the pre-trained CNN ResNet50, and 438 international
readers, including dermatologists and non-dermatologists for
the classification task between Mis and Miv and the prediction
of BT using 1456 dermoscopic images. Despite the fact that de
novo CNNss are outperformed by human readers, in this case, the
performance of the fine-tuned pre-trained CNN ResNet50 was
similar to that of human readers without a statistically significant
difference. Chu et al. [21] used ResNet50 for Mis versus Miv
in addition to the depth of microinvasion, although in acral
melanomas, that is, a specific class of melanoma that occurs in
palms, soles, and nail beds. Despite being in a different clinical
setting, CNN effectively distinguished between < 0.8 mm and
> 0.8 mm BT, with an AUC of 0.90, in 57 dermoscopic images.
Herndndez-Rodriguez et al. [22] compared three DTL pretrained
CNNs (ResNetV2, InceptionV3 and EfficientNetB6) for the
classification between Mis and Miv and between melanomas
with BT < 0.8 mm and > 0.8 mm using 1315 dermoscopic
images from a heterogeneous dataset. In this case, ten derma-
tologists outperformed the three models for the classification
between Mis and Miv, although the pretrained CNNs ResNetV?2
and InceptionV3 outperformed the ten dermatologists combined
for the classification task between melanomas with BT < 0.8 mm
and > 0.8 mm. The authors established the BT threshold at
0.8 mm, since it is the cut-off point for performing a sentinel
lymph node biopsy when other histological risk factors are
present, such as ulceration, following the current 2022 European
guidelines for melanoma [1], [9].

B. Knowledge Distillation and Semi-Supervision

In 2015, Hinton et al. [23] paved the way for the introduction
of KD as a proper model with a high level of performance
and with a lower required memory capacity. KD is based on
the ‘teacher-student’ paradigm, in which the performance of a
small and simple network known as the student model improves
using the knowledge transferred from a large and complex
network called the teacher model [24]. Only two authors have
used KD approaches to differentiate between melanoma and
non-melanoma. Khan et al. [16] carried out a KD approach
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with the aim of detecting melanoma from dermoscopic im-
ages. For this task, they used a pretrained ResNet50 (23M of
trainable parameters) as the teacher model and developed a
student model called the Distill Student Network (0.26 million
parameters). They showed a reduction in the runtime compared
to EfficientNet-BO (4 million parameters) for the classification
task between melanoma and non-melanoma lesions with accept-
able accuracy compared to the teacher model, with 99.60% and
91.7%, respectively. Adepu et al. [25] performed a knowledge
distilled light-weight CNN-based approach to deal with the
high inter-class and low intra-class similarities in dermoscopic
images for the classification of melanoma and non-melanoma
in the ISIC-2020 dataset [26]. Focal Loss was used as a Cost-
Sensitive Learning technique to tackle the high class-imbalance
problem to improve sensitivity. EfficientNet-B5 was used as
teacher and EfficientNet-B2 as the student model with an AUC
of 0.92 for the classification task of differentiating melanoma
and non-melanoma.

IIl. MATERIALS AND METHODS

In this section, all the materials and methods used to perform
the experiments are presented, together with the framework
considered for this purpose. In particular, we first focus on the
datasets used (Section III-A) and the way the images from the
different datasets are processed and partitioned (Section III-B).
Then, the different deep learning-based training methods con-
sidered are explained (Section III-C), together with the met-
rics used to evaluate the performance of the trained models
(Section III-D). Finally, the deep learning framework, hyper-
parameters, CNN architecture, and libraries used in this work
are presented (Section III-F).

A. Datasets

With the aim of expanding the generalizability of our work
and achieving a context closer to daily clinical practice, our
general dataset consisted of four independent subsets collected
from different sources, with a total of 1449 images distributed
as follows. (i) A total of 868 images labeled from 316 cases of
melanoma from the dermoscopic image repository of Virgen del
Rocio University Hospital (a tertiary hospital in Seville, Spain),
prospectively collected between 2016 and 2023. The study pro-
tocol for the collection of this subset of images (ID 0096-N-20)
was approved by the Andalusian Review Board and Ethics
Committee of Virgen Macarena-Virgen del Rocio Hospitals. All
patients gave written informed consent for participation of their
case details and images. This dataset has been made publicly
available for this work and can be requested on its website.”
To increase external validity, we did not restrict the melanoma
subtype or participants’ phototype. (ii) A total of 193 labeled im-
ages of 184 cases of melanoma publicly available from Polesie et
al. [27]. (iii) A total of 141 labeled images of 141 melanoma and
2,508 unlabeled images of 2,508 cases of melanoma from the
International Skin Imaging Collaboration (ISIC) archive [26],
which is an extensive open-source public-access archive of skin

Zhttps://institucional.us.es/breslowdataset. Retrieved September 23, 2024.

images. These images comprise a subset of images from the ISIC
archive. To obtain labeled images, we applied the filters ‘Le-
sion diagnosis-melanoma’, *Type of diagnosis-histopathology’,
‘Melanoma thickness (mm)’ and ‘Image type-dermoscopic’,
retrieving all the dermoscopic images of histopathologically
confirmed melanoma in which BT metadata were available. For
unlabeled images, we filtered by ‘Lesions diagnosis-melanoma’,
"Histopathological type of diagnosis-histopathologically’ and
“Image-type-dermoscopic”, obtaining all the histopathologi-
cally confirmed cases of melanoma with available dermoscopic
images. In the last subset, we removed the images in which
BT was available. (iv) A total of 247 images of 247 cases
of melanoma from the public-access dataset of Kawahara et
al. [28]. In the (i) and (ii) subsets, there was more than one
image for some of the cases of melanoma. Table I shows the
characteristics of the melanoma cases from which the labeled
images of subsets (i), (ii), (iii) and (iv) were extracted. Table II
presents the distribution of the labels of the annotated samples
in each of the datasets.

To evaluate the performance of the trained models with com-
pletely unseen data, an external test set was evaluated. This
dataset consisted of a total of 153 labeled cases, of which 39
correspond to Mis and 114 to Miv. This leads to a total of 462
labeled images, of which 144 correspond to Mis, 199 to Miv
with BT<0.8 mm, and 149 to Miv with BT>0.8 mm. Each of
the three classification tasks (Miv vs Mis, BT classification, and
multiclass classification) were evaluated on this external test set
with both supervised and semi-supervised CNN models.

B. Image Pre-Processing and Data Partitioning

The images used in this work vary in size since they were
sourced from different medical centers and different sensors
were used to obtain them. This is a handicap for being used
as input to deep CNNSs, since they require a fixed image size as
input. To address this problem, all the images were downsampled
to 224 x 224pixels, since it is the input size required for the CNN
models used in this work.

1) Data Augmentation: Data augmentation commonly refers
to a widely used technique in deep learning that consists in
artificially increasing the amount of samples in the training
set by creating modified copies of the samples with minor
changes with respect to the original ones in order to increase the
heterogeneity of the dataset and reduce overfitting. In this work,
two different operations were applied to augment the training set:
90° rotations (the augmented sample could be rotated by 90°,
180° or 270° with respect to the original one), horizontal flips
and vertical flips. A probability of 0.5 was established for each
of these transformations, meaning that, for each epoch, each of
the images had a 50% chance of being transformed with each of
the augmentations used (i.e., a 50% chance of being rotated, a
50% chance of being horizontally flipped, and a 50% chance of
being vertically flipped). These transformations were applied per
image and epoch, meaning that, during the same epoch, different
images could be transformed in a different way based on the
50% chance used. This was done thanks to the Albumentations
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TABLE |
CHARACTERISTICS (AGE, SEX DISTRIBUTION AND ANATOMIC LOCATION) OF THE MELANOMA CASES PRESENT IN EACH OF THE DATASET SUBSETS USED

Dataset

VRUH
subset

ISIC archive
subset

Polesie et al.
subset

Kawahara et al.
subset

External
test

Age (average + SD)

60.23 (+ 15.66)

63.42 + 1451

67 (57-77 IQR)

n/a

57.76 (+ 17.06)

Male (55%)
Male (42%)
Sex distribution Female (36%)
Female (58%)
Unspecified (9%)

Male (53%) Male (46%) Male (45%)

Female (47%) Female (54%) Female (55%)

Head and neck (6%)
Head and neck (9%)
Anterior torso (11%)
Anterior torso (10%)
Posterior torso (11%)
Anatomic location Posterior torso (46%)
Upper extremities (16%)
Upper extremities (18%)
Lower extremities (9%)
Lower extremities (17%)
Unspecified (46%)

Head and neck (9%) Head and neck (13%)

Anterior torso (19%) Anterior torso (13%)

Trunk and upper

extremities (88%) Posterior torso (29%)

Posterior torso (41%)
Upper extremities (13%) Upper extremities (10%)

Lower extremities (30%) Lower extremities (23%)

IQR, interquartile range; ISIC, International Skin Imaging Collaboration; n/a, not available; VRUH,

irgen del Rocio University Hospital

TABLE Il
DISTRIBUTION OF THE LABELED IMAGES FROM VIRGEN DEL RocCiO, POLESIE ET AL. 2021, KAWAHARA ET AL. 2018 AND ISIC DATASETS

Dataset In situ  Invasive Breslow < 0.8 mm  Breslow > 0.8 mm | 7otal
VRUH 201 667 552 316 868
Polesie et al. 117 76 140 53 193
Kawahara et al. 64 183 166 81 247
ISIC archive 19 122 106 35 141
External test 114 348 312 150 462
Total 515 1396 1276 635 1911

The column with the total amount of samples is not the sum of the images shown in each column of a specific row, since most

of the images are labeled both as either in situ or invasive and

library [29], which automatically performed these augmentation
operations every time an image was loaded into memory.

2) Stratified K-Fold Cross-Validation: Cross-validation is
one of the most common techniques to measure the gener-
alizability of a trained model. There are different types of
cross-validation in machine learning. In this work, we used
the stratified k-fold cross-validation (where & = 5), which is
an enhanced version of k-fold cross-validation. Although the
dataset is also divided into k equal folds, the ratio of samples
per class is the same in each of the folds, which is optimal for
working with imbalanced datasets.

The entire dataset was split into five different folds, 4 of
which were used to train the deep learning model, whereas
the remaining one was used to evaluate its performance. This
was done 5 times, rotating the folds used to train and eval-
uate to explore all the different combinations. As explained
in Section IV, the results were evaluated as the average and
standard deviation of the 5-fold cross-validation results for each
of the metrics considered (see Section III-D). It is important to
mention that, apart from taking the imbalance of the dataset into
account, the samples were split between folds, also considering
a patient-level distribution where samples from the same patient
were not present in different folds.

C. Deep Learning Approaches

In this section, the different deep learning-based training
approaches considered in this work are presented: full super-
vision and semi-supervision. These methods were used for two

with their corresponding Breslow thickness.

different classification tasks, including the classification of test
samples as having a BT lesser than 0.8 mm or greater than or
equal to 0.8 mm, and the classification of the test samples as
Mis or Miv. The histological diagnosis of the melanoma cases
sets the basis for the ground truth of the labeled images. For
the BT classification task, we considered the specific cut-off of
0.8 mm of BT, as it is the threshold specified in the current 2022
European guidelines for melanoma to perform a sentinel lymph
node biopsy when other risk factors (e.g., ulceration) are present.

1) Supervised Learning: Supervised learning includes
methods that are developed to train machine learning algorithms
with strongly annotated data. In the field of medical image
analysis, this means samples that medical experts have manually
annotated and given a specific label or class based on their
experience and the identified finding.

Supervised learning is the most common training method in
deep and machine learning. This is mainly due to two reasons.
First, since samples are annotated by experts, the chances of
them being incorrectly labeled are reduced. This allows for a
faster training process with a smaller amount of images needed
to obtain results that are similar to or better than other training
approaches. Second, supervised learning is the easiest method
to implement and the most common approach to fast and easy
training of deep learning models to test their ability in a classi-
fication task for a specific application.

The main drawback of supervised learning in medical image
analysis comes from the fact that obtaining annotations from
medical experts is not easy, since it is a time-consuming process
that requires additional effort from them apart from their daily
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work. This is also the reason why only a few datasets with these
types of label are publicly available, each of them containing a
reduced number of images.

2) Ensemble-Based Knowledge Distillation Annotator: KD
is referred to as the process of transferring the knowledge ac-
quired by a model in the training phase to a different model [23].
Since it was first formulated, this approach has gained popularity
and is now being used in a wide range of applications, including
medical imaging [30].

There are currently many different KD algorithms, including
Graph-Based [31], [32], Cross-Modal [33], [34], Attention-
Based [35], [36], Cross-Layer [37] and Multi-Teacher knowl-
edge distillation [38], [39], [40], among many others.

In this work, we used an offline response-based Multi-Teacher
KD algorithm, in which 5 teacher models (the 5 different
supervised models trained using cross-validation presented in
Section III-C-1) were used to pseudo-annotate a set of unlabeled
images (images from the ISIC dataset that had no label, as
described in Section III-A). Instead of pseudo-annotating the
samples with the average response of the five teacher models as
presented in [23], a majority voting algorithm was used. This
means that the label assigned to an image was set based on the
winning class predicted by the 5 teacher models (if at least 3 of
the models agree on the prediction of an image, the class that
was predicted as label is assigned to that image).

3) Semi-Supervision Using Teacher-Student Paradigm:
Semi-supervised learning is a training method that combines
both labeled and unlabeled data during the training process
of the machine learning model [41]. Typically, the number of
unlabeled data used in this approach is much higher than that
of labeled data due to the greater complexity in obtaining the
latter, as mentioned in Section III-C-1. This is also one of the
main advantages of semi-supervision, since it allows exploiting
unlabeled data, alleviating the fact of having a limited number
of labeled samples available.

Semi-supervised learning mainly relies on the development
of an algorithm that automatically annotates unlabeled data,
reducing the need of large labeled datasets and, thus, the ef-
fort needed by medical experts to manually annotate a large
amount of samples. Among the different training variants within
semi-supervision, one of the best known is the teacher-student
paradigm, in which two or more models are involved. In this
case, the annotator role (also called Teacher) was performed by
a set of five models (see Section III-C-2), which are in charge
of annotating unlabeled data. After that, these automatically-
labeled data are exploited by the Student model in the training
phase, together with the labeled data. Although Teacher models
tend to be implemented with models that are deeper than the
Student model [42], they can also be implemented using the
same architecture, as in [43], which is the particular case of this
work.

The teacher-student learning approach has been used in many
different deep learning tasks, including medical image anal-
ysis [44], [45], [46], [47], [48], where relevant results were
obtained compared to other training approaches while improving
the generalization of models, because they were able to exploit
unlabeled data.

Fig. 2 shows a diagram representing the whole teacher-student
pipeline where teacher training, the ensemble-based KD anno-
tator and the student training are depicted.

In a 5-fold cross-validation multi-teacher ensemble KD ap-
proach, the dataset is split into 5 parts (D;-Dj). Each fold is
trained using 4 of them and evaluated on the remaining one. After
this, each of the folds (i.e., Teacher models) is used to predict a
completely different set of data (not part of D1-Ds) in which the
images do not have associated labels. Let us call this unlabeled
set U. Each of the Teacher models (77 -75) generates a prediction
for each of the images in U. A combined pseudo-label report is
obtained, where the label of a specificimage in U (U;) is assigned
based on the majority voting among the prediction performed by
the 5 Teachers. This means that, if 77-73 predicted U; as class 0
and Ty-T5 predicted U; as class 1, U; will be pseudo-labeled
as class 0. After the majority voting knowledge distillation
approach is performed and all the U; in U are pseudo-labeled,
the student models are trained. Focusing on a single Teacher
model from the cross validation (77%), let us assume 77 was
trained using D1-D,4 and validated using D;. Student Model
1 (or Sy), uses D1-Dy as training data, together with all the
external images (U) that were pseudo-labeled, and then the
model is evaluated on Ds. This means that Student models use
the same training and validation data as the Teacher models, but
the training data is increased with the whole unlabeled dataset
that was pseudo-labeled by the Teacher models.

D. Evaluation Metrics

In order to evaluate the performance of the models, different
well-known metrics were used. These are: precision (1), recall
or sensitivity (2), specificity (3), Fl-score (4), and AUC of the
ROC curve.

TP
Precision = 100 X ——— 1
recision X TP + FP @)

TP
Recall =1 —_— 2
eca 00 x TP LN 2)

TN

fcity — 1 _IN

Specificity 00 x TN + FP 3)
Fl-score — 2 x Precision x Recall @

Precision + Recall

Where TP stands for true positives, TN for true negatives,
FP for false positives, and FN for false negatives. The ROC
curve shows the diagnostic ability of a binary classifier system
as its discrimination threshold is varied. The AUC measures the
area that is under the ROC curve, where an area of 1 means
perfect agreement between the ground truth and the predicted
value.

E. Gradient Maps

Grad-CAM++ images and their corresponding integrated gra-
dients were rendered for visual comprehension and readability
of the models’ outputs. Grad-CAM-++ is a computer vision tech-
nique that provides visual explanations of CNN model predic-
tions, allowing better localization of multiple object instances in
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Fig. 2.

Block diagram of the whole deep learning approach considered. Firstly, the labeled images from the dataset are used to train five CNN

models in a supervised manner using a stratified 5-fold cross-validation scheme. The results from these models are obtained and are then used
as teachers for predicting unlabeled samples and assigning them pseudo-annotations after performing a majority voting algorithm. These pseudo-
annotations are later used as part of the training set of a semi-supervised stratified 5-fold cross validation scheme where the same partitions used
in the supervised learning step are considered. Finally, the trained student models are evaluated.

dermoscopic images [49]. In this case, Grad-CAM-++ highlights
influential areas of dermoscopic images, where the red color
indicates high attribution areas for specific predictions.

F. Deep Learning Framework

PyTorch [50] was used for designing, training, and evaluating
all the models proposed in this work, as well as for performing
the different experiments that were carried out. PyTorch is a
Python-based open-source Al framework developed by Meta,
which, together with TensorFlow [51], has become one of the
most used machine learning packages. Its high versatility allows
defining and training specific models focused on particular ap-
plications with a user-friendly high-level code. Python 3.9.7 was
used in this work, together with PyTorch 1.8.2 with GPU support.

An NVIDIA A100 GPU was used as the hardware platform to
accelerate both model training and inference.

DenseNet121 [52], ResNet50 [53] and VGG16 [54] models
were used in all experiments, which were initialized with Im-
ageNet weights [55], was obtained from PyTorch vision.> The
model architecture was modified, removing the last layer (which
consisted of 1000 output neurons, one per class) and replacing
it with a Dense layer with 128 neurons and the output layer
with two output neurons. These two neurons in the modified
classifier correspond to the output classes of the network, which
represent either BT < 0.8 mm and BT > 0.8 mm or Mis and
Miv, depending on the task to be performed.

3https://pytorch.org/hub/pytorch_vision_densenet. Retrieved September 23,
2024.
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Regarding the hyperparameters used, Adam* optimizer was
selected with learning rates ranging from 10 to #, and CrossEn-
tropyLoss® was used as loss function. A batch size of 64 was used
in the training phase. A maximum of 15 epochs were set to train
the models by visual inspection and prior experimentation. To
select and fine-tune the different hyperparameters of the model
and the learning process, including batch size, learning rate and
optimizer, a Grid Search algorithm [56] was used, where the
configuration that achieved the best result was selected.

Scikit-learn’s compute_class_weight function was used to
weigh the loss function during the training process based on
the class representation, since the number of samples per class
was not balanced. This helped avoid overfitting in the most
represented class (BT < 0.8 mm and Mis). After each validation
step (the model was evaluated at the end of each training epoch),
the model was saved only if the validation loss improved from
that achieved in previous validation steps. An early stop of 5
epochs was set, meaning that the training phase was stopped
when the error on the validation set was higher than the previous
best one for 5 consecutive epochs.

V. RESULTS

Two different classification tasks were evaluated in this work:
firstly, a melanoma BT classification task where samples are
labeled as either < 0.8 mm or > 0.8 mm thickness (Sec-
tion IV-A), and, secondly, a classification between Mis and Miv
samples (Section IV-B). For each of these tasks, both supervised
learning and semi-supervised learning were used to evaluate
their performance and compare them.

Supervised and semi-supervised models were trained follow-
ing a stratified 5-fold cross-validation scheme, as explained in
Section III-B-2, where each fold was trained using 80% of the
samples and evaluated using the remaining 20%. The number
of samples in the training and test subset for each fold was not
the same, since the partition was made based on patients, not
samples. Semi-supervised models were trained using the same
partitions used in the corresponding supervised models, adding
the pseudo-labeled data obtained from the annotation process
(e.g., the semi-supervised CNN model from Fold 1 was trained
and evaluated with the same partitions used in the supervised
Fold 1 with the difference that the pseudo-labeled images were
added to the training set).

The performance of the models was evaluated using the eval-
uation metrics presented in Section III-D, reporting the average
and standard deviation of each metric among the five different
folds to provide more realistic and fair results.

A. Breslow Thickness Classification

After training the supervised CNN models using the datasets
presented in Section III-A following the 5-fold cross-validation
scheme (Section III-B-2), the models were evaluated and then

“https://pytorch.org/docs/stable/generated/torch.optim. Adam.html. Re-
trieved September 23, 2024

Shttps://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html.
Retrieved September 23, 2024

used to annotate the unlabeled data from the ISIC dataset. Semi-
supervised models were trained with the pseudo-annotations
and the same labeled data as the supervised CNNs, and the
same test partitions were used in both training approaches.
Table III presents the results achieved with the supervised and
semi-supervised models. The results are shown per fold, and the
last row shows the average and standard deviation of the folds.
The evaluation metrics reported are explained in Section III-D.
Semi-supervised models achieve higher performance than su-
pervised models in the BT classification task, improving them
by 5 points on the AUC on average. The confusion matrices and
ROC curves of the models that achieved the best performance
are shown in Fig. 3, where the best supervised model achieves
an AUC of 0.8329 and the best semi-supervised model achieves
an AUC of 0.8768. Table IV presents the results specified for
each dataset.

B. In Situ Versus Invasive Melanoma Classification

For the Miv versus Mis task, the same procedure followed
in Section IV-A was followed. Table V presents the results
achieved on the supervised and semi-supervised models for
the aforementioned classification task. Semi-supervised models
achieve higher performance than supervised models in the Mis
versus Miv classification task, improving them by 6 points on the
AUC on average. Table VI presents the results specified for each
dataset. The confusion matrices and ROC curves of the models
that achieved the best performance are shown in Fig. 4, where
the best supervised model achieves an AUC of 0.7743 and the
best semi-supervised model achieves an AUC of 0.8547.

C. Multiclass Approach

In order to compare the performance of the binary classi-
fication tasks evaluated in previous sections (Sections IV-A
and IV-B) with a multiclass classification task (Mis, Miv with
BT < 0.8 mm, and Miv with BT > 0.8 mm), full-supervision
and semi-supervision were used to train and evaluate CNN
models following the same approach. For this end, the last layer
of the CNN model was modified with three output neurons.
Table VII presents the results achieved on the supervised and
semi-supervised models for the multiclass classification task. As
in the two binary classification tasks evaluated, semi-supervised
models achieve higher performance than supervised models,
improving them by 4 points on the AUC on average. Table VIII
presents the results specified for each dataset. The confusion
matrices and ROC curves of the models that achieved the best
performance are shown in Fig. 5, where the best supervised
model achieves an AUC of 0.7493 and the best semi-supervised
model achieves an AUC of 0.7787.

D. External Test Set

Table IX presents a summary of all the results obtained.
The best performance across all the three tasks is achieved
with semi-supervised models. In particular, an average AUC
of 0.8024+0.0080 is obtained in the BT classification task, an
average AUC of 0.6797+0.0168 is obtained in the Miv vs Mis
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TABLE IlI
RESULTS OBTAINED FOR THE SUPERVISED AND SEMI-SUPERVISED LEARNING APPROACHES ON THE BT CLASSIFICATION TASK
Balanced acc F1-score Kappa score Precision AUC Recall Specificity
S:lel:_':il:;d 0.7148 £ 0.0620  0.7244 + 0.0656  0.4314 + 0.1249  0.7302 4+ 0.0590  0.7752 4+ 0.0532  0.6233 4+ 0.1029  0.8062 =+ 0.0323
Seml‘;“;gfl‘;‘sed 0.7350 £ 0.0719  0.7407 & 0.0762  0.4724 £ 0.1377 07585 £ 0.0526  0.8232 & 0.0666  0.6155 &+ 0.1733  0.8544 + 0.0371
The performance of the models is evaluated using different metrics, which are reported with the average and standard deviation calculated across the different cross-validation
folds.
Best CNN model on the BT classification task
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(a) Normalized confusion matrix. (b) ROC curve.
Fig. 3. Confusion matrix (left) and ROC curve (right) obtained for the best CNN model on the classification task between BT < 0.8 mm and BT >

0.8 mm. The confusion matrix is normalized and represents all the labeled samples in the test set of that fold. The best results are obtained with
semi-supervision, achieving an AUC of 0.8768.

TABLE IV
RESULTS OBTAINED PER DATASET ON THE BT CLASSIFICATION TASK

Dataset Balanced acc F1-score Kappa score Precision AUC Recall Specificity
VRUH 0.7022 £+ 0.0643  0.7031 £ 0.0691  0.3979 £ 0.1325  0.7151 &+ 0.0584  0.7585 &+ 0.0752  0.6466 + 0.1171  0.7578 + 0.0142
Supervised Polesie et al. 0.7141 £ 0.0870  0.7074 £ 0.0846  0.4045 £ 0.1576  0.7359 4 0.1001  0.8403 4+ 0.0629  0.6339 + 0.0699  0.7942 + 0.1353
learning Kawahara et al. | 0.7154 £ 0.1446  0.8520 4 0.0822  0.4995 4+ 0.3284  0.8698 &+ 0.0902  0.8978 + 0.0824  0.4489 + 0.2569  0.9818 + 0.0364
ISIC 0.5739 £+ 0.0865  0.6636 + 0.0788  0.1452 4+ 0.1784  0.6593 &+ 0.0877  0.5189 + 0.1574  0.3561 + 0.1674  0.7918 + 0.0330
VRUH 0.7085 £ 0.0757  0.7054 £ 0.0841  0.4091 £ 0.1480  0.7233 &+ 0.0657  0.7714 & 0.0777  0.6334 + 0.1826  0.7836 + 0.0483

Polesie et al.
Kawahara et al.

Semi-supervised
learning

0.8292 £ 0.0972
0.7512 £ 0.1649

0.7980 £ 0.1151
0.8500 =+ 0.1109

0.6205 £ 0.2057
0.5228 4 0.3326

0.8680 + 0.0706
0.8670 £ 0.0913

0.8790 £ 0.0747
0.9415 £ 0.0527

0.6806 £ 0.1915
0.5211 £ 0.3431

0.9778 £ 0.0444
0.9814 £ 0.0228

ISIC 0.7581 + 0.1225  0.8289 + 0.0738  0.5443 + 02545 0.8351 + 0.0813  0.8290 + 0.0779  0.5833 + 0.2021  0.9329 + 0.0510
The performance of the models is evaluated using different metrics, which are reported with the average and standard deviation calculated across the different cross-validation
folds.
TABLE V
RESULTS OBTAINED FOR THE SUPERVISED AND SEMI-SUPERVISED LEARNING APPROACHES ON THE MIS VERSUS MIV CLASSIFICATION TASK
Balanced acc F1-score Kappa score Precision AUC Recall Specificity
S;‘el;:‘;'lf;d 0.6429 + 0.0545 07315 £ 0.0335  0.2905 & 0.0811  0.7442 £ 0.0427  0.7492 & 0.0236  0.8527 = 0.0705  0.4331 % 0.1716
Seml‘;;‘;gf;;‘sed 0.6540 £+ 0.0399  0.7617 = 0.0405  0.3499 & 0.0800  0.7648 = 0.0350  0.8085 & 0.0242  0.9231 £ 0.0088  0.3849 & 0.0826
The performance of the models is evaluated using different metrics, which are reported with the average and standard deviation calculated across the different cross-validation
folds.
TABLE VI
RESULTS OBTAINED PER DATASET ON THE MIS VERSUS MIV CLASSIFICATION TASK
Dataset Balanced acc Fl-score Kappa score Precision AUC Recall Specificity
VRUH 0.6123 £ 0.0545 0.7443 £ 0.0493  0.2385 £ 0.0891  0.7617 £ 0.0716  0.7494 £ 0.0287  0.8880 & 0.0583  0.3367 £ 0.1618
Supervised Polesie et al. | 0.7119 + 0.0704  0.6874 4 0.0942  0.4093 - 0.1400  0.7597 + 0.0508  0.7797 4+ 0.0641  0.7408 -+ 0.1535  0.6830 + 0.2476
learning Kawahara et al. | 0.6838 + 0.0718  0.7157 £ 0.0276  0.3571 + 0.1044  0.7422 + 0.0452  0.7346 + 0.0515  0.7994 + 0.1074  0.5682 + 0.2481
ISIC 0.5209 + 0.0879  0.7016 & 0.0735  0.0075 £ 0.1538  0.7691 £ 0.0791  0.4962 & 0.1089  0.7419 & 0.1531  0.3000 =+ 0.2449
VRUH 0.6209 £ 0.0538  0.7656 £ 0.0532  0.2847 £ 0.1078  0.7774 £ 0.0406  0.7924 £ 0.0355 0.9455 + 0.0229  0.2963 + 0.1200

Polesie et al.
Kawahara et al.
ISIC

Semi-supervised
learning

0.6786 £ 0.0828
0.6266 £ 0.0534
0.7622 £ 0.1622

0.6860 £ 0.0738
0.6794 £ 0.0577
0.8744 £ 0.0731

0.3629 £ 0.1595
0.2613 4 0.0984
0.4739 £ 0.2583

0.7156 £ 0.0882
0.6806 + 0.0598
0.8748 £ 0.0837

0.8304 £ 0.0693
0.7105 £ 0.0476
0.8926 £ 0.0637

0.8762 £ 0.0680
0.8119 £ 0.0685
0.9345 £ 0.0199

0.4810 £ 0.1323
0.4414 £ 0.1225
0.5900 £ 0.3121

The performance of the models is evaluated using different metrics, which are reported with the average and standard deviation calculated across the different cross-validation

folds.
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Confusion matrix (left) and ROC curve (right) obtained for the best CNN model on the classification task between Mis and Miv. The

confusion matrix is normalized and represents all the labeled samples in the test set of that specific fold. The best results are obtained with

semi-supervision, achieving an AUC of 0.8547.

TABLE VI
RESULTS OBTAINED FOR THE SUPERVISED AND SEMI-SUPERVISED LEARNING APPROACHES ON THE MULTICLASS CLASSIFICATION TASK (Mis VERSUS Miv
WITH BT < 0.8 MM VERSUS Miv WITH BT > 0.8 MM

Balanced acc F1-score Kappa score Precision AUC
S;g;‘:‘;lvi‘lfgd 0.5336 £ 0.0298  0.5494 & 0.0412  0.4419 + 0.0289  0.5648 & 0.0405  0.7202 % 0.0214
Seml‘;;‘l‘,gf;;'sed 0.5697 + 0.0335  0.5852 & 0.0491  0.4854 £ 0.0733  0.6016 & 0.0432  0.7571 =+ 0.0271
The performance of the models is evaluated using different metrics, which are reported with the average and standard deviation calculated across the cross-validation
folds.
TABLE VI
RESULTS OBTAINED PER DATASET ON THE MULTICLASS CLASSIFICATION TASK
Dataset Balanced acc F1-score Kappa score Precision AUC
VRUH 0.5019 + 0.0439  0.5301 £ 0.0695  0.4056 + 0.0274 0.5534 £ 0.0709  0.7339 + 0.0206
Supervised Polesie et al. 0.6307 £ 0.0458  0.6557 £ 0.0594  0.6555 + 0.1054 0.6755 £ 0.0727  0.7960 + 0.0604
learning Kawahara et al. | 0.5972 £ 0.0597 0.5841 4 0.0521 0.4865 + 0.0453 0.6337 £ 0.0865  0.6901 + 0.0288
ISIC 0.2933 + 0.0675 0.4147 4+ 0.0690  -0.0573 4+ 0.1132  0.4603 £ 0.0802  0.5114 + 0.0847
VRUH 0.5459 + 0.0118  0.5784 + 0.0347  0.4391 + 0.0578 0.6191 £ 0.0317  0.7546 + 0.0062

Semi-supervised Polesie et al.

learning

Kawahara et al.

0.6093 £ 0.0285
0.5861 £ 0.0935

0.5937 £ 0.0495
0.5930 £ 0.1040

0.6306 £ 0.0742
0.4691 £ 0.1040

0.6358 £ 0.0820
0.6427 £ 0.0918

0.7622 £ 0.0566
0.7297 £ 0.0305

ISIC 0.5629 + 0.1871  0.6198 & 0.2008  0.3682 4+ 0.2813 0.6541 £+ 0.1893  0.6973 + 0.1369

The performance of the models is evaluated using different metrics, which are reported with the average and standard deviation calculated across the different crossvalidation
folds.

TABLE IX
SUMMARY OF THE RESULTS OBTAINED ON THE EXTERNAL TEST SET FOR EACH OF THE TRAINING METHODS AND TASKS
Task Balanced acc F1-score Kappa score Precision AUC Recall Specificity
Supervised BT<0.8 vs >0.8 mm | 0.7188 £ 0.0109  0.7269 + 0.0073 ~ 0.4417 + 0.0173  0.7302 + 0.0092  0.7721 £ 0.0139  0.6456 + 0.0619  0.7920 + 0.0451
:g;m‘:ln Miv vs Mis 0.5679 + 0.0235  0.6734 + 0.0387  0.1406 + 0.0535  0.6961 + 0.0377  0.6162 £ 0.0305  0.7902 + 0.1235  0.3456 + 0.1278
ng Multiclass 0.5270 £ 0.0162  0.5471 + 0.0125  0.3944 + 0.0290  0.5484 + 0.0102  0.6978 + 0.0114 - -
Semi-supervised BT<0.8 vs >0.8 mm | 0.7498 + 0.0111  0.7550 £ 0.0127  0.5011 £ 0.0227  0.7597 + 0.0084  0.8024 + 0.0080  0.7047 + 0.0644  0.7950 + 0.0612
lea"l:m Miv vs Mis 0.5822 +0.0343  0.7193 £ 0.0241  0.1963 + 0.0746  0.7177 + 0.0248  0.6787 + 0.0168  0.9241 + 0.0232  0.2404 + 0.0850
g Multiclass 0.5444 +0.0123  0.5651 + 0.0160  0.4134 £ 0.0179  0.5816 + 0.0166  0.7215 + 0.0126

Each cell represents the average and standard deviation of the results obtained when evaluating the external test set with the 5 models in the cross-validation for a spemﬁc metric

and task.

task, and an average AUC of 0.7215£0.0126 is obtained in the
multiclass classification task.

E. Gradient Maps

Fig. 2 of the supplementary material shows a matrix of illus-
trative images in which semi-supervised learning improved the

performance of fully supervised learning for the classification
task between Mis and Miv.

V. DISCUSSION

Al and deep learning have become very popular in many
different fields, including medical image analysis, since they
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Confusion matrix (left) and ROC curve (right) obtained for the best CNN model on the multiclass classification task. The confusion matrix is

normalized and represents all the labeled samples in the test set of that specific fold. The best results are obtained with semi-supervision, achieving

an AUC of 0.7787.

could help experts when diagnosing complex cases where the
expert could be aided by a second opinion on the analysis, or
even in routine cases, reducing the time dedicated by medical
experts and allowing them to focus on more problematic cases.

In this regard, two different classification problems were
studied in this work: the classification of melanoma samples
as Mis or Miv, and as having a BT below 0.8 mm or greater
than or equal to 0.8 mm. As mentioned previously, the fact of
considering 0.8 mm as the cut-off is due to the fact that it is
the threshold used in Europe to perform a sentinel lymph node
biopsy when associated with additional histological risk factors
such as ulceration. Moreover, we also considered a multiclass
classification task combining Mis and Miv, together with the BT
information, in order to analyze its performance compared to the
binary tasks.

Publicly available datasets with ground-truth labels assigned
by histopathological diagnosis are hard to find. We collected
four different datasets from different sources in order to have
a highly-heterogeneous dataset, facilitating the generalization
of the CNN models during the training step. Furthermore, we
provide the VRUH dataset as one of the largest labeled images
repositories open available in the literature.

We tested both supervised learning and semi-supervised
learning with an ensemble-based multi-teacher KD approach
on both classification tasks. Supervised learning is the most
common deep learning paradigm when it comes to training Al
models. It enables fast training and accurate predictions with
few data, as it requires samples to be annotated in order to
train the models. This is also a counterpart of this paradigm,
since annotated samples are not always available (or at least not
as many as unlabeled data), and this approach does not allow
benefiting from unlabeled samples in the training process.

Semi-supervised learning requires a more complex setup with
multiple steps prior to training the models, which is much more
time consuming than supervised learning. However, it allows
for the use of unlabeled samples, which are easier to find,
and thus improve the generalization capability of the model
compared to supervised learning. In this case, we followed an

ensemble-based multi-teacher KD approach, in which the five
supervised models trained were used to pseudo-annotate unla-
beled data with a majority voting algorithm in order to obtain
more accurate labels. This approach led semi-supervised learn-
ing to achieve the highest results, improving those obtained by
supervised learning in all the tasks performed, including the
evaluation with an external dataset. Likewise, it also outperforms
the results obtained in previous studies that used supervised
learning models for the same classification tasks [17], [18],
[20], [22]. This is probably due to the amount of unlabeled
samples that could be introduced in the training step, which
were able to increase the ability of the models to predict new
unseen images. However, it should be taken into account that
a 3-step process was conducted to this end: firstly, the teacher
models were trained with supervised learning; then, the teachers
were used to predict the unlabeled data; and finally, the student
models were trained using the annotated and pseudo-annotated
data. This 3-step process is definitely more time-consuming than
the single-step supervised learning, and it should be taken into
account when using this approach if the result obtained is not
worth the effort. In the field of dermatology, only three groups
of authors have used KD approaches as a decision-making
support. Wang et al. [57] employed a KD framework called
SSD-KD, focusing on multiclassification of dermoscopic im-
ages representing various skin conditions within the ISIC 2019
dataset, using lightweight deep learning models. Addressing
melanoma detection, Khan et al. [16] utilized the pretrained
CNN ResNet50 as the teacher model and developed what they
named the ’Distill Student Network’™ as the student model,
thus reducing computational complexity compared to other
pre-trained models like EfficientNetBO, achieving acceptable
accuracy in detecting melanoma. Adepu et al. [25] applied a
KD approach to manage the high level of inter-class similarity
and low intra-class similarity in dermoscopic images for binary
classification between melanoma and non-melanoma within
the ISIC archive 2020 dataset. In our study, the ensembled-
based KD with semisupervised CNN was focused on the two
classification tasks for the differentiation of Mis or Miv and



454

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 29, NO. 1, JANUARY 2025

the classification by Breslow thickness, together with the mul-
ticlass classification task. In the three cases semi-supervised
models overcome those metrics of the supervised.

In order to analyze and compare the performance of both bi-
nary classification tasks performaed with a combined approach,
a multiclass classification evaluation was carried out, where the
models were trained to classify between Mis, Miv with BT <
0.8 mm and Miv with BT > 0.8 mm. The results obtained show
lower performance than those of binary tasks, however, the main
aspect to take into account is its low precision in the Mis class.
The results obtained show lower performance than those of
binary tasks; however, the main aspect to take into account is its
low precision in the Mis class. It could be caused by the similarity
between Mis and thin melanomas (which are the majority of
invasive melanomas) in most of their clinical and dermoscopic
features, that could limit the prediction both for dermatologist
and CNN models [10]. This observation prompted us to consider
the possibility of comparing the multiclass approach with a
dual-stage execution pipeline. In this proposed pipeline, the
image would first be classified between Mis and Miv, and those
classified as Miv would then be used as input to a secondary
model that classifies BT. This approach will be considered in
future work.

Different KD approaches could be followed instead of the
one we used. We used the multi-teacher with majority voting,
since stratified 5-fold cross-validation was already used on the
supervised learning side, although it is not the only one we
could have used. Better results could have been obtained with
other solutions; however, it was not the focus of this study to
achieve the highest results possible, but to perform a comparison
between supervised learning and semi-supervision in the two
classification tasks considered, which we believe is a novelty in
the field of melanoma image analysis.

As a future work, we will also explore training regression
models rather than classification ones to predict BT, since they
would bring much potential for expert dermatologists. However,
for that purpose, a larger, more heterogeneous and better repre-
sented dataset would be needed in order to perform a regression
task. Even though we have used what we believe is the current
largest melanoma dataset with Breslow thickness annotations,
we consider it still being far from optimal for training models
on a regression task. Moreover, most of the datasets used do
not report a specific BT value, but a wide range between two
thicknesses, which, combined with the previous aforementioned
aspect, makes the amount of samples with specific BT labels
available even lower. Still, we find the idea of performing re-
gression over the BT value very interesting and we would focus
on increasing the number of labeled samples that are publicly
available for future research on it.

VI. CONCLUSION

In this work, an offline response-based Multi-Teacher KD
algorithm was used together with semi-supervised deep CNNs
for two different classification tasks related to melanoma classi-
fication: a BT classification task and a Mis vs Miv classification
task. This approach was compared to the standard supervised

learning approach using stratified 5-fold cross-validation, which
were the same models used as teachers for the semi-supervised
learning. A total of 4 datasets from different sources were used
to increase the heterogeneity of the data and the generalization of
the trained models. The dataset sourced from Virgen del Rocio
University Hospital has been made publicly available for this
work and can be accessed through its website, allowing other
researchers to use it.

The performance of the different methods considered was ana-
lyzed using different evaluation metrics, where semi-supervision
showed the best results in both classification tasks. Moreover,
semi-supervision allows exploiting unlabeled data, which is
not possible with supervised learning, where only strongly-
annotated data can be used. As a counterpart to the use of
semi-supervision, it is more time-consuming than supervised
learning, since it first needs a supervised model to infer on the
unlabeled data. This aspect is even worse in our case, since a
Multi-Teacher KD approach was used.

The results presented in this work show the potential of semi-
supervised learning in BT classification in melanoma and could
be of great use for expert dermatologists to speed up the analysis
of routine cases and serve as a second opinion.

The source code used in this work is available on an open
source GitHub repository. Images from the Virgen del Rocio
University Hospital dataset are available upon request.’
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