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Validation of an IMU-Based Gait Analysis
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Abstract—Falls are a severe problem in older adults, of-
ten resulting in severe consequences such as injuries or
loss of consciousness. It is crucial to screen fall risk in
order to prescribe appropriate therapies that can potentially
prevent falls. Identifying individuals who have experienced
falls in the past, commonly known as fallers, is used to
evaluate fall risk, as a prior fall indicates a higher likelihood
of future falls. The methods that have the most support
from evidence are Gait Speed (GS) and Time Up and Go
(TUG), which use specific cut-off values to evaluate the fall
risk. There have been proposals for alternative methods
that use wearable sensor technology to improve fall risk
assessment. Although these technological alternatives are
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promising, further research is necessary to validate their
use in clinical settings. In this study, we propose a method
for identifying fallers based on a Support Vector Machine
(SVM) classifier. The inputs for the classifier are the gait
parameters obtained from a 30-minute walk recorded using
an Inertial Measurement Unit (IMU) placed at the foot of pa-
tients. We validated our proposed method using a sample
of 157 patients aged over 70 years. Our findings indicate
significant differences (p<0.05) in stride speed, clearance,
angular velocity, acceleration, and coefficient of variability
among steps between fallers and non-fallers. The proposed
method demonstrates the its potential to classify fallers
with an accuracy of 79.6%, slightly outperforming the GS
method which provides an accuracy of 77.0%, and also
overcomes its dependency on the cut-off speed to deter-
mine fallers. This method could be valuable in detecting
fallers during long-term monitoring that does not require
periodic evaluations in a clinical setting.

Index Terms—Fall risk assessment, retrospective falls,
SFRT, older adults, gait spatio-temporal parameters,
inertial measurement units, IMU.

I. INTRODUCTION

THE current world population is aging with approximately
12% of individuals being elderly adults (age>60 years) at

present [1]. It is projected that this percentage will rise to 22%
by the year 2050.

Aging is associated with an increased prevalence of chronic
diseases, functional decline, and dependency. Therefore, the
focus of healthcare management for this population is shifting
from solely treating diseases to maintaining functional abilities,
thereby enhancing the overall well-being of older adults [2].
In this context, the concept of frailty has gained considerable
attention.

Frailty, a syndrome characterized by weakness that is closely
linked to aging, affects more than 7% of older adults [3]. It is
particularly alarming that this prevalence significantly increases
to 25% in individuals aged 85 years and older.

Frailty represents a physiological decline and heightened
vulnerability to stressors [3]. It is an extreme scenario in which
the typical age-related decline becomes dysregulated [4]. Frailty
is associated with undesirable consequences such as falls, which
can result in fractures, head injuries, or even fatalities [5].
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Consequently, it is crucial to assess frailty and fall risk in
order for physicians to prescribe appropriate interventions to
prevent the adverse outcomes of falls. This assessment generally
involves an evaluation of the functional abilities of older pa-
tients [6]. Identifying those at risk of falling, commonly known
as fallers, can also serve as an indicator of fall risk [7].

Functional evaluation methods include the assessment of gait,
balance, and strength, which are directly related to the functional
capacity and frailty status of patients [6]. Among these methods,
the Gait Speed test [8] and the Time Up and Go (TUG) test [9]
are the most widely recommended assessments for evaluating
fall risk [6].

The recent efforts in this field are focused on the develop-
ment and validation of Sensor-based Fall Risk Testing (SFRT)
techniques. These SFRT methods aim to provide objective mea-
surements and functional testing outside of the clinical setting.
Consequently, SFRT alternatives have the potential to more
accurately reflect the everyday motor behavior and are highly
appealing to clinicians [10].

SFRT methods rely on technological sensing solutions.
Portable sensors, such as inertial sensors or plantar pressure
insoles, possess the potential to assess fall risk [11], [12], [13].
They are frequently used due to their non-interference with
patient movements, affordability, easy of use, and suitability for
any environment [14]. Portable sensors enable the estimation of
reliable gait parameter measurements [15].

In the identification of fallers, Inertial Measurement Units
(IMUs) are the most commonly used portable sensors. IMU
measurements are frequently recorded during functional eval-
uation tests [16], [17], activities of daily living (ADL) [18], [19]
or gait assessments [20], [21], [22], [23], [24].

For functional evaluation tests, such as sit-to-stand or balance
assessments, IMU measurements improve the classification be-
tween fallers and non-fallers [16], [17]. In the monitoring of
ADL, acceleration measurements in a Naive Bayes classifier
achieve a 61% sensitivity and a 67% specificity in screening
fallers [18]. Similar results are obtained with the Non-Dominant
Hand Grip Strength, TUG, and GS tests. Studies focused on gait
use IMU signals to identify fallers, achieving a 73.4% accuracy
using Random Forests [20] and 57% with Neural Networks [22].

IMU signals are also used to estimate spatio-temporal or
qualitative gait parameters, which are applied in the identi-
fication of fallers. Gait quality metrics, such as the number
of steps and their regularity, have been used as predictors in
Logistic Regression (LR), providing a 71.6% accuracy [23].
Spatio-temporal parameters predict falls with a 47% sensitivity
and a 47% specificity using LR [21], and a 59% accuracy with
Support Vector Machine (SVM) classifiers [24]. Deep learning
approaches could improve the accuracy reported by traditional
machine learning methods. Long short-term memory (LSTM)
Neural Networks, utilizing sequential gait parameters to evaluate
76 subjects achieve a 92.1% accuracy in this case [25].

Existing fall risk evaluation alternatives are limited in their
application and validation. Classical methods are commonly
performed during consultations or in nursing homes, and
their outcomes may be influenced by the presence of clini-
cians, known as the “white-coat effect”. These approaches are

well-known to influence patient behavior. Moreover, the GS and
TUG tests rely on the establishment of cut-off values to identify
fallers and there is no consensus on the optimal values [26].

On another note, the interpretability and validation of exist-
ing SFRT proposals is limited. This interpretability is crucial
for gaining the trust of physicians in utilizing these techno-
logical proposals. The most accurate proposals involve time
and frequency-domain features extracted from IMU measure-
ments [20]. However, frequency-domain parameters are not
directly interpretable in relation to the health status of patients,
making their results difficult to understand [27].

Future technological proposals should incorporate explain-
able metrics to ensure the interpretability of classifiers [28].
Spatio-temporal gait parameters, which are widely used and
well-established in gait research, can be related to falls [12],
[13], [27], [29]. Spatio-temporal gait parameters obtained from
pressure insoles have been found to enhance the IMU-based
identification of fallers, achieving an 84% accuracy [30]. How-
ever, studies that utilize spatio-temporal gait parameters esti-
mated from IMUs to predict falls using interpretable methods
have shown improved classification, with a 59% accuracy [24].
Deep Learning approaches are promising to outperform these
results, as in [25]. However, the reported results are validated in
only 16 individuals, needing further research to obtain conclu-
sive findings. Moreover, Deep Learning methods are opaque in
their analysis of the trained model’s features, making them less
appealing for their use by clinicians.

To classify fallers using gait parameters, the identification of
significant features is crucial [14], [21]. In a previous study [13],
we analyzed the most significant gait parameters measured from
inertial sensors to discriminate between fallers and non-fallers.
Based on this analysis, the study highlighted both significant
and non-significant gait parameters in faller identification. The
most relevant parameters identified for assessing fall risk are
related to stability, trunk movements, and physical activity.
However, there is no consensus regarding spatio-temporal gait
parameters, such as gait speed, stride length, and stride time. This
lack of agreement stems from variability in the methodology
among studies, leading to inconsistencies in their evaluation.
Consequently, further studies analyzing the relationship between
gait parameters and falls in older adults are required.

The primary objective of this study is to assess the effec-
tiveness of a comprehensive set of gait parameters in distin-
guishing between fallers and non-fallers using machine learning.
Specifically, we evaluate the use of classical shallow machine
learning methods in order to ensure the interpretability of the
proposed approach. To achieve this, this work examines the most
significant gait parameters and their correlation with past falls.
These gait parameters are obtained from an IMU positioned at
the foot of patients during unrestricted walking. The focus is on
spatio-temporal gait parameters, combined with the maximum
and minimum values derived from inertial measurements. This
allows for the interpretation of inertial parameters in terms of
foot rotation speed and accelerations at different gait phases.
We compare the proposed approach, based on relevant spatio-
temporal and inertial gait parameters, with the outcomes of two
functional evaluation tests commonly used to detect fallers: the
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GS and TUG tests. These tests serve as the baseline since they
are the most recommended approaches functional and fall risk
evaluation [6].

This work is organized as follows: Section II describes the
data used in the development of this work, the gait parameters
extracted from the IMU recordings, the fall risk assessment
approaches evaluated, and the metrics used to evaluate them;
Section III details the results in the identification of fallers; sec-
tion IV discusses these results and finally, Section V summarizes
the main remarks obtained from this work.

II. MATERIALS AND METHODS

A. Subjects

The validation of the proposed method will utilize patient data
from the GSTRIDE database [31], [32]. This dataset consists of
anthropometric characteristics, frailty, and functional metrics of
n = 163 older adults with the assessment of their health status.
The data includes information from to 45 men and 118 women,
ranging in age from 70 and 98 y.o.. These individuals exhibit
variations in their functional and cognitive capacities. Addition-
ally, the dataset includes experimental inertial measurements
captured during a walking test performed by the patients.

A total of 157 patients in the database included all the
necessary information for evaluating the fall risk assessment
methods. These participants were divided into two groups:
fallers (n = 81, including 64 women and 17 men, with an
age of 84.2± 5.5 y.o., mass of 62.4± 13.1 kg and height of
1.52± 0.08 m) and non-fallers (n = 76, including 51 women
and 25 men, with an average age of 80.8± 6.4 y.o., mass of
65.7± 12.7 kg, and height of 1.62± 0.10m). The classification
was based on the occurrence of severe falls in the year preceding
the tests, following the critieria established for fall prevention
management in [6]. Severe falls are defined as those resulting in
adverse consequences such as injuries or loss of consciousness.

B. Functional Tests

The functional tests evaluated in this study are the 4-meter
Gait Speed test and the TUG test. In the 4-meter test, physicians
record the time taken and the average speed of a patient walking a
distance of 4 m [8]. An additional meter is added at the beginning
and end of the test to exclude the influence of initial accelera-
tion and final deceleration on the calculated speed. The TUG
test involves standing up from a seated position, performing a
walking speed test with a 180 ° turn, and then sitting back down,
all without utilizing the arms [9]. These two classical tests are
employed as a baseline in this study due to their extensive use
in clinical settings.

C. Gait Parameters

As an alternative to the classical tests (GS and TUG), we
propose a gait analysis method using foot-mounted IMUs. One
IMU was placed on one foot of the patients while they walked
on different environments and surfaces at their chosen speed.
The IMU was fixed to the upper part of the shoe to ensure that it
did not move relative to the foot. We used elastic straps around

Fig. 1. Spatial gait parameters. The red shoe represents the left foot,
and the gray-black shoe depicts the motion of the right foot during the
gait cycle. It is important to note that we assume that the pitch angle of
the IMU is comparable to the angle of the foot in relation to the floor.

the device, encircling the foot at the sole and securing them
in the heel area. The IMU Y-axis pointed to the front, the Z-
axis upwards and X-axis to the medial or lateral of the body,
depending on its placement on the left or right foot. For a more
detailed description of the acquisition protocol, see [31]. The
duration of the walking test ranged from 15 to 30 minutes, with
an average duration of 21.4± 7.1 minutes.

Different IMUs were used for simultaneous tests. In some
cases, the IMUs were from different manufacturers but had sim-
ilar technical characteristics. However, previous studies proved
that the spatio-temporal estimation results do not differ signif-
icantly when different IMUs are used, so it did not affect the
results [33]. Most of the IMUs used were specifically developed
for this study with an iNEMO inertial module (LSM6DSRX,
STMicroelectronics, CH). These IMUs were developed within
the framework of the GSTRIDE project by Rey Juan Carlos
University, Infanta SofÃia University Hospital, and the Spanish
National Research Council. Additionally, when necessary, we
recorded the tests with a commercial IMU (Physilog 6S, GaitUp,
CH). In this case, only the raw data was recorded, but the
processing algorithms for gait parameter estimation were the
same as in the other IMUs.

We estimate the spatio-temporal parameters and the poten-
tially relevant signal peaks from the IMU recordings. We pro-
cess the gait recordings with the INS-ZUPT algorithm detailed
in [34], which detects the gait phases. Based on the detected gait
phases, this algorithm provides the spatial parameters shown
in Fig. 1 and two temporal magnitudes. The estimated spatio-
temporal parameters are as follows:

� Stride length: straight distance between successive contact
points of the same foot on the floor.

� Stride velocity: stride length divided by the gait cycle time
or time spent in a single stride.

� 2D path: length of the foot trajectory projected on the
horizontal plane divided by the stride length.

� 3D path: length of the three-dimensional trajectory divided
by the stride length.

� Clearance: elevation of the foot during the swing phase.
� Percentage of time in the gait phases detected (swing,

loading, and pushing): percentage of time during which
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the foot is in the different gait phases, divided by the gait
cycle time.

� Pitch angle in the heel strike (HS) and toe-off (TO) events:
foot angle relative to the floor in HS and TO events.

These parameters are explained in detail in the data descriptor
in [31].

D. Feature Selection

To ensure methodological precision, we exclude mathemati-
cally interrelated parameters. Since stride time, stride length, and
their respective velocities are closely intertwined, our feature
analysis focuses solely on stride length and its velocity. We do
not consider cadence, which is the reciprocal of stride velocity,
in our evaluation. Additionally, we selectively include the du-
ration percentage of three out of the four gait phases (swing,
loading, and pushing), as the remaining portion of the gait cycle
corresponds to the foot-flat phase.

Furthermore, we estimate the maximum and minimum values
of the acceleration and gyroscope Euclidean norms magnitudes
in the detected gait phases. To not oversimplify the analysis,
we divide the swing phase into three sub-phases. We separately
study the elevation of the foot from the end of the pushing phase,
its forward movement, and its descent until the loading phase
begins. Visually, we observe that the elevation and descent of
the foot occur in the first and last quarter of the swing phase,
respectively, so we divide the swing phase accordingly. Finally,
we also examine the motion variation recorded in the foot-flat
phase in terms of the standard deviation of the acceleration and
angular velocity Euclidean norms magnitudes.

To ensure the evaluation of accurately detected steps and avoid
miscalculations, we limit the steps studied. We only consider
strides with a length larger than 0.15 m, and 2D and 3D paths
lower than 150% and 180% times the step length, respectively.

Our analysis focuses exclusively on straight strides. For each
patient, we calculate the average and coefficient of variation
(CV) of the gait parameters (Section II-C) in the straight strides.
For the analysis of the motion variation in the foot-flat phase,
we only study its average. This results in a total of 20 spatio-
temporal gait parameters and 30 parameters of the acceleration
and gyroscope norms.

The most relevant gait parameters calculated serve as predic-
tors for the classification of fallers. To determine these relevant
parameters, we perform a significance analysis for each predictor
using a chi-square test [35]. Only these features with a p-value
(p) lower than 0.05 (p < 0.05) in the significance analysis to
differentiate fallers are included in the study.

We also eliminate highly correlated features to avoid redun-
dancy between input pairs [36]. The maximum allowed Pear-
son’s correlation coefficient between features is set at C = 0.9.
For each group of correlated features, we select the one that
yields the lowest p-value.

E. Data Analysis

We investigated the performance of eight machine learning
classifiers in identifying fallers, using the selected features.
We identify fallers by the classification as either fallers or

non-fallers. The machine learning classifiers include SVMs with
three different kernels (Gaussian, polynomial, and linear), Ran-
dom Forest, K-nearest Neighbors, Multilayer Perceptron, Linear
Discriminant Analysis, and Logistic Regressor (see Table II in
Appendix A). The SVM with a linear kernel was chosen for the
further analysis due to its highest classification accuracy.

Consequently, the selected features are used as inputs for an
SVM classifier [37]. SVMs search for the maximum separation
between the two groups of patients. The decision function of
these classifiers is the separation hyperplane that maximizes the
separation of the two populations.

Regarding the hyperparameters of the SVM, the predictor
variables were standardized prior to model training by using
their average and standard deviation. Furthermore, a grid-search
was performed to optimize the Kernel Scale and the Regular-
ization Parameter. For the Kernel Scale, we utilise the Matlab
optimizer with the Regularization Parameter set at 1, resulting
in an average of 2.56± 0.02 across all test sets. To assess the
Kernel Scale, we examine five values around the optimal value
when the Regularization Parameter is fixed: 0.1, 2, 2.5, 3, 10,
focusing on the optimal value and utilizing a logarithmic scale.
Similarly, a logarithmic scale was employed for the Regulariza-
tion Parameter, with the values 0.01, 0.1, 1, 10 and 100 being
evaluated.

We compare the gait-based approach with the GS and TUG
tests, taking into consideration the dependency of the last on the
chosen cut-off values. The 4-meter GS test and the TUG test
are commonly used with specific cut-off values to distinguish
between fallers and non-fallers. Patients with a gait speed lower
than 0.8 m/s in the GS test and a TUG time greater than 15 s are
identified as fallers, as these are the commonly accepted cut-off
values [6].

We thoroughly analyze the limitations of the traditional meth-
ods, GS and TUG, associated with their cut-off values. There
is no consensus on the optimal cut-off values for identifying
fallers [26]. Therefore, we examine the impact of different
cut-off values on the accuracy of faller identification. To do so,
we analyze the classification accuracy using other frequently
used cut-off values. For the GS test, the cut-off values range
between 0.6 and 1 m/s, and in the TUG test, the cut-off values
are around 15 s.

F. Evaluation of Methods

To assess the identification of fallers using SVMs, it is neces-
sary to divide the data into training and testing sets. This allow
us to measure the SVM’s ability to generalize by evaluating
its classification metrics on the test set. Since the dataset only
includes 157 patients, we evaluate all of them in different test
sets. To do that, we employ a k-fold cross-validation approach,
randomizing the order of the patients to create 10 different sets of
test data. For each set, the SVM is trained on 90% of the patients
and tested on the remaining 10%. This process is repeated
10 times, ensuring that all patients’ measurement are included
in the evaluation. Consequently, the metrics explained in the
following are provided as an average and standard deviation of
the results obtained for the ten iterations.
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We comprehensively evaluate the performance of the pro-
posed gait analysis-based method, the GS test, and the TUG test
with four classification metrics. In the identification of fallers
(positive, P ), accurately identifying both fallers (true positives,
TP ) and non-fallers (true negative, TN ) is crucial. Therefore,
we measure the accuracy of the provided classifications (1) [38].
Misclassifying non-fallers as fallers (false positives, FP ) would
result in prescribing physical therapy to a patient with an unde-
termined health status. Conversely, misclassifying fallers as non-
fallers (false negatives,FN ) would lead to a lack of treatment for
a patient in need of care. The latter scenario has the potential for
a fall to occur, which is the undesirable consequence we aim to
prevent. To analyze these sources of errors, we examine the rate
of correctly identified fallers among all the actual fallers, known
as sensitivity (2), and the F1-score (3), which represents the rate
of correctly identified fallers among all identified fallers.

acc (%) =
TP + TN

P +N
100 (1)

sens (%) =
TP

TP + FN
100 (2)

F1 (%) =
2TP

2TP + FP + FN
100 (3)

III. RESULTS

A. Gait Parameters Analysis

The correlation analysis eliminates gait parameters that ex-
hibit linear dependence. For the explanation of these parameters,
see Section II-C. Additionally, Fig. 1 provides a visual represen-
tation of these spatial parameters. Among the spatio-temporal
gait parameters, the stride velocity demonstrates a strong high
correlation with both the mean stride length (C = 0.95) and the
percentage of time in the swing phase (C = 0.93). Furthermore,
CV for both the 2D and 3D path length shows a high correlation
(C = 0.94). Consequently, we exclude the mean stride length,
the mean percentage of time in the swing phase, and the CV of
the 2D path for further analysis.

The three parameters extracted from the norms of the IMU
signals that we eliminate are as follows: the mean maximum
of angular velocity in the final part of the swing is correlated
with the mean maximum of angular velocity in the pushing
phase (C = 0.98); the CV of the maximum acceleration in the
pushing phase is highly correlated with the CV of the maximum
acceleration in the final part of the swing (C = 0.97); and the
mean maximum acceleration in the pushing phase, which is
correlated with the mean of the maximum acceleration in the
final part of the swing phase (C = 0.98).

The chi-square analysis finds 16 features significantly dif-
ferent (p < 0.05) between fallers and non-fallers. Fig. 2 shows
the p-value obtained for the non-correlated features. The mean
stride velocity, clearance, and maximum angular velocity in
pushing distinguish fallers most effectively, see the explanation
of gait parameters in Section II-C. The CV of stride velocity
and maximum angular velocity while pushing may distinguish
both populations. The parameters of the percentage of time
in the gait phases and stride length, referred to the average

Fig. 2. Outcome of the significance analysis of the twelve most sig-
nificant and non-correlated parameters. The bars represent the p-value
of the spatio-temporal gait parameters (top) and those derived from the
gyroscope and accelerometer measurements, ordered by their level of
significance. Gait parameters with a significance level of p > 0.05 are
not displayed. The red dashed line indicates the threshold of p < 0.05,
which was established to include relevant features.

time in each of them, and their variability, are relevant for
identifying fallers. The rotation angle of the foot also differs
between fallers and non-fallers, with the Pitch CV in the Heel
Strike being determinant. In the case of the maxima and minima
of IMU signals, the average values of metrics differ more than
their variability, and the most relevant features correspond to
the gait phases of the foot stance. In the loading phase, the
mean maximum angular velocity and acceleration as well as
the minimum acceleration, are different between fallers and
non-fallers. In pushing, the mean maximum angular velocity
and its CV also differ between fallers and non-fallers. Finally,
the mean minimum angular velocity and the CV of the maximum
and minimum angular velocity in the third sub-phase of swing
are relevant for identifying fallers.

We analyze the selected features through the visualization of
their boxplots in Fig. 3. These boxplots depict the distribution of
features in terms of their median, 25th and 75th percentiles. We
visualize the boxplots of each feature, differentiating between
fallers and non-fallers. Notches are included in the boxplots to
provide a visual representation of the statistical significance
between the two populations. When notches of a particular
feature for fallers and non-fallers do not overlap, it means that
the medians of these groups exhibit a significant difference at
the 5% significance level.

The boxplots in Fig. 3 present the 16 parameters normalized.
According to these boxplots, fallers walk at a slower stride
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Fig. 3. Boxplots of the features selected for the differentiation between non-fallers (NF) and fallers (F). The spatio-temporal parameters are
depicted in blue, while the maximum and minimum of the signals are represented in green. All features are normalized based on their maximum
value.

velocity, maintain their feet closer to the floor, present a lower
time in the loading and pushing phases, lower variation of the
pitch angle in heel strike, and their steps are more variable
in terms of stride length, percentage of time in swing, stride
velocity and 3D path length. Fallers also present lower maximum
angular velocity in pushing and loading, lower mean maxima
and minima acceleration in loading, lower mean minima angular
velocity in swing, and higher CV of the minima and lower mean
maxima of angular velocity in the last part of the swing.

B. Gait Speed Analysis

The stride velocity is the most discriminative gait parameter.
The stride velocity is highly related to the gait speed measured in
the 4-meter GS test, commonly used in clinics. For that reason,
we study whether it is possible to simplify the detection of
fallers with this unique parameter. The most straightforward
simplification consists of applying a cut-off value to separate
fallers from non-fallers, as is done in the TUG or GS tests. We
analyze the speed of patients during the free walk to study this
possible application of a cut-off and present.

Fig. 4 depicts the distribution of patients with respect to the
gait speed measured in the GS test and during the free walk. In
the free walk gait speed, fallers walk at a similar speed to that
during the GS test, possibly because they cannot walk faster at
all. However, not all non-fallers walk at the same gait speed as
in the GS test. Most non-fallers (80%) walk at a gait speed faster
than 0.8 m/s in the GS test, as shown in Fig. 4 (top). Conversely,

Fig. 4. Distribution of the fallers and non-fallers populations, based
on their gait speed in the 4-meter GS test (top) and the free walk test
(bottom).

in the long-duration test, non-fallers can be divided into two main
groups of patients who walk at a gait speed higher or lower than
0.9 m/s (see Fig. 4, bottom).

C. Detection of Fallers

The proposed method utilizes an SVM model to discern fallers
by analyzing significant gait parameters. Only the sixteen gait
parameters, which exhibit statistical significance (p < 0.05) in
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TABLE I
CLASSIFICATION METRICS OBTAINED BY THE THREE METHODS IN THE

IDENTIFICATION OF FALLERS AND NON-FALLERS

Fig. 5. Mean and standard deviation of the classification accuracy
achieved in distinguishing fallers and non-fallers using the GS and TUG
test, as well as employing the gait analysis parameters with the SVM
classifier.

differentiating between fallers and non-fallers are employed as
predictors.

In relation to the hyperparameters of the SVM, the predictors
are standardized and the optimized hyperparameters are deter-
mined based on the results obtained from the grid search. For
a comprehensive overview of the grid-search outcomes, refer
to Tables III and IV in Appendix B. The Kernel Scale set to
2.5 and the Regularization Parameter set to 1 demonstrate the
highest accuracy in the validation datasets, thus making them
the optimal hyperparameters. Consequently, these values are the
ones employed in the subsequent analysis.

Fig. 5 shows the average accuracy of the SVM using the
optimized hyperparameters for the ten test sets. The results of
this proposal are shown in comparison to that of the GS and TUG
tests. The error bars show the standard deviation of the error
for the ten test sets. The proposed SVM-based classification,
incorporating gait parameters, exhibits slight superior perfor-
mance to the functional tests. The SVM achieves an accuracy of
79.7%, which is comparable to the accuracy achieved with the
GS and TUG tests, namely 77.0% and 66.5%, respectively.

Table I presents the classification metrics of the faller iden-
tification methods. In addition to the accuracy, the proposed
method demonstrated increased sensitivity and F1-score met-
rics. The SVM with gait parameters outperforms the TUG test
by achieving higher average values and reduced variability in
its classification metrics. Our proposal means an improvement
of 50% in the sensitivity, and 30% in the F1-score compared to
the TUG test. Compared to the GS test, the SVM classification
metrics are slightly higher. The proposed method shows a 4%
increase in sensitivity and F1-score metrics. While the improve-
ment in metrics in comparison with GS is minor, it is noteworthy
due to the advantages of the proposed method, which does not
rely on the selection of a threshold value.

Fig. 6. Confusion matrices of the classification of fallers (F) and non-
fallers (NF) using the 4-metre GS test, TUG time, and SVM analysis
based on gait parameters.

Fig. 7. Accuracy of the GS and TUG classical methods to detect fallers
using the commonly applied the cut-off values.

The confusion matrices in Fig. 6 illustrate the classification
between fallers and non-fallers using the different approaches.
Consistent with the metrics in Table I, the proposed gait analysis
method shows an increase in correctly identifying fallers and
non-fallers. The improvement is particularly significant when
compared to the TUG test. The confusion matrix in the center
of Fig. 6 highlights that misidentification of fallers is the main
source errors in the TUG test. As previously discussed, misiden-
tifying non-fallers is an undesirable outcome, as it would result
in patients not receiving necessary treatment. Neither the GS nor
the proposed method has this limitation, with the latter offering
the advantage of not depending on threshold values.

As stated in Section II-E, the metrics provided by the GS
and TUG tests rely on established cut-off values. In this work,
we set the cut-off values for gait speed and TUG time to the
recommended values [6]. To investigate the dependency on these
values, we present accuracy results applying frequently used
cut-off values from previous literature in Fig. 7.

Fig. 7 demonstrates the dependency of classification accuracy
on the cut-off values. For the population under study, the optimal
cut-off values are determined to be 0.8 m/s for the GS test
and 14.1 s for the TUG test. With these values, the maximum
classification accuracy using the TUG test is 69.4%, while the
GS test achieves a maximum accuracy of 77.0%. However,
values of 1.0 m/s or 15 s decrease the classification accuracy
by approximately 5%.
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IV. DISCUSSION

The primary finding of this work is the demonstration that
gait parameters have the capacity to be used to distinguish fall-
ers from non-fallers, surpassing the performance of traditional
clinical methods. These results are consistent with previous
investigations that differentiate fallers from non-fallers based
on data of gait kinematic parameters. However, the predictive
parameters utilized in this work offer the added advantage of
being interpretable. Consequently, this study demonstrates that
incorporating gait spatio-temporal parameters of the motion of
feet (such as mean stride velocity, clearance, percentage of time
in loading and pushing and CV of stride velocity, stride length,
pitch in heel strike, percentage of time in swing and 3D path
length) as well as the maximum and minimum acceleration and
angular velocity (including mean maximum angular velocity in
pushing and loading, maximum and minimum acceleration in
loading, minimum angular velocity in the third sub-phase of
swing, and CV of maximum and minimum angular velocity in
the last sub-phase of swing) slightly improves the identification
of fallers compared to the commonly used clinical tests, both
GS and TUG. Moreover, this approach overcomes the reliance
on establishing specific thresholds, which are associated with
clinical tests, to differentiate between fallers and non-fallers.

The spatio-temporal parameters of the foot define the gait
pattern exhibited by fallers (see Fig. 3). Consistent with pre-
vious literature, the findings indicate that fallers tend to walk
at a slower stride velocity and maintain their feet closer to
the ground, resulting in a lower mean clearance in comparison
to non-fallers [39]. Furthermore, fallers spend a significantly
smaller percentage of the the gait cycle duration in the loading
and pushing gait phases. A closer examination of the relationship
between the percentage of time in the loading and pushing phases
reveals that fallers also exhibit a shorter period in swing, indi-
cating a longer period of contact with the ground in comparison
to non-fallers. Consequently, in addition to the slower speed
during the foot motion, fallers’ reduced stride velocity can be
attributed in part to an increased duration of foot-ground contact.
Additionally, the study demonstrates that gait variability in terms
of stride length and stride velocity is associated with, which is
coherent with previous research [12]. Notably, fallers show a
higher CV in terms of percentage time in the swing phase, as
well as stride velocity and length, indicating a more irregular
gait pattern in comparison to non-fallers.

The study examines the gait patterns of fallers by analyzing
spatio-temporal gait parameters and kinematic measures of the
feet during gait. The results show that fallers exhibit lower
maximum angular velocity in the pushing and loading phases
(see Fig. 3), indicating slower foot rotation. This is consistent
with the fact that fallers spend less time in these phases and
therefore perform less foot rotation during gait. Fallers also
exhibit smaller minimum angular velocity in the third sub-phase
of swing, indicating reduced foot rotation compared to non-
fallers. In addition, fallers show lower maximum and minimum
acceleration in the loading phase, suggesting a smaller range
of accelerations and slower movement compared to non-fallers.
Moreover, non-fallers display increased CV in maximum and

minimum angular velocity in the last sub-phase of swing, reflect-
ing the greater variability in the inertial parameters. This greater
variability was also observed in the spatio-temporal parameters.

The identification of gait parameters that significantly differ
in fallers and non-fallers enables a more effective differentiation
between these two populations than relying solely on average
walking speed. While walking speed measured in short tests
such as the GS test is commonly used to distinguish fallers
from non-fallers, this speed is not a reliable measure for sep-
arating fallers in longer, free walking tests. As depicted in
Fig. 4, non-fallers generally show faster walking speed in the
GS test compared to fallers. However, in the 30-minute test,
non-fallers can be further categorized into two groups: one that
walks at a similar speed to fallers and another that walks at a
faster pace. Applying the commonly recommended threshold of
0.8 m/s gait speed, the number of patients identified as fallers
increases by more than 50%, from 16 to 25 patients. Therefore,
the speed threshold used in the GS test cannot be applied to
the 30-minute test for distinguishing fallers from non-fallers.
Consequently, the gait pattern parameters identified in this study
(slower speed, longer foot flat phase, greater variability, reduced
and slower foot rotation, and decreased acceleration compared
to non-fallers) provide valuable and essential information for
identifying fallers.

The proposed method of fall risk assessment, based on the
significantly different gait parameters in fallers is comparable
to clinical assessment methods. The accuracy in distinguishing
fallers from non-fallers using the GS test and the gait analysis
classification is comparable, as depicted in Fig. 5). Notably, the
method proposed in this study demonstrates greater accuracy
than the classical methods. Moreover, the sensitivity increases
with the gait analysis, resulting in fewer fallers being misclas-
sified as non-fallers compared to both the TUG and gait speed
tests, as shown in Fig. 6. Sensitivity is particularly relevant in
faller identification methods, as the objective is to minimize
the misclassification of fallers. Interestingly, all the evaluated
metrics - accuracy, sensitivity, and F1-score - improve with the
proposed method.

Furthermore, the proposed approach also overcomes the de-
pendence of classical assessment methods on cut-off values to
differentiate fallers and non-fallers. We examine the dependency
of the GS and TUG tests on the commonly used cut-off values
for faller identification, as presented in Fig. 7. For the patients
analyzed in this study, the GS of 0.8 m/s and TUG time of
14.1 s provide the highest accuracy. However, there exists a 20%
accuracy variation between the best and worst accuracy results
of the TUG, depending on the chosen cut-off. Thus, the selection
of an optimal cut-off value is crucial to obtain an accurate faller
identification.

We compare our proposal with the optimal cut-off value for
the GS but a different one for the TUG test. Regarding the
TUG, the recommended cut-off does not correspond to the
optimal value for the dataset used. However, the difference
between this recommended cut-off and the optimal value is
only 3.2%. Therefore, the discussion derived from this study
remains equally valid. Conversely, for the comparison with the
GS test, we use the optimal cut-off for gait speed. Given that the
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proposed method proposed slightly increases the classification
metrics, we prove that the gait analysis parameters serve as a
viable alternative to the primary test used.

Another advantage of the proposed approach is that the gait
recording is performed without the presence of a supervising
physician. This offers two significant benefits when conducting
tests. First, it eliminates bias in test results associated with
patients’ motivation (or lack of thereof) to perform the test
under observation, commonly known as the white coat effect.
Second, tests can be carried out using IMUs without the need for
hospital visits since no instructions on how to walk are necessary.
Consequently, patients can be assessed over long periods without
the inconvenience of visiting a clinic.

To the best of the authors’ knowledge, this is one of the first
studies that proposes a method for classifying fallers based on
explainable and widely known gait parameters obtained from a
single IMU on the foot. While the combination of acceleration
and spatio-temporal parameters has been shown to be suitable
for identifying fallers [30], the spatio-temporal parameters were
obtained from pressure-sensing insoles. Kelly et al. identified
accelerometry time and frequency-domain features from IMUs
on the hip to identify fallers [18]. They also demonstrated that
accelerometry features improve the detection of fallers when
evaluated using metrics from TUG, GS, and Non-Dominant
Hand Grip Strength functional tests. However, acceleration fea-
tures are not easily interpretable and do not provide information
about the gait pattern of fallers. Recent research has focused on
the use of spatio-temporal parameters, which are widely used
and well-established in gait research and provide interpretable
information. Although gait spatio-temporal parameters have
been used to predict falls, these studies have analyzed a small
number of patients (71 in [24]). In contrast to previous research,
this study uses spatio-temporal parameters to classify fallers
based on their higher risk of falling and their classification can be
used, with the aim of detecting future fallers. In the near future,
it would be of interest to analyze these parameters in relation to
the incidence of subsequent falls.

The main limitation of this study is the number of volunteers
analyzed. While the number of volunteers is higher than in
previous research and sufficient to demonstrate that the pro-
posed method can achieve higher accuracy in identifying fallers
compared to classical methods, it would be advisable to analyze
the proposal with a larger population.

V. CONCLUSION

This study validates a method for evaluating fall risk based on
gait parameters. Initially, we first examined the spatio-temporal
gait parameters and identified sixteen parameters that signifi-
cantly differ between fallers and non-fallers. These parameters
define a gait pattern characterized by slow speed, angular ve-
locity, acceleration, clearance, and variability of pitch angle, as
well as high variability in the stride length and in the gait phases
duration. Notably, the most significant parameter, stride speed,
is found differed from the speed measured in clinical settings. In
the GS tests (4-meter), most non-fallers walked at a faster pace
compared to the free walk long tests (30 minutes).

TABLE II
ACCURACY PERCENTAGE OF THE EIGHT ANALYZED METHODS

TABLE III
AVERAGE AND STANDARD DEVIATION ACCURACY (%) FOR TEN

VALIDATION SETS

The fall risk evaluation method proposed in this study is
comparable to the standard approach used to evaluate the fall risk
in older adults. Our proposed method can identify fallers with
similar or higher accuracy, sensitivity, and F1-score compared
to the GS and TUG tests. Additionally, it overcomes the reliance
on cut-off values used to identify fallers in the GS and TUG tests.

Future research should explore the analysis of gait parameters
from both feet instead of just one. Moreover, since machine
learning algorithms only provide a classification output dis-
tinguishing fallers from non-fallers, incorporating additional
information could yield more comprehensive results. Finally,
it would be valuable to investigate whether integrating the
outcomes of faller identification outcomes into real-time fall
detection systems could enhance their performance.

APPENDIX

A. Classifiers Comparison

Table II shows the accuracy provided by the classifiers ana-
lyzed before the validation with the traditional methods.

B. Hyperparameters Optimization

The hyperparameters are optimized by dividing one training
set into ten subsets and iteratively using one of these subsets
to validate the hyperparameters evaluated in each combination.
The metric to be optimized is the average accuracy and its
standard deviation for the ten subsets independently evaluated.
The average accuracy for each combination of Kernel Scale and
Regularization Parameter is shown in Table III, where the most
accurate values for each subset are marked with bold letters.

In Table III, the optimal hyperparameters configuration is
Kernel Scale set to 2.5 and Regularization Parameter equal to 1.
These hyperparameter values provide the highest accuracy with
the lowest standard deviation, which is 75.14± 9.14%.

Fixing the Kernel Scale and the Regularization Parameter to
10, the accuracy reported is quite similar. However, the classifier
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TABLE IV
ACCURACY IN PERCENTAGE IN EACH TRAIN-VALIDATION DATA SPLIT FOR THE EVALUATED REGULARIZATION PARAMETER VALUES

obtains high variations in accuracy for this Kernel Scale value
(see column for Kernel Scale equal to 10 compared to the
column for Kernel Scale equal to 2.5). This variation makes the
classifier less stable, so we select the previous hyperparameters
configuration.

Furthermore, we assess the impact of the Regularization Pa-
rameter selected individually for each validation sub-set. To do
so, we fix the Kernel Scale to 2.5 since the initial optimization
of the parameter also yields this optimal value. The accuracy
percentage for each subset is displayed in Table IV, where the
most accurate values for each subset are indicated with bold
letters.

Table IV demonstrates that the Regularization Parameter
equal to 1 is the most suitable one for the majority of subsets.
This value offers the highest accuracy with the lowest variation
among the ten subsets. Due to the consistent results, we set the
Regularization Parameter to 1 and maintain the Kernel Scale
at 2.5.
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