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Abstract—An expansive area of research focuses on
discerning patterns of alterations in functional brain net-
works from the early stages of Alzheimer’s disease, even
at the subjective cognitive decline (SCD) stage. Here, we
developed a novel hyperbolic MEG brain network embed-
ding framework for transforming high-dimensional complex
MEG brain networks into lower-dimensional hyperbolic rep-
resentations. Using this model, we computed hyperbolic
embeddings of the MEG brain networks of two distinct par-
ticipant groups: individuals with SCD and healthy controls.
We demonstrated that these embeddings preserve both lo-
cal and global geometric information, presenting reduced
distortion compared to rival models, even when brain net-
works are mapped into low-dimensional spaces. In addi-
tion, our findings showed that the hyperbolic embeddings
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encompass unique SCD-related information that improves
the discriminatory power above and beyond that of con-
nectivity features alone. Notably, we introduced a unique
metric–the radius of the node embeddings–which effec-
tively proxies the hierarchical organization of the brain. Us-
ing this metric, we identified subtle hierarchy organizational
differences between the two participant groups, suggesting
increased hierarchy in the dorsal attention, frontoparietal,
and ventral attention subnetworks among the SCD group.
Last, we assessed the correlation between these hierarchi-
cal variations and cognitive assessment scores, revealing
associations with diminished performance across multiple
cognitive evaluations in the SCD group. Overall, this study
presents the first evaluation of hyperbolic embeddings of
MEG brain networks, offering novel insights into brain or-
ganization, cognitive decline, and potential diagnostic av-
enues of Alzheimer’s disease.

Index Terms—Alzheimer’s disease, subjective cognitive
decline, magnetoencephalography, brain networks, hyper-
bolic space, graph embedding.

I. INTRODUCTION

A LZHEIMER’S Disease (AD) has emerged as a global
public health imperative, particularly among older popu-

lations. AD, characterized by a gradual and relentless neurode-
generative process, entails a protracted asymptomatic preclinical
phase preceding the onset of mild cognitive impairment (MCI)
and profound cognitive deterioration. Currently, the impact of
AD is palpable, affecting 6.5 million individuals in the United
States alone, with projections indicating a staggering surge to
14 million by 2060 [1].

A rising phenomenon, subjective cognitive decline (SCD), is
garnering attention as an emerging self-reported condition. It
encapsulates the personal perception of cognitive decline, not
necessarily paralleled by objective diminishment on standard-
ized evaluations [2]. Increasing evidence shows that SCD may
be a precursor to the early stages of Alzheimer’s disease (e.g.,
MCI) and related dementias [3], [4]. Remarkably, individuals
with SCD are five times more likely to progress to early stage of
AD (e.g., MCI) than people without SCD [5]. Hence, detection
and understanding of the key neural signatures and biomarkers
of SCD at the presymptomatic stage of AD play an important role
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in developing preventative cognitive interventions, identifying
pharmaceutical targets, and monitoring pathological progres-
sion in the preclinical stages of AD.

The two major histopathological hallmarks of AD are extra-
cellular amyloid-β plaques and intracellular neurofibrillary tan-
gles, stemming from the phosphorylation of the Tau protein [6].
Amyloid deposition has the detrimental effect of impairing
normal inter-neuronal connectivity [7], while the presence of Tau
proteins leads to the disruption of axonal microtubule organiza-
tion [8]. This sequence of events culminates in the progressive
deterioration and pruning of synaptic connections, disrupting
communication both within and between brain regions [9], and
giving rise to distinctive patterns of alterations in functional
connectivity within large-scale brain systems. Ongoing research
efforts aim to discern such patterns from the early stages of
AD, even at the SCD stage, using non-invasive neuroimag-
ing methods, including functional magnetic resonance imaging
(fMRI) [10], positron emission tomography (PET) [11], and
magnetoencephalography (MEG) [12].

Among these methods, MEG offers excellent temporal res-
olution that allows characterization of the subtle brain changes
associated with AD, a major advantage over current biomark-
ers [9]. This is especially important because, unlike methods
that rely on metabolic responses (fMRI, FDG-PET), functional
brain networks can also be characterized in the frequency do-
main [13], [14]. Moreover, MEG captures the fields produced
by intraneuronal currents, providing a more direct index of
neuronal activity than biomarkers that measure haemodynamic
responses. Thus, MEG holds great promise in detecting synaptic
dysfunctions in the brains of those exhibiting varying degrees of
cognitive decline, especially in characterizing the subtle neural
activity changes between SCD and healthy controls. However,
SCD studies with MEG are still scarce, with most existing
MEG-based SCD studies heavily relying on statistical analyses
with traditional ad-hoc features within pre-selected brain sub-
networks, such as the default mode network (DMN) and dorsal
attention network (DAN), for discriminating between SCD, mild
cognitive impairment (MCI), and AD groups [15].

Recently, neural network models have shown great potential
in embedding complex human brain networks into latent spaces
where nodes are represented as low-dimensional vectors [16]
or probabilistic density functions [10], [12], [17]. The original
graph topological properties and node similarity are maximally
preserved in these latent spaces. Moreover, the derived node
embeddings can be readily and efficiently applied to diverse
downstream tasks, including link prediction, node classification,
and community detection [18].

However, the quality of graph embeddings critically depends
on whether the geometry of the embedding space matches the
underlying structure of the graph [19]. The prevalent approach
in graph representation learning involves graph convolutional
neural networks that embed the nodes of the graph into points
in the Euclidean space. But the Euclidean geometry has limited
representational capacity and high distortion when embedding
brain networks. This is because brain networks are scale-free
graphs with a tree-like hierarchical structure, where the number

of nodes grows exponentially as we move away from higher
towards lower hierarchy regions. This substantially exceeds
the polynomial expanding space capacity of the Euclidean
space, resulting in embeddings with high distortion [20], [21].
To mitigate this problem, a viable solution is to increase the
dimension of the Euclidean embedding space. However, this
remedy leads to complex models with reduced generalization
capacity, higher computational costs, and increased memory
requirements.

In contrast, the hyperbolic space, characterized by negative
curvature, offers a direct solution to the exponential expansion
of the number of nodes in scale-free brain graphs [22], [23],
[24]. This is because the hyperbolic geometry is characterized
by an exponential growth of space as we move away from the
center, mirroring the exponential growth of brain networks. The
merits of this approach for embedding brain networks are as
follows [25]:

� It yields embeddings with minimal distortion, thereby
preserving both local and global geometric information;

� Due to the minimal distortion, brain networks can be
mapped into low-dimensional spaces, facilitating down-
stream tasks (such as SCD classification here)

� The neural network model has improved generalization
capacity, less complexity, and lower training data require-
ments.

� Importantly, the resulting embeddings possess an intuitive
interpretation property. Higher hierarchy brain nodes map
closer to the geometry’s center, while lower hierarchy
nodes map towards the periphery. This representational
characteristic opens new avenues for novel insights re-
garding the hierarchical organization intrinsic to brain
networks, a key focal point of this study.

Here, we developed a novel hyperbolic MEG brain network
embedding framework for transforming high-dimensional com-
plex MEG brain networks into lower-dimensional hyperbolic
representations. Our approach involved the design and validation
of a new hyperbolic model build upon the architecture of the
hyperbolic graph convolutional network (HGCN) model [20].
Using this model, we computed hyperbolic embeddings of the
MEG brain networks of two distinct participant groups: individ-
uals with SCD and healthy controls. To assess the quality and
utility of our embeddings, we compared the network distortion
against competing models in both Euclidean and manifold-based
hyperbolic embeddings derived from a shallow Poincaré em-
bedding model [22]. We then leveraged these embeddings to
differentiate between SCD and healthy participants, thereby
evaluating their discriminatory power. Notably, we introduced
a unique metric–the radius of the node embeddings–which
effectively proxies the hierarchical organization of the brain.
We used this metric to identify brain subnetworks character-
ized by subtle hierarchy organizational differences between the
two participant groups. Finally, our investigation assessed the
correlation between these hierarchical variations and cognitive
assessment scores, thereby providing insights into the poten-
tial cognitive implications of the identified brain hierarchical
differences.
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II. METHODS

A. Participants and Cognitive Intervention Training

The cohort for this study comprised 146 participants recruited
from the Centre for Prevention of Cognitive Impairment (Madrid
Salud), the Faculty of Psychology of the Complutense Univer-
sity of Madrid (UCM), and the Hospital Clinico San Carlos
(HCSC) in Madrid, Spain between January 2014 and December
2015 [15], [26]. All participants were between 65–80 years old,
right-handed, and Spanish natives. This study was approved
by the Ethical Committee of the Hospital Clínico San Carlos
(Comité Ético de Investigación Clínica - CEIC): 12/042-E (res-
olution of January 31, 2012). Prior to their inclusion, every
participant provided informed consent.

During the initial screening phase, all participants underwent
a battery of cognitive assessments, as elaborated in [26]. They
were subsequently categorized into either the Subjective Cogni-
tive Decline (SCD) or healthy control (HC) groups, adhering
to the research criteria outlined by the Subjective Cognitive
Decline Initiative (SCD-I) [2]. Specifically, the diagnosis of SCD
was established with the exclusion of potential confounding
factors associated with cognitive impairment, including psychi-
atric or neurological diseases and mental disorders, drug use,
and evidence of infection. The assessment followed a set of
specific criteria, as outlined below: (1) Participants reported
persistent cognitive concerns, primarily related to memory, dur-
ing interviews conducted by experienced clinicians. (2) They
demonstrated cognitive performance within the normal range
on standardized tests capable of distinguishing individuals with
MCI and prodromal AD. (3) Participants expressed that their
cognitive decline had a discernible impact on their daily activ-
ities. (4) They actively sought medical consultation regarding
their cognitive issues. (5) Individuals diagnosed with SCD were
aged 60 years or older at the onset of these cognitive con-
cerns, and these concerns had arisen within the past 5 years.
Additionally, the cognitive decline was corroborated by reliable
informants.

The cognitive assessments, along with MEG and MRI record-
ings, were conducted both at the time of enrollment and again
6 months later, as part of a 6-month training intervention study
designed at the Memory Training Unit of the City Council of
Madrid, as detailed in [26]. Participants were randomly divided
into trained and non-trained groups. The trained group under-
went a 30-session intervention (28 regular sessions and two
maintenance booster sessions), lasting 90 minutes each. These
sessions occurred three times a week in the morning and were
conducted by professionals. They encompassed various factors,
including cognitive stimulation, learning of cognitive strate-
gies, interventions in daily living performance, and analysis of
metamemory. Additionally, they promoted a healthy lifestyle
through activities like proper nutrition, physical exercise, social
engagement, and leisure activities.

The eligible participants were further narrowed by removing
34 patients who did not attend the second MEG session and 22
patients whose scans presented technical reconstruction issues.
Among the remaining 90 patients, the trained group comprised
46 subjects (22 HC and 24 SCD), and the non-trained group

TABLE I
DEMOGRAPHIC CHARACTERISTICS OF ALL PARTICIPANTS

comprised 44 subjects (19 HC and 25 SCD subjects). Demo-
graphics for the 90 participants are described in the Table I.

B. Data Acquisition and Pre-Processing

Four minutes of resting-state MEG data was collected for
each participant using a 306-channel Vectorview MEG system
(Elekta AB, Stockholm, Sweden) at the Laboratory of Cognitive
and Computational Neuroscience within the Centre for Biomed-
ical Technology (Madrid, Spain). The MEG recordings were
conducted at a sampling rate of 1000 Hz, and an online anti-alias
band-pass filter was applied, ranging from 0.1 to 330 Hz. To
suppress external magnetic interference, recordings were then
processed using the temporally extended signal space separa-
tion method [27]. Finally, we applied independent component
analysis to remove EOG and EKG components from the data.

C. Source Reconstruction and Connectivity Analysis

The MEG time courses were segmented into non-overlapping
4-second epochs containing artifact-free activity. The number
of clean epochs did not differ across groups and conditions.
The epochs were subsequently band-pass filtered in the alpha
frequency band (8–12 Hz). The selection of alpha band was
based on several factors. First, previous studies have consistently
reported abnormalities in alpha band oscillations in individuals
with AD [9]. Second, the alpha band has the highest signal-
to-noise ratio in the human brain, typically peaking between 8
to 12 Hz in the power spectrum, ensuring a robust signal for
reliable findings. Third, the alpha band is closely associated
with crucial cognitive processes such as attention, memory, and
consciousness, all of which are significantly impacted in AD,
thus making it highly pertinent to our investigation.

For source reconstruction, the source space comprised 1220
sources placed in a homogeneous grid of 1 cm using the Montreal
Neurological Institute (MNI) template, which was converted
to subject space by affine transformation. MEG sources were
anatomically mapped to 90 regions of interest (ROI) based on
the Automated Anatomical Labeling (AAL) atlas [28]. Forward
modeling used a single-shell head model [29], defined by the
inner skull boundary generated from individual T1-weighted
MRI scans using the Fieldtrip toolbox. Source reconstruction
was performed for each subject using a Linearly Constrained
Minimum Variance (LCMV) beamformer [30]. Beamformer
Filters were obtained using the computed lead field, the epoch-
averaged covariance matrix, and a 1% regularization factor.

Functional connectivity between individual sources was esti-
mated using the phase locking value (PLV), a metric that assesses
source-to-source connectivity based on phase synchronization
principles [29]. We chose PLV due to its well-established
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Fig. 1. Workflow of the hyperbolic embedding framework for MEG brain networks. (a) MEG functional connectivity matrix calculated based on
phase locking values across all 90 regions of the AAL brain atlas. (b) Illustrative visualization of the binary MEG brain network on the cortex, after
applying a threshold of 0.329 to the phase locking values. Node attributes incorporate one-hot identity vectors. (c) Hyperbolic graph convolutional
network. (d) Example embeddings of brain regions in the 2-dimensional space. Subnetwork and hemisphere are indicated by color and shape,
respectively.

credibility as a consistently replicable measure in MEG/EEG
functional connectivity analysis. Furthermore, PLV stands out
as one of the most frequently employed metrics in MEG/EEG
studies focused on AD [26]. Subsequently, region-of-interest
(ROI) connectivity was computed using (1) by averaging the
pairwise PLV values across all source pairs belonging to the two
ROIs:

PLVA,B =
1

NANB

NA∑
p=1

NB∑
q=1

∣∣∣∣∣
1

T

T∑
t=1

e−j(φAp (t)−φBq (t))

∣∣∣∣∣ , (1)

where φAp
(t) and φBq

(t) are the instantaneous phases of the
signals Ap(t) and Bq(t) at time point t, T is the number of time
points per epoch, j is the imaginary unit, NA is the number of
sources in region A, andAp is the p-th source within that specific
region.

This computation yielded two 90× 90 connectivity matrices
for each participant, during both the pre- and post-intervention
recording sessions. Finally, to transform the connectivity matri-
ces into binary graphs suitable for HGCN processing, we applied
a threshold of 0.329 to the PLV values, retaining approximately
20% of the edges (Fig. 1). The threshold selection represented
a balanced compromise, aimed at preserving the most robust
connections in the brain networks while mitigating the risk
of overemphasizing weaker connections. Also note, retaining
too many edges would have led to densely connected binary
networks, distorting the inherent scale-free nature of the origi-
nal networks and undermining the advantages associated with
hyperbolic embeddings.

D. Assignment of Brain Regions to Subnetworks

Brain subnetworks are composed of various brain regions that
exhibit synchronized or coordinated activity when the brain is
engaged in specific tasks or cognitive processes [31]. Studying
these subnetworks can provide insights into brain function,
cognitive processes, and neurological disorders [32].

Atlases delineating the ROIs within these subnetworks often
deviate significantly from structural atlases, such as the AAL,
because they are based on patterns of communication instead
of physical structures in the brain. To assign brain regions to
distinct subnetworks, we conducted a comprehensive evaluation
of various subnetwork studies [33], [34], [35], [36]. We then de-
vised a procedure that considered the spatial proximity between

each AAL anatomical region and the central coordinates of
different functional ROIs. Using this procedure, we categorized
the 90 ROIs into 8 distinct brain subnetworks: the posterior
default mode network (pDMN - 10 ROIs), anterior default mode
network (aDMN - 6 ROIs), dorsal attention network (DAN - 6
ROIs), frontoparietal network (FPN - 10 ROIs), visual network
(VN - 10 ROIs), ventral attention network (VAN - 14 ROIs),
salience network (SN - 10 ROIs), and sensorimotor network
(SMN - 2 ROIs). Details regarding this assignment of ROIs to
subnetworks are provided in the Supplementary Material.

E. Hyperbolic Embedding of MEG Brain Networks

To study brain connectivity differences between the SCD and
HC groups, we developed a hyperbolic embedding model based
on the HGCN architecture. Using a hyperbolic space has the
advantages of optimally preserving the topological properties
of brain networks, and providing novel hierarchical information
inherent in the embedding space.

1) Hyperbolic Geometry: Hyperbolic geometry is a non-
Euclidean geometry that studies spaces of negative curvature,
K < 0. In network science, hyperbolic geometry has gained
attention for its ability to model hierarchical data. One of the
most prevalent hyperbolic models is the Poincaré ball, where
the hyperbolic space is represented as an n-dimensional open
ball of fixed radius r = 1/

√|K|. Distances between two points
“cost” exponentially more as they reach the edge of the disk, such
that distance to reach the edge itself is infinite. Shortest paths
in this space are not straight lines, but arcs that bend closer to
the origin to take advantage of the lower cost (Fig. 2(a)). The
midpoint of that arc is analogous to a common parent node in
the tree. Just as the number of child nodes in a branching tree
grows exponentially with distance from the root, the continuous
space for embeddings grows exponentially with distance from
the origin. Networks with tree-like structures can be embedded
in this space with fewer dimensions and with less distortion than
in the Euclidean space (Fig. 2(b)) [22], [23], [24].

Applying standard deep learning algorithms in hyperbolic
space presents many challenges, as many standard operations are
not obviously defined. To provide a foundational understanding,
we offer a concise overview of essential equations in Poincaré
ball and recommend relevant literature for a more comprehen-
sive exploration [37], [38], [39].
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Fig. 2. Poincaré ball embedding space. (a) Geodesic lines are arcs
bent towards the origin. (b) Example Poincaré embedding of a binary
tree.

One of the fundamental concepts in hyperbolic space is the
geodesic distance. Minimizing geodesic distances between con-
nected nodes is a common optimization objective:

dK(u, v)=
1√|K|cosh

−1

(
1−2K

||u−v||2
(1+K||u||2) (1+K||v||2)

)
,

(2)

where the hyperbolic distance between points u and v depends
on the curvature K.

Many operations necessary for hyperbolic neural networks
are poorly defined or intractable in hyperbolic space. Following
work in [37], most operations were formalized in a hybrid way,
by transforming features between the hyperbolic space and a
tangent space, which is a Euclidean subspace at the origin of
the hyperbolic model, and performing the operations within the
tangent space. Transportation between spaces is achieved via
logarithmic and exponential maps.

The logarithmic map, denoted as logK , transforms a point
x from a hyperbolic space with curvature K into its Euclidean
projection. The desired function f is then applied within the Eu-
clidean space, and the output of this function is transported back
to the hyperbolic space using the exponential map, designated
as expK . All together:

fKin,Kout(x) = expKout
(
f
(
logKin(x)

))
, (3)

whereKin andKout are the curvatures of the input and output hy-
perbolic spaces, respectively. The logarithmic and exponential
maps allow for arbitrary functionality in the hyperbolic space,
but introducing numerical errors and should be avoided when
mathematically feasible.

Using this approach, the work in [37] derived close-form so-
lutions in the hyperbolic space for matrix-vector multiplication
and bias addition. For brevity, we present the symbolic notations:

Matrix-Vector Multiplication: Wx −→ W ⊗K x

Bias Addition: x+ b −→ x⊕K b

2) Hyperbolic Graph Convolutional Network: The HGCN is
a generalization of GCN to hyperbolic space [20]. The model
takes as input a graph, in the form of a binary adjacency matrix,
and node input features, and outputs hyperbolic embeddings
suitable for downstream tasks, such as link prediction or graph

classification. Our HGCN model architecture is illustrated in
Fig. 3.

Input Features: In graph neural networks, node features repre-
sent additional information associated with each node in a graph.
These attributes can be valuable for improving the performance
of (H)GCNs in various tasks. In the absence of other relevant
information, common choices for node features include one-hot
identity vectors, node degrees, node position or coordinates, or
the respective row of the adjacency matrix. Finding the proper
balance of information density, simplicity, and bias is key to
creating meaningful embeddings. Here, we used one-hot identity
vectors.

Feature Transform: This operation combines hyperbolic
matrix-vector multiplication and bias addition to implement a
hyperbolic analogue of a fully connected linear layer:

h�
i = W � ⊗K�−1

x�−1
i ⊕K�−1

b�, (4)

where x�−1
i are the features of node i of the previous layer �−

1, and W � and b� the weights and bias parameters of layer �,
respectively (Fig. 3(b)).

Fréchet Aggregation: An aggregation function captures local
structure and features of the immediate neighborhood of each
node. Such functions include weighted mean aggregation [40]
and attention-based aggregation [41]. However, these methods
are not trivial to incorporate in the hyperbolic space. The Fréchet
mean, a generalized analogue of the Euclidean mean, does
not have a closed form and, until recently, did not have a
computationally efficient solver. The HGCN in [20] used the
log/exp mapping to the tangent space to implement an attention
mechanism to avoid the intractability of the Fréchet mean.
However, recent work formulated a fully differentiable solution
that outperforms the attention-based solutions [39]. Based on
this, we substituted the attention-aggregation with the Fréchet
mean aggregation (Fig. 3(c)):

y�i = FrechetAggj∈{N(i),i}
(
h�
j

)
, (5)

whereN(i) denotes the neighbors of node i. In simple terms, the
Fréchet mean is the point that minimizes the sum of distances
(usually measured using a specific metric or distance function)
from itself to all the data points in a set. It represents the
“average” or “central” location within the dataset, considering
the chosen distance metric.

Activation Function: The HGCN applies a hyperbolic non-
linear activation function σ. We chose the scaled exponential
linear unit (SELU) function, implemented using the log/exp
approach as in (3). The output of hidden layer was defined by:

x�
i = σK�−1,K�

(
yli
)
. (6)

Weighted Loss Function: The HGCN models were trained using
the Fermi-Dirac distribution as a decoder [22]. Under this
distribution, the probability score of a link (or edge) between
two nodes i and j at the output layer L is defined as:

p
(
(i, j) ∈ E|xL

i ,x
L
j

)
=

1

e

(
dKL(xL

i ,xL
j )

2−r
)
/t
+ 1

. (7)

That is, an edge between two nodes is predicted to exist accord-
ing to a sigmoidal transformation of the hyperbolic distance
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Fig. 3. Architecture of the HGCN model. (a) Visualization of the two layers of the HGCN model. (b) Feature transform operation for an example
node. (c) Fréchet aggregation for an example node. Plots use two dimensions for visualization purposes.

between the node embeddings. The hyperparameters r and t
control the inflection point and steepness of the sigmoid func-
tion, and were set as r = 2 and t = 1.

The work in [20] used the Fermi-Dirac probabilities to train
with cross-entropy loss for binary edge prediction. However
here, in the case of MEG brain networks, we leveraged the
continuous PLV metric to create a proxy value for the probability
of connection by applying a min-max scaling of the original
PLV values. With this formulation, the model was trained using
mean square error of predicted and true probabilities, recovering
information lost in the adjacency matrix thresholding.

III. RESULTS

A. Parameter Settings

Our implementation of HGCN contained two fully connected
layers, comprising a hidden layer with output dimension 6, and a
last layer with output dimension D (Fig. 3). It was trained using
the Riemannian Adam optimizer [42] over 100 epochs with a
single NVIDIA Tesla K80 GPU. Input features, batch size, and
learning rate were set to one-hot identity, 1 and 0.02. We assessed
the HGCN results using a model with fixed curvature K = −1
and a model with a learned curvature (K) as a hyperparameter.

B. Link Prediction Results

To evaluate the effectiveness of hyperbolic graph embeddings
in accurately representing MEG brain networks and determine
the optimal hyperbolic embedding dimension, we performed
link prediction experiments on the MEG brain networks [26].

Link prediction, a common downstream task within network
science, aims to evaluate the capacity to identify missing con-
nections within a network [10], [43].

We compared three well-established graph embedding mod-
els: our adapted HGCN [20], a shallow Poincaré embed-
ding [22], and a graph convolutional network (GCN) with an
identical architecture to the HGCN, albeit with flat curvature
that reduces the Fréchet mean to a Euclidean mean [20]. While
conventional GCNs generate MEG brain network representa-
tions in Euclidean space, both shallow Poincaré embedding and
HGCN are able to encode high-dimensional brain networks
into lower-dimensional hyperbolic manifolds, facilitating var-
ious downstream tasks, such as node or graph-level inference.
However, the shallow Poincaré embedding approach has three
critical limitations: 1) it cannot incorporate important node
features when available, 2) it does not support inductive learning
for graph inference tasks with unseen graph nodes, and 3) it is not
applicable to large-scale graphs due to its inadequate scalability.
Conversely, the HGCN model can effectively address the afore-
mentioned issues and support an inductive graph embedding
learning framework.

Mean averaged precision (MAP) results for the link prediction
experiments with different embedding dimensions are shown
in Table II. Note that both HGCN models were trained with
the Fermi-Dirac decoder [22] for link probability prediction,
as shown in (7), using five-fold cross validation across partici-
pants. Specifically, the MEG brain networks for each participant,
both before and after training, were consistently assigned to
the same fold to eliminate any contamination of the validation
sets.
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TABLE II
MEAN AVERAGED PRECISION OF FOUR GRAPH EMBEDDING MODELS FOR

THE LINK PREDICTION TASK

Fig. 4. Examples of hyperbolic MEG brain network embeddings for a
HC and a SCD participant. Individual points represent different brain
regions, with the shape indicating hemisphere (circle for right hemi-
sphere, triangle for left hemisphere), and color indicating subnetwork
membership. To facilitate visualization, the output embedding dimension
of the HGCN model had set to D = 2.

The hyperbolic MEG brain network embeddings generated
by the HGCN model achieved the highest link prediction perfor-
mance, as measured by MAP, across all embedding dimensions
(D = 2, 3, 4, 6, and 8), remarkably achieving a 0.952 MAP with
merely three dimensions. In lower dimensions, the Euclidean
GCN encountered constraints imposed by its geometry, result-
ing in inferior performance compared to the shallow Poincaré
model. At dimensions D ≥ 4, the GCNs expressive learning
power overcame its spatial limitations to outperform the shallow
model, but still fell short against the HGCN. Notably, the HGCN
with fixed curvature consistently trailed its learned curvature
counterpart at all dimensions, as the latter possessed the adapt-
ability to optimize curvature in each dimension for better fit.
Interestingly, the HGCN with learned curvature exhibited a
flattening trend after D = 3, suggesting that the need for strict
hierarchy diminished as the space expanded.

C. SCD Classification Results

For SCD classification, we opted to apply the HGCN model
with learned curvature and an embedding dimension D = 3.
This decision stemmed from the preference for a simple low-
dimensional model, given the diminishing gains at higher di-
mensions observed on Table II. Hyperbolic embeddings for a HC
and a SCD individual from the HGCN model, but with output
embedding dimension D = 2 to ease visualization, are shown
in Fig. 4, exemplifying the stability of representations even at a
single subject level.

Fig. 5. SCD classification performance based on PLV features, hyper-
boling embedding features, and their combination.

SCD classification relied on using the HGCN output embed-
dings as features in a traditional machine learning classifier to
discriminate individuals with SCD from healthy controls [12].
To assess the quality of the HGCN hyperbolic embeddings, we
considered three classification scenarios with features: (a) the
entire raw PLV values contained in the adjacency matrices (4005
values in the lower triangular part of the symmetric matrices),
(b) the distance from the hyperbolic center (i.e., radius) of the
HGCN output embeddings averaged within each subnetwork (8
values), and (c) a combination of both sets of features (4013
values). These features were fed to a support vector machine
(SVM) classifier with a radial basis function kernel with a
parameter value γ = 0.1, a regularization value C = 10, and a
five-fold cross validation for supervised learning. Note, for this
analysis, all features were limited to the pre-intervention MEG
neural networks to remove any confounds from the cognitive
training intervention.

The SCD classification results are shown in Fig. 5. The
hyperbolic embedding features achieved higher performance
compared to the PLV features, underscoring the distinct and
robust information captured by the hyperbolic embeddings. In
terms of the Macro F1 metric, a measure of predictive perfor-
mance estimated as the harmonic mean of precision and recall,
the combination of hyperbolic embedding and PLV features im-
proved performance. This suggests that these two feature types
may contain partially complementary information, contributing
positively to the classification task. However, this was not the
case in the area under the receiver operating characteristic curve
(AUC-ROC) metric, were the hyperbolic embeddings achieved
a consistent score of 0.77, regardless of whether the PLV fea-
tures were included or not. Overall, these results highlight the
significance of the hyperbolic features as a potentially valuable
diagnostic tool.

D. Brain Subnetwork Analysis

A disruption of brain connectivity in the SCD group could
lead to subtle alterations that are encoded in the hyperbolic
embeddings. To test this hypothesis, we studied the radius of
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Fig. 6. Hyperbolic radii of nodes across various subnetworks derived
from the final scan of the SCD and HC groups who received cognitive
training. pDMN: posterior default mode network. aDMN: anterior default
mode network. DAN: dorsal attention network. FPN: frontoparietal net-
work. VN: visual network. VAN: ventral attention network. SN: salience
network. SMN: sensorimotor network. Dots signify outliers, defined as
data points falling below Q1 - 1.5*IQR or above Q3 + 1.5*IQR (a total of
12 outliers – three subjects with two outliers each, six subjects with one
outlier). Stars denote statistically significant findings (F-test, p<0.05).

the node embeddings, a metric that effectively proxies the hier-
archical organization of the brain. This analysis was conducted
by first averaging the radius of nodes within eight distinct
functional subnetworks (pDMN, aDMN, DAN, FPN, VN, VAN,
SN, SMN), and then investigating these values for SCD-related
subnetwork effects.

Two-way repeated-measures ANCOVAs [44] with the within-
subjects factor of time (pre-intervention/post-intervention) and
between-subjects factor of diagnosis (SCD/HC), controlling for
patient age, were conducted on the hyperbolic radius of each sub-
network, separately. Statistical analysis used the SPSS Statistics
software (Version 29) (Armonk, NY: IBM Corp.). Note, we did
not use the training variable (trained/non-trained) as a factor in
the ANCOVA. This is because exploratory analyses suggested
that the groups pre-selected for training were not adequately
randomly sampled in the distribution of age. This is relevant,
since older age is a severity factor for SCD [45]. Levene’s test for
equality of variances revealed there was a significant difference
in variance of age between the trained and untrained groups
(with an F statistic: F(1,88) = 4.532, p =. 036). Therefore the
assumption of homogeneity of variances was not met to qualify
the use of the training variable in an ANCOVA. As a result,
training groups were analyzed separately and age was included
as a covariate so as to not promote erroneous effects.

The results of our ANCOVA statistical analysis indicate that
the group receiving no cognitive training (n = 44) exhibited
no significant effects after applying false discovery rate (FDR)
corrections. In the group that underwent cognitive training (n
= 46), three significant main effects of diagnosis survived FDR
corrections (Fig. 6). Our findings are as follows: (i) a significant
main effect of diagnosis on DAN hierarchy (F (1,43) = 9.547,
p =. 0160, effect size - partial η2 =. 182); (ii) on FPN hierarchy
(F (1,43) = 9.555, p =. 0240, partial η2 =. 182), and (iii) on
VAN hierarchy (F (1,43) = 8.563, p =. 0133, partial η2 =.
166). Inspecting estimated marginal means revealed that SCD
individuals had a lower hyperbolic radius in the DAN (mean M=
1.786, standard error SE =. 036), FPN (M = 1.754, SE =. 020),

Fig. 7. Visualization of hyperbolic embeddings averaged within the
SCD and HC groups, revealing alterations in the VAN subnetwork. Each
point represents a distinct brain region, with VAN subnetwork regions
highlighted and all others faded. Group membership is denoted by out-
line color (black for HC, gray for SCD), hemisphere by shape (circle for
right, triangle for left), and subnetwork membership by color (consistent
with Fig. 4). Dashed circles indicate averaged radius within the VAN
subnetwork. The output embedding dimension (D) of the HGCN model
was set to 2.

and VAN (M = 1.752, SE =. 025) subnetworks compared to HC
(M = 1.947, SE =. 038; M = 1.844, SE =. 021; and M = 1.859,
SE =. 026, respectively). It is worth noting that a lower cluster
radius from the origin indicates a higher subnetwork hierarchy.

Fig. 7 illustrates the VAN subnetwork alterations. As ex-
pected, the majority of brain regions belonging to the VAN
subnetwork show a predominant pattern of alterations towards
the hyperbolic center in the SCD group.

E. Cognitive Assessments

Our previous analysis, conducted for participants who re-
ceived cognitive training, revealed that those experiencing SCD
had a higher DAN, FPN, and VAN subnetwork hierarchy than
healthy age-matched controls. Higher hierarchy of these signif-
icant subnetworks was correlated with poorer performance on
multiple cognitive assessments. Specifically, we ran a Pearson’s
bi-variate correlation [44] on the significant brain subnetwork
embedding variables and cognitive assessment scores collected
at post-intervention. The variables DAN radius, (r (81) =. 223,
p =. 043) and VAN radius (r (81) =. 245, p =. 026) were signif-
icantly positively correlated with scores on the Rey-Osterrieth
Complex Figure B copy test [46]. This indicates that higher
hierarchy within the DAN and VAN subnetworks is significantly
correlated with lower accuracy in reproducing a complex line
drawing. Furthermore, the DAN radius was marginally nega-
tively correlated with scores on the Geriatric Depression Scale (r
(87)= -.206, p=. 053). This suggests that higher DAN hierarchy
was marginally associated with a greater number of depressive
tendencies.

For a single subnetwork, the FPN, we found that lower
hierarchy was correlated with an improvement on cognitive
assessments over time. Specifically, we conducted Pearson’s
bi-variate correlations between the radii of the DAN, FPN, and
VAN subnetworks post-intervention and the change in cogni-
tive assessment scores over time (post-intervention minus pre-
intervention assessments). The radius of FPN was significantly
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negatively correlated with scores on the functional activities
questionnaire (r (83) = -.261, p =. 016). This suggests that
lower FPN hierarchy was significantly correlated with improved
performance on the functional activities questionnaire, meaning
that participants reported having less impairment completing
daily functional activities (i.e., preparing balanced meals, man-
aging personal finances) over time. These results may suggest
that the frontoparietal subnetwork is a key target when develop-
ing cognitive training interventions to elicit improvement over
time.

IV. DISCUSSION

We developed a hyperbolic MEG brain network embedding
framework to study brain alterations in individuals with SCD.
Our method automatically learns MEG brain network embed-
dings in a lower dimensional hyperbolic manifold, while maxi-
mally preserving the original topological properties of the brain
networks. Furthermore, it effectively captures crucial hierarchi-
cal properties at both the node and subnetwork levels within the
latent hyperbolic manifold, employing the hyperbolic radius as
a proxy measure.

We compared our HGCN model, featuring both with fixed
and learned curvature, against a Euclidean model and a shal-
low Poincaré model in the context of a link prediction task.
Our HGCN model consistently outperformed all other models
across all embedding dimensions, as evidenced in Table II.
Notably, the HGCN model with learned curvature demonstrated
higher accuracy than its fixed curvature counterpart. This finding
suggests that the adaptability of curvature offers advantages
in effectively modeling brain network data. Overall, the use
of hyperbolic space within our model proves advantageous by
preserving network distances and hierarchical information in the
embeddings while minimizing distortion, making it particularly
well-suited for handling complex “tree-like” neural data and
large-scale brain graphs.

For SCD classification, we found that our HGCN embed-
dings markedly enhanced classifier performance compared to
the functional connectivity (PLV) values in both Macro F1 and
AUC-ROC. Using just five minutes of transformed resting-state
neural data, we achieved Macro F1 of 0.73 and an AUC-
ROC of 0.77, underscoring the promising diagnostic capabil-
ities inherent in our approach. This outcome strongly implies
that these embeddings contain intrinsic information related
to brain network hierarchy affected by synaptic dysfunction,
which can be effectively leveraged for machine-learning-based
classification.

Our findings revealed brain network-level biomarkers for
individuals experiencing SCD. In the cognitive training group,
those with SCD displayed significantly elevated hierarchy
within the DAN, FPN, and VAN subnetworks when compared to
their healthy counterparts. Notably, this increased hierarchy in
these subnetworks was associated with poorer cognitive perfor-
mance across all participants. This discovery holds particular
significance given that SCD represents a potential precursor
to AD, a condition that cannot be early diagnosed through
standardized cognitive assessments.

Although largely associated with AD, subjective cognitive
decline is a heterogeneous condition. As many as 60 percent
of individuals with SCD progress to MCI or AD over a 15 a
period [47]. This also means that 40 percent of older adults with
SCD remain stable or may experience related conditions. It is
important to recognize that SCD is linked not only to AD but
also to various non-AD forms of dementia, Parkinson’s disease,
cerebrovascular disease, psychiatric disorders, medication or
substance effects, and even normal aging [2]. To ensure the
validity of our study, we meticulously excluded potential con-
founding factors such as psychiatric and neurological diseases,
medication, and substance use. Our cohort was carefully selected
based on multiple criteria that increase the likelihood of AD
development in individuals with SCD. These criteria include
self-reported cognitive concerns primarily related to memory,
an age above 60 years at the onset of SCD, an onset occurring
within the last 5 years, and cognitive decline confirmed by a
reliable informant [4].

Our study revealed ROI connectivity dysfunction in the DAN,
VAN, and FPN subnetworks in participants with SCD compared
to healthy controls. These findings align with the current body of
literature on AD as a progressive neurodegenerative condition.
Previous research has already established that both the VAN and
DAN networks [48], [49], [50], and the FPN [51], [52], exhibit
altered functional connectivity in AD. The attention networks
are specialized for distinct processes such as the detection of un-
expected but behaviorally relevant stimuli (VAN) and top-down
controlled attention (DAN). The VAN and DAN can flexibly
interact depending on task demands, with frontal regions like the
inferior and middle frontal gyrus playing a moderating role [53].
The frontoparietal network regulates the moment-to-moment
decisions involved in the planning and execution of goal directed
behavior (i.e. processes such as working memory, inhibitory
control, capacity to focus and screen out interfering information,
the ability to formulate an action plan) [54].

At prodromal stages, alterations in the DAN have been con-
sistently observed in patients with MCI [15], [55], [56] and
SCD [15], [57], [58]. These alterations have been linked to
behavioral deficits in top-down attentional control [56]. Fur-
thermore, a MEG resting-state study examined functional con-
nectivity alterations between healthy controls, individuals with
SCD, and MCI patients [15]. This study reported both SCD
individuals and MCI patients displayed a similar spatial pattern
of functional connectivity (FC) alterations with evidence of
progressive deterioration. This pattern was characterized by a
hyper-synchronized anterior network and a hypo-synchronized
posterior network.

Although our findings exist at the brain subnetwork level and
lack ROI-to-ROI level specificity, a review of relevant literature
offers further insights. When comparing clinical participants
(SCD and MCI) to healthy controls, noteworthy alterations
emerge in the bilateral supramarginal gyrus and right angular
gyrus. These regions exhibit reduced functional connectivity
with medial temporal areas (including the hippocampus and
parahippocampal gyrus) as well as several occipital areas [15].
These ROIs, integral to the frontoparietal and ventral attention
networks, may play a pivotal role in network-level disruptions
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at preclinical stages of AD. Moreover, the insula, a pivotal
component of the ventral attention network, exhibits connectiv-
ity alterations during this preclinical stage [58]. In one study,
SCD participants displayed lower insula activation during a
task involving switching between imagination and temporal
decision-making, suggesting impaired control over proper en-
gagement of the DMN and FPN, which govern executive control
functions [59]. In another study, SCD participants demonstrated
weakened connectivity between the DMN and FPN [60]. These
connectivity findings are conceptually consistent with the pat-
tern of reduced gray matter density seen in both SCD and
MCI within the bilateral medial temporal, frontotemporal, and
neocortical areas. This gray matter density reduction in medial
temporal regions inversely correlated with the cognitive com-
plaint index [61], establishing a neural basis for these cognitive
complaints.

Our study did not find any hierarchy changes in the anterior or
posterior DMN. Even though alterations in DMN connectivity
have been extensively documented in individuals with MCI and
AD [62], [63], [64], research on SCD individuals has produced
mixed results [15], [58], [60], [65], [66]. Some studies have
reported hypo-connectivity in the pDMN [15] and cDMN [60],
while some study has found hyper-connectivity in the DMN as
a whole [58]. These discrepancies may stem from variations in
the criteria used for defining regions of interest (ROIs) or the
segmentation of the Default Mode Network into its constituent
parts. Additionally, the mixed results may be attributed to con-
current hyper- and hypo-connectivity within the DMN, which
are observed in AD and MCI groups [62] and may manifest at
the preclinical stage.

Last, our ANCOVA analysis revealed no significant effects
directly attributable to the cognitive intervention. This absence
of findings may be attributed to the possibility that any changes
induced by the cognitive training were exceedingly subtle to
be captured by our modeling. In terms of limitations, our study
was confined to a single modality, relying solely on MEG data.
While MEG is well-suited for assessing synaptic dysfunction,
it lacks precise anatomical specificity. Additionally, our study
produced significant findings with a relatively modest sample
size. Subsequent investigations should prioritize the inclusion
of a larger participant pool to augment the statistical reliability
of our results. Moreover, incorporating multi-modal MEG, EEG,
and MRI data could extend and refine our methods, providing a
more comprehensive understanding of brain network alterations
in the context of cognitive decline. Finally, the inclusion of
amyloid biomarkers could provide invaluable insights into the
underlying mechanisms driving the alterations in brain net-
works, but unfortunately such information was not available in
our cohort.

V. CONCLUSION

We developed a novel hyperbolic brain network embed-
ding method to transform complex MEG brain networks into
low-dimensional hyperbolic embeddings. Our method method
effectively preserves network geometric distances and hierar-
chical information with low distortion, appropriately handles

large-scale graphs, and utilizes inductive learning for graph
interference tasks with unseen nodes. With this approach, we
examined alterations in brain networks among individuals with
SCD in comparison to healthy controls. Our HGCN model
with learned curvature outperformed all other tested models
on a link prediction task. Furthermore, when compared to PLV
connectivity values, our HGCN embeddings significantly en-
hanced classifier performance in distinguishing between SCD
and healthy controls, highlighting the diagnostic potential of
transformed resting-state neural data.

Notably, we introduced a unique metric – the radius of the
node embeddings – which effectively proxies the hierarchical
organization of the brain. We leveraged this metric to charac-
terize subtle hierarchical organization changes of various brain
subnetworks in the SCD population. We found increased hier-
archy, indicated by reduced hyperbolic radii, in the DAN, VAN,
and FPN subnetworks for participants experiencing SCD. These
findings align with existing evidence of dysfunction in these
subnetworks observed in SCD [15], [57], [58], and MCI and
AD patients [50], [55], [56]. Furthermore, these three subnet-
works were correlated with diminished performance on multiple
cognitive assessments.

In conclusion, our study contributes a valuable framework
for exploring brain network alterations associated with cogni-
tive decline. The utilization of hyperbolic embeddings and the
novel hierarchical metric provide fresh insights into the intricate
dynamics of brain networks in the context of SCD, offering
potential avenues for future research and clinical applications.
Broadening its impact, our method can be directly employed
with various types of neuroimaging data offering functional or
structural brain networks, including EEG, fMRI, and diffusion
MRI. We share code and data to reproduce this work here:
https://github.com/ColeSBaker/hyperBrain.
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