
6674 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 28, NO. 11, NOVEMBER 2024

EEG-Derived Markers to Improve Prognostic
Evaluation of Disorders of Consciousness
Jlenia Toppi , Ilaria Quattrociocchi , Angela Riccio, Mariagrazia D’Ippolito , Marta Aloisi,
Emma Colamarino , Floriana Pichiorri, Febo Cincotti, Rita Formisano, and Donatella Mattia

Abstract—Disorders of consciousness (DoC) are
characterized by alteration in arousal and/or awareness
commonly caused by severe brain injury. There exists a
consensus on adopting advanced neuroimaging and
electrophysiological procedures to improve diagno-
sis/prognosis of DoC patients. Currently, these procedures
are prevalently applied in a research-oriented context and
their translation into clinical practice is yet to come. The
aim of the study consisted in the identification of measures
derived from routinary electroencephalography (EEG) able
to support clinicians in the prediction of DoC patients’
outcome. In the present study, a routine EEG was recorded
during rest from a sample of 58 DoC patients clinically
diagnosed as Unresponsive Wakefulness State (UWS) and
Minimally Conscious State (MCS) and followed-up for 3
months. EEG-based features characterizing brain activity
in terms of spectral content and resting state networks
organization were used in a predictive machine learning
model to i) identify which were the most promising features
in predicting patients’ exit from the DoC, regardless of
the clinical diagnosis and ii) verify whether such features
would have been the same best discriminating UWS from
MCS or specific of the outcome prediction. A predictive
machine learning model was built on EEG features related
to spectral content and resting state networks which
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returned up to 85% of performance accuracy in outcome
prediction and 76% in DoC state recognition (UWS vs MCS).
We provided preliminary evidence for the exploitation of
a routine EEG to improve the clinical management of
non-communicative patients to be confirmed in a larger
DoC population.

Index Terms—Disorders of Consciousness, EEG, con-
nectivity estimation, graph theory, prognostic factors, diag-
nosis, machine learning.

I. INTRODUCTION

D ISORDER of Consciousness (DoC) is a clinical condition
characterized by alterations in arousal and/or awareness

and caused by acquired brain injury [1]. DoC could be catego-
rized in different states including coma, Unresponsive Wake-
fulness Syndrome (UWS), already known as Vegetative State
[2], and Minimally Conscious State (MCS). Coma is a state
with absence of arousal (eyes opening) and awareness (non-
reflexive behaviors and command following) [3]. The UWS
[4], is a condition following the acute phase of coma where
the patient recovers vigilance or alertness (eyes opening) and
the sleep-wake circadian cycle, but not awareness of self and
surroundings [5]. The MCS has been described as a condition
in which the patient recovers eye tracking ability or fluctuating
command following, while remaining unable to communicate
[6]. Patients can be defined as exit MCS (EMCS) when show
functional object use or accurate functional communication [7].

The gold-standard to diagnose patients with DoC is the JFK
Coma Recovery Scale Revised (CRS-R) which allows the clin-
ical assessment of patients’ residual visual, auditory, motor,
verbal functions, patients’ communication ability and arousal
[8]. However, the accuracy of such clinical examination based
on bedside behavioral assessment could be affected by the
non-interpretable patients’ behavior mainly caused by both short
(seconds to hours) and long term (days to months) fluctuations
in arousal [9] and/or presence of co-morbidities (spasticity,
aphasia, neglect, etc.) altering their behavioral responses [10].
Accordingly, it has been estimated that approximately 40%
of patients with DoC are erroneously classified as UWS [11],
with evident ethical and clinical impact on patients’ prognosis,
treatment and end-of-life decisions. The recovery from DoC
condition depends on several factors (aetiology, severity at base-
line, and medical complications) [12] and also on the clinical
diagnosis [13]. In fact, MCS patients compared with UWS
showed more favorable prognosis in terms of consciousness

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8279-1699
https://orcid.org/0009-0000-8426-5118
https://orcid.org/0000-0001-7818-7352
https://orcid.org/0000-0002-5375-8339
mailto:jlenia.toppi@uniroma1.it
mailto:ilaria.quattrociocchi@uniroma1.it
mailto:emma.colamarino@uniroma1.it
mailto:febo.cincotti@uniroma1.it
mailto:a.riccio@hsantalucia.it
mailto:mg.dippolito@hsantalucia.it
mailto:mg.dippolito@hsantalucia.it
mailto:m.aloisi@hsantalucia.it
mailto:f.pichiorri@hsantalucia.it
mailto:r.formisano@penalty -@M hsantalucia.it
mailto:r.formisano@penalty -@M hsantalucia.it
mailto:d.mattia@hsantalucia.it


TOPPI et al.: EEG-DERIVED MARKERS TO IMPROVE PROGNOSTIC EVALUATION OF DISORDERS OF CONSCIOUSNESS 6675

and functional improvement [14]. Overcoming the critical issue
of misdiagnosis in the DoC assessment would thus, make the
prognostic prediction more robust to eventually assist clini-
cians in decisions making processes about patient care and
rehabilitation [13].

Emerging evidence suggests that one way to cope with DoC
clinical assessment susceptibility to biases and misdiagnosis
is to look for preserved higher cognitive functions in absence
of an interpretable motor behavior by measuring patients’ re-
sponses directly from the brain [15]. As such, this indirect
approach has been so successful that, the European Academy
of Neurology has recommended the use of techniques mea-
suring the hemodynamical or electrical brain activity in the
investigation of consciousness in DoC patients as reported in
the recently released guidelines on the diagnosis of coma and
DoC [16].

Among the electrophysiological techniques, the electroen-
cephalography (EEG) has been extensively utilized for DoC
assessment and the several studies available summarized the
performances obtained applying single categories of measures
to eventually indicate how the combination of different measures
would increase discriminability between VS and MCS (for
a review see [17], [18], [19]). As for spectral domain, MCS
patients are featured with respect to UWS for higher theta/alpha
and lower delta oscillations in temporal and centro-parietal areas
[20], [21], [22], as confirmed also by a direct correlation of
alpha power and inverse correlation of delta content with CRS-
R scores [23]. Moreover, UWS patients show more irregular,
complex, and unpredictable EEG signals with respect to MCS
as revealed by low level of spectral entropy, being characterized
by stereotyped signals as effect of a low or absent consciousness
[24], [25], [26]. As for connectivity features, MCS exhibit
functional networks at rest with higher density of connections
mainly located in frontal areas [27], [28], higher connection
weights [29], [30], higher segregation properties [31], [32], [33]
and characterized by an efficiency correlating with behavioral
awareness [34].

Up to now, only few studies employed EEG-based quanti-
tative measures during resting state condition to predict DoC
patients’ outcome [35], [36], [37]. Higher frequency content
(lower delta and higher theta and alpha oscillations) and higher
complexity (higher entropy) predict the transition from UWS
to MCS or the exit from this clinical condition. Moreover,
regarding connectivity analysis, higher connections’ weight
and density together with higher fronto-parietal communication
especially in theta and alpha bands are associated to a more
favorable outcome [13], [18]. Despite promising these results are
still limited because of several factors such as reduced samples
of patients, clinical heterogeneity, absence of a uniform criterion
for the assessment of patients’ outcome (different studies used
different clinical scale to assess outcome), lack of a multimodal
predicting model including measures belonging to different
categories. For all these reasons, further investigations on a large
homogeneous cohort of patients are needed to foster the transla-
tion of such research -oriented findings into reliable markers of
recovery from DoC to eventually become instrumental in clinical
practice.

The present study aimed at identifying informative properties
in terms of spectral features and functional network organization
that could be extracted from standard EEG recordings obtainable
in clinical routine during five minutes of resting state (open eye)
able to distinguish: i) DoC patients with positive from negative
outcome and ii) UWS from MCS patients. We consecutively
enrolled a sample of 58 DoC (UWS and MCS) patients who
were clinically followed-up for 3 months. Advanced method-
ologies for EEG signal processing were used to extract features
characterizing the electrical brain activity in terms of spectral
content and resting state networks organization (global proper-
ties, communication between hemispheres and antero-posterior
areas). Two different predictive machine learning models which
included both spectral and connectivity features, were gener-
ated to i) identify which were the most promising features in
predicting patients’ exit from the disorder of consciousness
regardless of the clinical diagnosis (UWS or MCS) and ii) verify
whether such features would have been overlapped to those
best discriminating UWS from MCS or specific of the out-
come prediction. As such, this approach was adopted to enable
the estimation of predictive features not directly dependent on
the clinical diagnosis thus, limiting its possible confounding
effect (i.e., clinical misdiagnosis).

II. METHODS

A. Subjects

A total of 58 patients (29males/29females, mean age: 45±16
yr, CRS-R score: 11±5) diagnosed as DoC following a severe
acquired brain injury (i.e., Glasgow Coma Scale [38] ≤ 8
in the acute phase) were enrolled for the study. CRS-R [39]
was used to diagnose 18 patients as UWS (10males/8females,
mean age: 40±15 yr, CRS-R score: 5±2) and 40 patients as
MCS (19males/21females, mean age: 47±16 yr, CRS-R score:
14±3). Clinical and demographic characteristics of patients are
summarized in Table I.

The CRS-R was administered also prior to the EEG recording
session to confirm the diagnosis. No changes in the drugs with
effects on the central nervous system were performed within the
last 2 weeks preceding the EEG recordings. All patients were
clinically followed up at 3 months from the neurophysiological
recording (timepoint: T1) using the same clinical scales of T0.
The present study protocol was approved by the local (Fon-
dazione Santa Lucia) Ethics committee (CE PROG. 603/2017)
and conducted in accordance with the standards of the 2013
Declaration of Helsinki. Written informed consent was obtained
by the patient’s legal surrogates.

B. EEG Recordings

Scalp EEG potentials were acquired by means of 19 sintered
Ag/AgCl electrodes (SD plus amplifier, Micromed, Italy) ar-
ranged according to 10-20 International System (Fp1, Fp2, F7,
F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, 01, 02; Fpz
and Oz as reference and ground respectively; 250 Hz sampling
frequency). Recordings were obtained at resting state (open
eyes) for 5’ during a routine EEG recording. An expert EEG
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TABLE I
DEMOGRAPHICAL AND CLINICAL CHARACTERISTICS OF THE PATIENTS ENROLLED IN THE STUDY

technician was instructed to monitor for potential occurrence of
sleep during the recording.

C. Pre-Processing

Raw EEG signals were band-pass filtered (1–20 Hz) to block
direct current and to exclude the frequency range typical of mus-
cular artifacts, commonly occurring in this category of patients.
Independent Component Analysis (ICA) was used to remove
ocular artefacts only when recognizable vertical eye-movements
were present. Signals were then segmented into epochs of 1
sec duration; trials with at least one channel with an amplitude
exceeding in absolute value the threshold of 100 μV were
excluded from the analysis (rejection rate of around 11% for
UWS and 6.5% for MCS). A total of 100 trials were randomly
extracted from the 5’ data set for each patient to allow the
subsequent analyses on the same amount of individual data. Pre-
processing was computed by means of Brain Vision Analyzer
2.0 (Brain Products GmbH, Germany) and Matlab R2021b (The
MathWorks, Inc.).

D. Spectral Analysis

Power Spectral Density (PSD) was computed by means of
Welch periodogram on pre-processed EEG data related to the
midline electrodes (Fz, Cz, Pz). In particular, we considered as
epochs of the periodogram the 1s trials obtained by segmenting
the entire EEG resting state trace of 5 minutes with no overlap
(see Pre-processing paragraph above). Each trial was tapered by
means of Hann window and then transformed in the frequency
domain by means of Fast Fourier Transform, considering a spec-
tral resolution equal to 0.25 Hz. The Welch’s estimate of PSD
was computed by averaging the modified periodograms obtained
across the different epochs. Five out of 58 patients were excluded
from spectral analysis due to the presence of out-of-range PSD
values in beta band highly attributable to a residual muscular
component which could be interpreted erroneously as fast brain
oscillations related to high cognitive processing.

In order to objectively quantify spectral properties of EEG
signals at rest we defined two categories of spectral indices
characterizing the magnitude and the frequency distribution of
the spectrum (see Table II). Magnitude indices measured the
relative contribution of a specific band to the global power
and consisted in the relative power spectrum for the following
bands: delta [1], [2], [3], [4] Hz, theta (4–7] Hz and alpha

(7–12] Hz, with a frequency resolution of 0.25 Hz. Frequency
indices described the frequency distribution of the spectrum
giving information on the central frequencies of the spectrum
and its extension and included: Peak Power Frequency (PPF),
Median Frequency (MF), Spectral Edge Frequency (SEF), Main
Dominant Frequency (MDF) [40]. Each index was computed
for the 3 midline channels (Fz, Cz, Pz) by means of Matlab
R2021b (The MathWorks, Inc.) for each patient included, as
representative of frontal central and parietal brain areas. Indeed,
no different results in the spectral properties were found between
i) F3, Fz and F4, ii) C3, Cz and C4, iii) P3, Pz and P4.

E. Connectivity Analysis

Functional resting state networks were estimated applying
Partial Directed Coherence (PDC) to pre-processed EEG data
acquired from 19 electrodes. PDC is a multivariate spectral
connectivity estimator that determines the directed influences
between any given pair of signals in a multivariate dataset [41].
In particular, EEG data cleaned and segmented as reported in
pre-processing section were fed into a multivariate autoregres-
sive model used as linear predictor. The MVAR parameters were
estimated by minimizing the prediction error of the model and
then transformed in frequency domain and normalized across
the rows of the parameters’ matrix, in order to obtain a PDC
weight for each pair of electrodes, direction and frequency. Such
PDC values were then averaged in three frequency bands: delta
[1–4) Hz, theta [4–8) Hz and alpha [8], [9], [10], [11], [12] Hz
with a frequency resolution equal to 1 Hz. The average was
repeated for each pair of electrodes and each direction. The ob-
tained connectivity matrices were statistically validated against
null-case by means of the asymptotic statistics, a theoretical
approach based on the assumption that PDC estimator tends
to a χ2 distribution in the null case (i.e., lack of connection)
and to a gaussian distribution in the non-null case (i.e., existing
connection). Therefore, the statistical threshold of significance
corresponds to the 95th percentile of theχ2 distribution obtained
from data applying Monte Carlo method. The statistical valida-
tion is repeated by defining a specific statistical threshold of
significance for each frequency band, each connection and each
direction [31], [42]. The statistical assessment allowed to discard
existing from non-existing connections in each pattern and was
used to transform each connectivity matrix in an adjacency
matrix as input for the graph theory computation. This approach
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TABLE II
SPECTRAL AND CONNECTIVITY INDICES USED

has been demonstrated to contribute to a higher reliability of
the indices computed to characterize the main properties of the
network [43].

To compute indices describing the main local and global
properties of the investigated patterns, we adopted measures
derived from a graph theoretical approach computed on adja-
cency matrices as described above [44]. In particular, we con-
sidered indices belonging to three different categories (Table II):
i) global indices describing integration and segregation proper-
ties of the network, ii) indices describing relationship between
hemispheres and iii) indices describing relationship between
anterior and posterior regions (also separately for the two hemi-
spheres). As for global indices we included characteristic path
length and global efficiency for measuring integration properties
while local efficiency and clustering coefficient were used to in-
vestigate segregation properties. Then to summarize integration
and segregation characteristics, small-worldness index was com-
puted [45], [44], [46]. As for the other two categories we defined:
i) indices specifically measuring the density of connections
within particular regions of the network; ii) asymmetry quantify-
ing the balance of connections within two different communities
of the network; iii) index measuring density of connections
between two different regions of the network and iv) influence
investigating the existence of dominant direction of communica-
tion between two communities. All these indices were computed
within and between specific communities in the network: left
(L) and right (R) hemispheres and anterior (A) and posterior
(P) regions. The mathematical formulation for such indices was
adapted from [31] and reported in the appendix. Each index was
calculated for all the subjects included in the analysis and for the
3 frequency bands. Connectivity analysis included 54 patients:
4 out of 58 patients were excluded from this analysis since the
estimated functional networks were too sparse (density inferior
to 10%) to allow the extraction of accurate and reliable measures
describing their properties. The analysis was computed by means
of Matlab R2021b (The MathWorks, Inc.).

F. Statistical Analysis 1: EEG-based Indices Predicting
DoC Patients’ Outcome

We first conducted an analysis investigating the potential of
resting state spectral and connectivity indices to predict the
outcome of DoC patients irrespective of the original diagnosis
at study entry (UWS or MCS). The analysis was performed
using neurophysiological data acquired at T0 and the patients’
outcome as stated by the clinical assessment at T1. According to
the CRS-R scores obtained at T1, patients were divided in two
groups: positive (O+) and negative outcome (O-). O+ group
included patients who exited the disorder and were diagnosed
as EMCS by CRS-R at T1. O- included patients who either died
or did not change their clinical status or changed their status from
UWS to MCS diagnosis or vice versa without exiting from the
DoC. O+ group included 28 patients (12males/16females, mean
age: 47,32±17,71yr) and O- group 30 (17males/13females,
mean age: 42,1±14,17yr). No significant differences were found
between O+ and O- groups in terms of age (unpaired t-test, p-
value = 0,2187) and gender (χ-squared test, p-value = 0,2932).

We statistically compared spectral and connectivity indices
obtained in O+ and O- patients to describe differences in
terms of EEG characteristics between such two categories of
patients, after checking for data normality (Lilliefors test, alpha
equal to 0.05). Indices satisfying the normality hypothesis were
compared between O+ and O- by means of unpaired t-test
(significance level equal to 0.05, False Discovery Rate correction
for multiple comparisons), while non-normal distributions were
compared by means of Wilcoxon rank test (alpha equal to 0.05).
Such statistical tests were used as a feature selection step of
the classification approach described below. The aim was to
identify which are the features that discriminate the two classes
under study, and to use this information not to maximize the
discriminative power of the classifier, but to reduce the number
of combinations of features to be tested considering only the fea-
tures more representative of the neurophysiological phenomena
under examination.
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Fig. 1. Box plot reporting results of the comparison between connectivity indices extracted for negative (in blue) and positive (in yellow) outcome.
The indices considered are as follows: IHC (panel (a), LR influence (panel (b), and APR connections (panel (c) all in delta, theta and alpha bands.
The symbol ∗ indicates statistically significant difference between VS/UWS and MCS (independent samples t-test, alpha equal to 0.05).

A machine learning model was built by means of a leave-one-
subject-out approach to identify which spectral and connectivity
indices have predictive value for patients’ outcome. A Supported
Vector Machines (SVM) classifier with linear kernel was trained
using data belonging to the entire set of patients except for one
patient who was used to test the classifier built on the other
subjects. Features space included triplets of indices resulted as
statistically significant in the t-test computed between O+ and
O- groups and thus had dimension equal to (Nsub− 1) x3.
The analysis was repeated leaving out one patient each time, for
all the patients included and the related classification accuracy
(number of correctly classified patients over the total) was
evaluated.

G. Statistical Analysis 2: EEG-based Indices
Discriminating UWS From MCS

We conducted an analysis identifying resting state spectral
and connectivity indices able to discriminate UWS from MCS
patients to verify if such indices are overlapped or not to those
resulted as predictive of the patients’ outcome. The analysis was
performed considering the clinical and neurophysiological data
at T0. According to CRS-R diagnosis, 40 out of 58 patients
were assessed as MCS (19males/21females, mean age: 46,85 ±
16,03yr), 18 as UWS (10males/8females, mean age: 39,67 ±
15,38yr).

No significant differences were found between the two groups
both in terms of age (unpaired t-test, p-value = 0,1157) and
gender (χ-squared test, p-value = 0,5702).

We statistically compared spectral and connectivity in-
dices obtained in UWS and MCS patients to describe dif-
ferences in terms of EEG characteristics between such two
categories of patients, after checking for data normality (Lil-
liefors test, alpha equal to 0.05). We applied unpaired t-test
(significance level equal to 0.05, False Discovery Rate cor-
rection for multiple comparisons) for all the indices satis-
fying the normality hypothesis, while non-normal distribu-
tions were compared by means of Wilcoxon rank test (alpha
equal to 0.05). A leave-one-subject-out approach was used on

datasets composed by triplets of features, one for each cate-
gory of indices resulted as statistically different between UWS
and MCS.

III. RESULTS

A. EEG-Based Indices to Discriminate Positive From
Negative DoC Patients’ Outcome At Three-Months
Follow-Up

The statistical comparison between O+ and O- patients re-
vealed that only 2 categories of indices were significantly dif-
ferent between groups. These were indices descriptive of either
hemispheres’ relationship and communication between anterior
and posterior regions. As for hemispheres relationship, we found
that patients with positive outcome (O+) showed a significantly
higher number of inter-hemispheric connections in delta (p =
0.0416) and alpha (p = 0.0132) bands (Fig. 1, panel a) that were
mainly directed from left to right hemisphere in all analyzed
frequency bands (Fig. 1, panel b) with respect to those with
negative outcome (O-). In fact, LR influence was significantly
different between O+ and O- in delta (p = 0.0239), theta (p =
0.0092) and alpha (0.0013) bands. The O+ patients also showed
significantly higher indices of communication between anterior
and posterior areas in the right hemisphere both in delta (p =
0.0052) and theta (p = 0.0314) bands (Fig. 1, panel c).

The significant features described above were used in triplets
to train a classifier discriminating positive from negative out-
come in DoC patients. The classification accuracy obtained for
all the combinations is reported in Fig. 2(a).

The model with the highest discrimination accuracy (85%)
was built using as features the following indices: LR influence
in alpha, APR connections in delta, IHC in delta. The related
features space is reported in Fig. 2(b) where it can be noted how
the two classes O+ and O− are highly separable by a plane.

B. EEG-based Indices to Discriminate UWS From MCS
Patients

As for spectral indices, we found significant differences be-
tween UWS and MCS in 3 magnitude (RPδ, RPθ, RPα) and 2
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Fig. 2. (a) Results of the leave-one-subject-out classification approach discriminating DoC patients with positive from negative outcome. Each
point in the three-dimensional space represents the value of classification accuracy (coded by means of the hot colormap) obtained for each tested
triplet of features filtered by the statistical analysis: on x-axis LR influence in delta, theta and alpha bands, on y-axis IHC in delta and alpha bands,
on z-axis APR connections in delta and theta bands. The symbol ∗ highlights the features triplet giving the highest classification accuracy. (b)
features space related to the highest classification accuracy (in yellow in panel (a) obtained using as features the following indices: IHC in delta,
APR connections in delta and LR influence in alpha.

Fig. 3. Box plot reporting the distributions of spectral indices obtained
for UWS (in orange) and MCS patients (in green) at Pz location. The
indices considered are as follows: relative power (RP) in delta, theta
and alpha bands (panel (a), median (MDF) and mean (MF) frequencies
(panel (b). The symbol ∗ indicates statistically significant difference be-
tween UWS and MCS groups (independent samples t-test, alpha equal
to 0.05).

frequency (MF and MDF) indices computed for Pz electrodes
(Fig. 3).

In particular, relative powers showed a significant higher
spectral content in delta (p = 0.012) band whereas a lower
contribution of theta (p=0.0337) and alpha (0.0237) oscillations
was observed in UWS with respect to MCS patients (panel a,
Fig. 3). Similarly, we found that MDF (p = 0.009) and MF (p =
0.0209) indices were significantly lower in UWS with respect
to MCS (panel b, Fig. 3). Similar results were obtained for Fz
electrode.

As for connectivity measures, significant differences between
UWS and MCS were found only for the measures describing
the communication between anterior and posterior areas only in
delta band. No between-group significant differences were found
in inter-hemispheric communication in all frequency bands. The
Fig. 4 illustrates the between-group distributions obtained for
the indices measuring the relationship between anterior and
posterior areas in delta band.

Fig. 4. Box plot reporting distributions of indices measuring the re-
lationship between anterior and posterior areas extracted for UWS (in
orange) and MCS (in green) in delta band. The indices considered
are as follows: anterior connections (A connections), posterior connec-
tions (P connections) and anterior-posterior asymmetry (AP asymmetry)
(panel a, connections within areas), anterior-posterior connections in
right hemisphere (APR connections) and anterior-posterior influence
(AP influence) (panel b, connections between areas). The symbol ∗ indi-
cates statistically significant difference between UWS and MCS groups
(independent samples t-test, alpha equal to 0.05).

It is noteworthy how the organization of the communication
within and between anterior and posterior areas of the brain can
be a sign of the 2 different clinical conditions. The MCS group
is characterized by a higher density of connections within the
anterior areas (A connections, p=0.0156) and by a lower density
of connections within the posterior regions (P connections,
p = 0.0085) with respect to UWS in delta band. These results
were confirmed by anterior-posterior asymmetry index which
was higher (p = 0.0037) and positive (prevalence of anterior
over posterior) in MCS with respect to UWS in delta band
(Fig. 4, panel a). As for the communication between areas,
the anterior-posterior communication was significantly higher
in MCS with respect to UWS especially in the right hemisphere
(APR connections, p = 0.0057) (Fig. 4, panel b). Finally, we
found a prevalence of connections going from anterior to poste-
rior areas (AP influence, p = 0.0054) in UWS (AP influence
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Fig. 5. (a) Results of the leave-one-subject-out classification approach discriminating UWS from MCS patients. Each point in the three-dimensional
space represents the value of classification accuracy (coded by means of the hot colormap) obtained for each of the tested triplet of features: on
x-axis global connectivity indices (LE, Cl, SW), on y-axis spectral indices in Pz (MDF, MF, RPδ, RPθ, RPα), on z-axis connectivity indices measuring
interaction between anterior-posterior areas of the scalp (A connections, P connections, AP asymmetry, AP influence, APR connections). The
symbol ∗ highlights the features triplet giving the highest classification accuracy. (b) features space related to the highest classification accuracy (in
yellow in panel (a) obtained using as features the following indices: APR connections in delta, LE in delta and MDF at Pz.

positive) while in MCS the flux between the two regions is
symmetrically bidirectional (AP influence almost around 0).
The indices resulted as significant in the between group com-
parison (UWS versus MCS) were used as features to train the
classifier aimed at discriminating UWS from MCS patients.
All the possible triplets of features were tested extracting each
feature from one of the three aforementioned categories: spectral
indices and within and between anterior and posterior areas
communication indices. Classification accuracy obtained for
all the combinations is reported in Fig. 5, panel a. The best
performance of 76% was obtained for three different triplets
including i) RPδ in Pz, APR connection and AP asymmetry in
delta band (see Fig. 5(b) for the corresponding feature space),
ii) RPδ in Pz, APR connection and P connections and iii) RPα
in Pz, AP influence and P connections. It is noteworthy how
the presence of APR connections index in the triplet returns the
highest performance independently from the combination with
the other two categories of indices.

IV. DISCUSSION

In the present study, we isolated EEG-based measures able
to predict the outcome of patients fulfilling the clinical criteria
for a diagnosis of UWS or MCS. Such measures were extracted
from standard EEG recordings which were routinely executed
during clinical practice, and they predicted the positive outcome
(i.e., evolving from UWS or MCS into EMCS) with up to
85% of accuracy. Bearing in mind that these findings need to
be consolidated on a large (possibly multicentric) cohort of
DoC patients, they provide evidence for the exploitation of a
routine EEG recording to substantially improve the diagnosis
and prognosis of non-communicative patients. We found that
our sample of DoC patients with positive outcome at 3-month
follow-up showed significantly higher magnitude of mainly
right antero-posterior connections estimated in the EEG low
frequency oscillations, (Fig. 1(c)). Similar connectivity pattern
was also found between MCS and UWS in favor of MCS
(Fig. 4(b)).

These findings are in line with previous studies conducted
with high density EEG technique which requires a substantial
higher number of electrodes than that used in clinical routine as
in our study [47], [48]. These studies provided evidence that the
level of fronto-parietal communication positively correlates with
the level of consciousness [47] and can predict a clinical change
from UWS to MCS [48] or a long-term (1 year) positive outcome
[47]. Our finding of a right hemisphere lateralization of the sig-
nificantly higher magnitude of the fronto-parietal connectivity in
O+ patients is novel with respect to the currently available EEG
studies. Previous evidence emerging from functional Magnetic
Resonance Imaging (fMRI) technique have indicated how the
so-called Default Mode Network (DMN), a resting state network
including posterior cingulate cortex (PCC), medial prefrontal
cortex (mPFC) and bilateral parietal cortex (LPC) is highly
modulated by the level of consciousness [49]. In particular, UWS
patients have been described to retain only the activation of PCC
within the DMN whereas MCS show a general decrease of DMN
connectivity preserving the involvement of the prefrontal and
parietal areas with a specific right lateralization with respect to
healthy controls [50].

The limited spatial resolution of the EEG technique only
allows us to speculate that the observed increase of EEG-derived
lateralized fronto-parietal connectivity which not only identifies
the patients’ category (UWS or MCS) and indirectly the level of
consciousness but also their positive outcome, could reflect the
functional neuroimaging changes in the DMN.

Our EEG findings also indicate that a significant higher num-
ber of IHC with left to right hemisphere direction estimated in
delta, theta and alpha bands characterized patients with positive
with respect to those with a negative outcome regardless the
initial diagnosis of UWS and MCS (Fig. 1(a) and (b)). As such
this is a novelty with respect to previous EEG-based studies
investigating potential markers to predict outcome in DoC [17],
[18]. On the other hand, several fMRI studies reported a re-
duction of inter-hemispheric connectivity in DoC patients with
respect to healthy control and its correlation with the level of
consciousness [51], [52]. In our case, the higher hemispherical
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inter-connection in O+ patients might be interpreted as specifi-
cally related to outcome that is a sign of recovery.

Altogether our findings allow us to speculate that a more
favorable outcome would be associated to a higher level of
integration between the different brain areas as indicated by the
observation of more functional connections linking the left and
right hemispheres as well as frontal and parietal areas in our
sample of O+ patients.

This is in line with two previous EEG studies reported that
the overall number of connections within a resting state network
together with its total weight can be interpreted as relevant signs
for a more positive outcome in DoC [33], [53].

The value of our findings obtained from routinely performed
EEG recordings was also corroborated by the output of the
outcome predictive model which was built upon the connectivity
indices commented in the above. The combination of indices
measuring the magnitude of the IHC, the LR influence and
the right fronto-parietal communication allowed to discriminate
positive and negative outcome of patients with an accuracy of
85% (Fig. 2). To the best of our knowledge, this is the first EEG
study in which a predictive model for DoC patients’ outcome
was built including multivariate (EEG-based) measures, each of
which describing a specific aspect of the brain electrical activity
of DoC patients but collectively accounting for up to 85% of
outcome prediction. However, such results should be confirmed
by studies involving a larger population of patients.

Only two previous studies in DoC employed a classification
approach to predict outcome based on EEG-derived indices [33],
[47] using one single feature (coherence in theta or fronto-
parietal connections in delta) with the resulting performance
of 76%–78% (AUC). We are aware that caution should be taken
when performing a direct comparison between our results and
others available in the literature since many factors (number
of patients, machine learning approach, classifier type, metrics
used to assess patients’ outcome, performance parameter, etc …)
could affect the data analysis thus preventing from an unbiased
conclusion to be drawn.

As for the spectral indices computed in our population of
UWS and MCS patients we found a slowing of the EEG oscilla-
tions in UWS with respect to MCS as testified by a higher delta
power, lower theta and alpha power and lower median and mean
frequency over the frontal and parietal areas (Fig. 3(a) and (b)).
Previous EEG studies reported that delta power is significantly
higher in UWS than in MCS patients while theta and alpha power
show the opposite tendency [54], [55], [56]. Power ratio between
slow and high frequency activity is higher in UWS patients than
in MCS [18] and this EEG slowing is reflected also in the median
and mean PSD frequency [30].

The alpha oscillations were demonstrated to have a key role
in discriminating and predicting levels of consciousness since
the presence of a dominant posterior alpha background and the
absolute alpha power are specific feature of MCS [17]. All in
all, the EEG spectral features of our sample of DoC patients
are in line with the already available evidence of their role in
characterizing UWS and MCS condition.

When considering the clinical diagnosis in our sample of
DoC patients, we found that MCS condition was characterized

by a higher number of connections in the frontal areas and a
lower number of connections in the posterior areas (confirmed
by the AP asymmetry) with respect to UWS. Moreover, the MCS
group of patients showed right AP connection index significantly
higher than UWS patients. This finding is consistent with what
we observed in terms of outcome prediction; indeed, the mag-
nitude of AP connections over the right hemisphere was crucial
in determining a positive outcome. Overall, these findings have
never been described in previous EEG studies. Although with
caution, due to the small and imbalanced sample size, we might
interpret these findings in light of what has been found in fMRI
domain about the loss of the mPFC activation within the DMN
observed in UWS patients [50].

Our model to discriminate MCS from UWS returned best
performance (76% accuracy) with relative power in delta band
at Pz, AP asymmetry and APR indices were used as features. In
other words, the EEG frequency oscillations and the communi-
cation within and between frontal and parietal areas appear to
be crucial factors in our case to discriminate the consciousness
level. Although with caution due to the small number of patients
included and imbalanced in terms of observations in UWS and
MCS groups, we observe that the accuracies are comparable [47]
or even better [33] than those obtained in previous EEG studies.

We are aware that the current study has a main limitation
in the patients’ sample size with an unbalanced categorization
between UWS and MCS thus, the obtained results should be
confirmed in a larger population of DoC and validated on an
external population different from the one used in this study
(external validation for outcome prediction). Nevertheless, our
study indicates that EEG recordings routinely performed in
clinical practice can be exploited to isolate measures which
could allow improving assessment also in terms of outcome of
extremely complex clinical condition such as DoC. However,
future studies using multimodal assessment with high-density
EEG and functional MRI should confirm the main findings of
this work with a higher spatial resolution, which was sacrificed
here for ease of integration into clinical routine.

In addition, another limitation of the study is the fact that
all the results obtained and reported in the current manuscript
were obtained from a single EEG screening session. However, it
has recently been demonstrated how the behavioral fluctuations
reported in this category of patients, especially in MCS patients,
are also associated with and described by daily fluctuations
in EEG-based features [54]. Future work should address such
aspects by demonstrating the robustness of the approach pro-
posed in this manuscript between several repetitions of the EEG
screening during the day. The results of both diagnostic and
prognostic classifiers should therefore be treated with caution,
as the EEG signals recorded from MCS patients, which are taken
once a day, may depend on the specific time of sampling and
may not be indicative of the general state of the patient, due to
the well-known fluctuations in their brain states.

Another important aspect to consider in the interpretation of
the results obtained is the correlation between the time series
included in the MVAR model as a consequence of volume
conduction when the PDC estimation is computed from signals
recorded from the scalp [57], [58]. To mitigate such an issue,
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other connectivity estimators known to be less affected by this
phenomenon could be used. However, their robustness to the
volume conduction is at the expense of spurious connections
within the network due to cascade or indirect effects typical
of bivariate approaches or noise sensitivity as demonstrated
for non-linear estimators. As an alternative to changing the
estimator, spatial filters could be applied to separate sources
or remove inter-electrode correlation, bearing in mind that their
action may also mask or alter connectivity between different
brain regions. Both of these options are less feasible for clinical
applications as the effect of the lesion is not easy to predict.
To mitigate this phenomenon, but keeping an estimator that
has been shown to be reliable and accurate in different clinical
applications [31], [59], we compared networks between different
conditions with the same electrode configuration (i.e., same
montage, same reference) and eliminated the effect of spurious
connections induced by volume conduction. In fact, VS/UWS
and MCS patients or O+ and O- patients in our study were all
screened by using the same EEG montage and reference. It is
therefore reasonable to assume that the significant differences
between network structures found in the paper are not related
to such an effect, which is common to all subjects. Future work
should address the problem of the dependence of the network
structure and its properties on the estimator used to obtain
the connectivity matrix. An interesting work should search for
properties eventually invariant to the estimator used or should
identify the most reliable estimator in order to remove all the
confoundings introduced by the mathematical approach used,
and thus allow an effective characterization of the network.

The final limitation relates to the method used to select
features and the construction of predictive models. We adopted
a filtering approach to feature selection, which ensures that the
features that best fit the regressor (target vector) are found, rather
than using a wrapper method that searches for well-performing
subsets of features whose interpretability would be disconnected
from physiology. Thus, we applied a simple univariate feature
selection approach, based on statistical tests, only to identify
which are the features that discriminate the two classes under
study, and to use this information not to maximise the discrim-
inative power of the classifier, but to reduce the number of
combinations of features to be tested, considering only those
features that are more representative of the neurophysiological
phenomena under study. Once we have filtered the features on
the basis of such a univariate approach, we grouped them into
triplets in order to map the different domains of characteriza-
tion of the brain networks and provided them as input to the
classifier. We tested all possible combinations, keeping the rule
about the domains (one index for each domain). This allowed
us to answer our initial question: what are the differences in
resting-state network properties between two different levels of
DoC or between a good and a bad prognosis? When a large and
balanced sample of patients will be available, more sophisticated
approaches to feature selection and classification, including
machine learning and deep learning, will be used to translate
these initial results into a tool to assist clinicians in making
medical decisions, both in terms of diagnosis and prognosis. In
addition, unsupervised approaches should be used to assess any

Fig. 6. Schematic representation of a generic adjacency matrix where
two different communities are clearly identified.

discordance between the clinical diagnosis and the results of
the computational approaches based on EEG-derived indices as
markers of misdiagnosis.

In conclusion, the employment of advanced methodologies
for EEG signal processing allowed to identify EEG-based fea-
tures, mapped in spectral and connectivity domains, mostly
related to a favorable outcome, and best discriminating UWS
from MCS patients. Future works should assess the replica-
bility of our results in a larger DoC population and validate
the predictive models built in the present work on an external
population of patients in order to demonstrate their robustness
and generalizability and thus open to their employment in the
clinical routine settings.

APPENDIX

Let’s consider a generic connectivity network mathematically
described by its corresponding adjacency matrix (Fig. 6), nam-
ing the two regions as Ri and Rj , constituted by Ni and Nj

number of nodes respectively, graph theory allows to define
intra-region and inter-regions communities. Intra-region com-
munities describe the communication of nodes within the region
and are located across the main diagonal of the adjacency matrix
(Cii for region Ri and Cjj for region Rj).

Inter-regions communities describe the communication be-
tween different regions of the network and are located outside the
main diagonal of the matrix (Cij , Cji inter-regions community
associated to region Ri and Rj from i to j and from j to i,
respectively).

Given the network’s structure of Fig. 6, it is possible to define
four indices.

Connection density within region i: Fraction of the connec-
tions of the network existing within the community Cii, defined
as

CDW
ii =

conCii

conTOT
(1)

where conCii
is the number of connections within the commu-

nity Cii and conTOT represents the total number of connections
existing in the network.

Asymmetry. Difference of fractions of all the possible con-
nections existing within the communities Cii and Cjj , defined
as

A =
conCii

Ni (Ni − 1)
− conCjj

Nj (Nj − 1)
(2)
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Where conCii
is the number of connections withinCii, conCjj

is
the number of connections withinCjj ,Ni(Ni − 1) is the number
of all the possible connections within Cii and Nj(Nj − 1) is the
number of all the possible connections within Cjj .

Connection density between regions i and j: Fraction of the
connections of the network existing between the communities
Cii and Cjj , defined as

CDB
ij =

conCij
+ conCji

conTOT
(3)

Where conCij
is the number of connections from community

Cii toCjj , conCji
is the number of connections from community

Cjj to Cii, conTOT is the number of connections existing in the
network.

Influence: Difference of fractions of connections directed
from Cii to Cjj and connections directed from Cjj to Cii,
defined as

Inf =
conCij

− conCji

NiNj
(4)

where conCij
is the number of connections from community

Cii toCjj , conCji
is the number of connections from community

Cjj to Cii, and NiNj is the number of all possible connections
between Cii and Cjj .
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