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Efficient Resonance Mode Analysis-Based
Methodology for Resonance Studies in

Multi-Terminal Transmission Grids
Oriol Cartiel , Juan José Mesas , and Luis Sainz

Abstract—Resonances in transmission grids can increase har-
monic voltages and currents in the presence of nonlinear loads
and cause dynamic instabilities. Although frequency scan analysis
is commonly used to assess resonances, resonance mode analysis
(RMA) provides a more detailed understanding of resonances and
is more useful for harmonic power quality and stability studies.
However, RMA is a time-consuming task that involves eigenpair
decomposition of the impedance matrix over a frequency range.
To reduce computational effort, rapid RMA (r_RMA) based on
the power iteration method, or faster RMA (f_RMA), are pro-
posed, but these approaches can suffer from convergence issues
due to the matrix spectrum. To amend this, the paper contributes
a Lanczos method-based RMA (L_RMA) that applies the non-
Hermitian Lanczos method to obtain the dominant eigenvalue
of the impedance matrix. The accuracies, computational times
and convergence rates of the four RMA-based approaches (RMA,
r_RMA, f_RMA and L_RMA) are compared in ten IEEE and seven
synthetic test power systems. It is verified that r_RMA and f_RMA
are the best choices for small transmission grids, while L_RMA
offers significant time-saving benefits in large multi-terminal trans-
mission grids with sparse admittance matrices. Overall, the study
offers an RMA-based methodology for resonance studies validated
by MATLAB/Simulink simulation.

Index Terms—Resonance, modal analysis, power iteration,
Krylov subspace, Lanczos method, sparse matrix.

I. INTRODUCTION

R ESONANCES in transmission grids have recently become
a major concern due to the growing presence of elec-

tronic devices. Peak values of grid impedances at resonance
frequencies can increase the harmonic currents consumed by
these devices, worsening voltage and harmonic current distor-
tion [1]. Low damped resonances can also cause voltage oscilla-
tory instabilities at resonance frequencies [2]. These resonances
are characterised by the non-Hermitian admittance matrices of
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transmission grids, and the frequency scan analysis applied to
the inverse of these matrices (i.e., to the impedance matrix) is
probably the most common tool employed by engineers to calcu-
late resonance frequencies [1], [3]. With this frequency domain
approach, it is also possible to deal with black-box models of
transmission grid components that cannot be further identified
by white-box models. The integration of black-box models into
the admittance matrix for frequency scan analysis of resonances
is currently a key focus in harmonic and stability studies [4].
Nevertheless, frequency scan analysis has several drawbacks,
such as high computational effort to study the sizeable admit-
tance matrices of large multi-terminal transmission grids.

Resonance mode analysis (RMA) enhances the study
of resonances through eigenvalue analysis of the admit-
tance/impedance matrix [3]. This analysis is particularly in-
teresting in engineering because the study of complex coupled
systems, such as transmission grids, can be simplified to scalar
multiplications. Moreover, eigenvalue analysis can provide use-
ful insights into the system’s behaviour. In particular, RMA
solves not only the resonance frequency characterisation but also
other concerns related to the above resonances (e.g., finding the
best grid location to damp resonances and the grid components
involved in them) [3], [5], [6]. Currently, RMA is applied to
harmonic power quality studies and some impedance-based
approaches for stability assessment of multi-terminal hybrid
AC/DC transmission grids [4], [7], [8], [9], [10].

As previously mentioned, RMA is a useful tool for stability
and harmonic analysis, but requires a high computational effort
to calculate the eigenvalue decomposition of the impedance
matrix over the whole frequency range, that can increase dra-
matically in large multi-terminal transmission grids. There are
different methods for solving eigenproblems that can be di-
vided into direct and iterative methods [11], [12], [13]. Iterative
methods are the most appropriate for determining eigenvalues
of large, sparse matrices, such as the admittance matrices of
large multi-terminal transmission grids. These methods can be
grouped under those that are applicable to Hermitian matrices
and those that are applicable to non-Hermitian matrices. The
latter are of interest for this study because of the nature of the
aforementioned admittance matrices.

Single- and multi-vector iteration methods, such as the power
iteration (PI)-based method, are the simplest iterative algorithms
for computing the dominant eigenvalue of any eigenproblem.
Accordingly, a rapid RMA (r_RMA) approach based on the
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PI method is presented in [14] and [15], and a faster RMA
(f_RMA) approach in [16]. Given an eigenproblem Ax = λx
with a matrix A ∈ Cnxn, the PI method generates a sequence of
vectorsx1, . . . ,xk that span a Krylov subspaceKk(A,x1, k) =
span{x1,Ax1, . . . , A

k−1x1} such that the vector xk con-
verges to the dominant right eigenvector of A after several
iterations [11], [12], [13]. The PI method is a computationally
efficient tool as it calculates only the dominant eigenvalue of
the impedance matrix at each frequency. However, convergence
heavily depends on the matrix spectrum, potentially leading to
slow or incomplete convergence [11], [12], [13]. The Arnoldi
method and the non-Hermitian Lanczos method are the most ef-
ficient iterative algorithms for large, sparse, non-Hermitian ma-
trices [17], [18], [19], [20], [21]. These methods can effectively
overcome the convergence issues of the PI method and solve
large, sparse matrix eigenproblems [12], [13], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26]. They are commonly used to
solve large-dimensional matrix equations in engineering eigen-
value problems (e.g., in structural analysis, control theory, image
and signal processing, and machine learning). However, to the
best of the authors’ knowledge, they have not yet been applied
to resonance studies in transmission grids. The Arnoldi method
is an orthogonal projection algorithm that leads to a sequence
of Hessenberg matrices Hk resulting from the application of
the orthogonal vectors of the Krylov matrix Kk(A,x1, k) =
[q1,Aq1, . . . , A

k−1q1]. The non-Hermitian Lanczos method
is an oblique projection algorithm that yields a sequence of
tridiagonal matrices Tk resulting from the application of the
biorthogonal vectors of the Krylov matrices Kk(A,x1, k) =
[x1,Ax1, . . . , A

k−1x1](x1 = q1 and p1). The above Arnoldi
and Lanczos vectors are applied to matrix A, and the extreme
modulus eigenvalues of Hk and Tk (known as Ritz values)
progressively provide better estimates of the extreme modulus
eigenvalues of A [13], [17], [18], [22]. It should be noted that, at
any iteration k, the PI method estimates the dominant eigenvalue
of A in the subspace generated by the vector xk = Ak−1x1,
while the Arnoldi and non-Hermitian Lanczos methods do so
by taking all vectors x1,Ax1, . . . , Ak−1x1 of the Krylov
matrices. This consideration leads to better and more efficient
approximations of the dominant eigenvalue, since the Krylov
matrices contain all the information of the generated subspace
[13], [17], [20]. The most popular Krylov subspace method for
non-Hermitian matrices is the Arnoldi algorithm [18]. Several
studies compare the Arnoldi method with the non-Hermitian
Lanczos method [13], [17], [18], [19], [20], [21], [23], and
none of them clearly favours one over the other. In any case,
the Lanczos method offers several advantages over the Arnoldi
method [18], [19], [20], [21].

The increasing presence of power electronics and HVDC links
in transmission grids makes it necessary to efficiently perform
RMA in resulting large multi-terminal transmission grids, in-
cluding the so-called super grids [24], [25]. The admittance
matrices of these grids are logically large and, in most cases,
sparse. Under these circumstances, the computational effort and
time of any RMA performed with any of the existing RMA
approaches are unacceptable regardless of how often RMA is
performed, not to mention the inability of these approaches to

directly obtain the left eigenvectors of the admittance/impedance
matrices over the entire frequency range. Therefore, an efficient
RMA-based methodology is needed to overcome the above
limitations in large multi-terminal transmission grid resonance
studies, which seem to be increasingly common.

This paper presents a novel, original and relevant contribution
to the engineering problem of studying resonances in multi-
terminal transmission grids through an RMA-based methodol-
ogy that integrates black-box models. The contributed method-
ology adequately combines two RMA approaches: an existing
one, the r_RMA (or f_RMA) approach, which is more effi-
cient in small transmission grids, and a new one proposed by
the authors, the non-Hermitian Lanczos method-based RMA
(L_RMA) approach, which is more efficient in large multi-
terminal transmission grids with highly sparse admittance ma-
trices. This methodology considers the sparsity ratio of the
admittance matrix [27], [28], [29], [30] to apply r_RMA (or
f_RMA) or L_RMA. L_RMA is a novel RMA-based approach
that applies the non-Hermitian Lanczos method to efficiently
obtain the dominant eigenvalue of the impedance matrix with its
corresponding left and right eigenvectors in large multi-terminal
transmission grids over the entire frequency range.

If this RMA-based methodology is intended to be used ap-
propriately for resonance studies in multi-terminal transmis-
sion grids, it is essential to know the basics of the two RMA
approaches it combines, understand the advantages of these
two RMA approaches over other existing or possible RMA ap-
proaches, and analyse the application of the resulting methodol-
ogy for resonance studies to be performed efficiently regardless
the size of the multi-terminal transmission grid. The study is pre-
sented with mathematical rigour and includes extensive applica-
tions, the results of which are validated by MATLAB/Simulink
(MATSIM) simulations, demonstrating the clear advantage of
the L_RMA approach over other approaches for large-scale
power systems. A comparative study of RMA, r_RMA, f_RMA,
and L_RMA accuracies, computational times and convergence
rates is performed on the IEEE 3− [31], 5− [32], 9− [33], 14−
[34], 24− [35], 30− [36], 39− [37], 57− [38], 118− [39], and
300− [40] bus test power systems, as well as Central Illinois
200− [41], South Carolina 500− [42], Texas 2k− [43], Texas
7k− [44], East Coast USA 10k− [45], North Central USA
25k− [45] and Eastern USA 70k− [45] bus synthetic test power
systems. In addition, small-signal converter-driven stability [46]
is assessed in a modified IEEE 118–bus test power system using
the positive-mode-damping (PMD) stability criterion [7].

The paper is organised as follows. Section II presents the
limitations of frequency scan analysis in resonance studies
and the basics of two existing RMA-based approaches, RMA
and r_RMA, as well as a brief description of a third RMA-
based approach, f_RMA. These approaches enhance resonance
studies but they are computationally intensive when applied
to large multi-terminal transmission grids. In Section III, the
basics and the algorithm of the non-Hermitian Lanczos method
are provided to reduce this computational effort, and its suit-
ability for large, sparse eigenproblems is discussed. A new
RMA-based approach, L_RMA, based on the non-Hermitian
Lanczos method is developed in Section IV, which is logically
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suitable for resonance studies in large multi-terminal trans-
mission grids with sparse admittance matrices. For resonance
studies to be performed efficiently regardless the size of the
multi-terminal transmission grid, a novel RMA-based method-
ology is proposed in Section V. This technique applies the most
efficient RMA-based approach while considering the sparsity
ratio of the admittance matrix. The integration of black-box
models in the methodology is also described. In Section VI,
the proposed methodology is applied and some results are ob-
tained as quantitative evidence of the efficiency of the L_RMA
approach. Finally, Section VII draws conclusions from these
results.

II. RESONANCE MODE ANALYSIS

Frequency scan analysis is the traditional tool for determining
resonance frequencies in harmonic power quality studies, but it
does not provide all the required information for an effective
resolution of the problem [1], [3]. This analysis is based on the
voltage node method,

VB,f = Y−1
B,f IB,f = ZB,f IB,f , (1)

where VB,f is the voltage vector, IB,f the current injection
vector, YB,f the admittance matrix and ZB,f = Y−1

B,f is the
impedance matrix at frequency f.

The frequency behaviour of the ZB,f terms (driving and cou-
pling point impedances) characterises the frequency response
of transmission grids, making it possible to investigate the
frequencies of grid resonances (i.e., peak values of the ZB,f

components), which can cause high bus voltage values at these
frequencies. These peak values define the resonance frequencies
and are associated with singularities in the admittance matrix
YB,f .

However, the influence of grid buses on resonances cannot
be characterised by this analysis. Moreover, the study of large
transmission grids has a very high computational cost due to the
high number of buses and impedances associated with the grid.

In order to overcome the limitations of frequency scan anal-
ysis, RMA is presented as a powerful tool to characterise res-
onance frequencies [3]. Nevertheless, RMA requires the eigen-
value decomposition of the admittance matrix at each frequency,
which can be computationally intensive in large multi-terminal
transmission grids. To reduce the computational time, an alter-
native PI method-based approach called r_RMA was developed
[11], [14], [15].

A. Basics of the Resonance Mode Analysis

RMA is based on the eigenanalysis of the voltage node method
(1) at each frequency f , i.e., [3]

VB,f = Y−1
B,f IB,f → Uf = Λ−1

Y,f Jf

ΛY,f =

⎡
⎢⎣

λY 1 0
. . .

0 λY n

⎤
⎥⎦
f

= Lf YB,f Rf , (2)

Fig. 1. RMA and r_RMA results in IEEE 3-bus test power system [31].

where n is the number of the grid buses, Uf = Lf VB,f

and Jf = Lf IB,f are the modal voltage and current vec-
tors, respectively, ΛY,f is the eigenvalue matrix of YB,f and
Rf = [R1 . . . Rn]f and Lf = [L1 . . . Ln]

T
f are the right

(in columns) and left (in rows) eigenvector matrices, respec-
tively, where Rf = L−1

f = LT
f since YB,f is symmetric and

non-Hermitian in all the studied cases of transmission grids.
Eigenvalues of the admittance matrix YB,f (see (2)) are all

the modes of the transmission grid at each frequency, whereas
resonance modes are only those eigenvalues whose moduli
over a frequency range have local minima (i.e., singularities).
These singularities coincide with peak values of the moduli
of the impedance matrix eigenvalues Zmj,f = 1/λY j,f , known
as resonance modal impedances. The resonance frequencies
are the same as the frequencies at which the resonance modal
impedances have these local extremes. At each frequency, the
largest modulus eigenvalue of the impedance matrix is called
the critical mode (or critical modal impedance). Thus, it can
also be stated that the resonance frequencies coincide with
the frequencies at which the critical mode has local modulus
extremes.

RMA can also determine the relationship (excitability and
observability) between the grid buses b and the critical resonance
modes j using the participation factors (PFs), PFbj , calculated
with the right and left eigenvectors [3]. Moreover, the influence
of grid elements on each critical resonance mode can be studied
using the sensitivity matrix [5], [6].

Although RMA has significant advantages over frequency
scan analysis, it also has a high computational cost due to the
diagonalisation of the admittance matrix, which increases with
the grid size.

B. Basics of the Rapid Resonance Mode Analysis

In order to determine resonance frequencies, RMA only re-
quires to obtain the largest modulus eigenvalue (critical mode)
of the impedance matrix at each frequency. Based on this,
r_RMA only calculates this eigenvalue and its associated right
eigenvector using the PI method [11], [14], [15]. Therefore, the
result of applying r_RMA is the envelope of all the impedance
matrix modes obtained by RMA [14], [15]. This can be observed
in Fig. 1 for RMA and r_RMA studies of the IEEE 3−bus test
power system [31].
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Fig. 2. Flowchart of r_RMA.

Power iteration (PI) method: Given a diagonalisable matrix
A ∈ Cnxn with its eigenvalues λi such that |λ1| > . . . ≥ |λn|
and its associated right unit eigenvectorsvRi(i = 1, . . . , n), the
dominant eigenvalue λ1 and its eigenvector vR1 can be obtained
by the next iterative algorithm, which starts from an arbitrary
initial vector x(0) [11], [14], [15],

y(k) =
x(k)∣∣∣∣x(k)
∣∣∣∣
2

, x(k+1) = Ay(k)

σ(k) = y(k)Tx(k+1) (k ≥ 0), (3)

where ||·||2 represents the two-norm of a vector. The sequences
y(k) and σ(k) converge to vR1 and λ1, respectively [14].

The convergence speed of the PI method depends essentially
on the ratio |λ2/λ1|, where λ1 and λ2 are the two dominant
eigenvalues (i.e., the largest modulus eigenvalues) of matrix
A. If |λ2/λ1| ∼= 0, the iterative algorithm converges very fast
whereas, if |λ2| is close to |λ1| (|λ2/λ1| ∼= 1), the PI method
may have convergence problems and even fail to converge [11],
[14], [15]. A combination of a convergence rate (based on
the eigenvalues or on the infinity-norm ||·||� of eigenvectors
[15]) and a convergence acceleration is commonly applied as
a stopping criterion for the PI algorithm, i.e.,

ε(k) =

∣∣p(k) − p(k−1)
∣∣∣∣p(k−1)

∣∣ < Δ (p = σ or ||x||∞)

ξ(k) =
∣∣∣ε(k) − ε(k−1)

∣∣∣ < δ. (4)

Then, if ε(k) or ξ(k) falls below the established thresholds
of Δ or δ (where Δ = 10−10 and δ = 10−6 are suggested),
respectively, the PI algorithm stops.

Fig. 2 shows the complete r_RMA flowchart, which is based
on the PI method with A = ZB,f = Y−1

B,f . It must be noted
that the convergence rate is strongly dependent on the starting
vector of the PI method, and the eigenvector at the previ-
ous frequency becomes a good starting vector, i.e., xf �=f(0) =
Rj, f−Δf . The starting vector at the first frequency is chosen
as xf(0) = [1 · · · 1]Tnx1 [14], [15]. The PI method yields the
largest modulus eigenvalueZmj,f of the impedance matrixZB,f

and its corresponding right unit eigenvector Rj,f over the whole
frequency range. Hence, r_RMA allows the evolution envelope
of the moduli of all modal impedances Zmj,f of ZB,f over the
entire frequency range (see Fig. 1) to be calculated, denoted by
|Zcm|, i.e.,

|Zcm| =
{
|Zmj,f | / |Zmj,f | = max (|Zmj,f |)

∀f ∈
[
f (0), f (mx)

]}
. (5)

As can be observed in Fig. 1, the PI method has convergence
problems indicated by a high number of iterations at eigenvalue
conflict frequencies, where ZB,f has two dominant eigenvalues
(i.e., at frequencies where |λ1| ≈ |λ2|). This is a major drawback
in large multi-terminal transmission grids, and early stopping
of the PI method by setting a maximum number of iterations
for convergence (kmx

conv) is therefore appropriate to prevent the
PI method from continuing unnecessarily because there are no
resonances at these frequencies.

A f_RMA approach based on a modified shifted-inverse
power iteration method has recently been proposed. It is an im-
provement over the r_RMA approach to enhance its performance
(see details in [16]).

III. NON-HERMITIAN LANCZOS METHOD

Although r_RMA is a powerful tool based on the PI method
to determine the largest modulus eigenvalue of an eigenproblem
Ax = λx (e.g., the RMA eigenproblem, where A = YB,f and
the PI method is applied at each frequency f ), it suffers from
a severe convergence issue at the eigenvalue conflict frequen-
cies that limits its usefulness in studying large multi-terminal
transmission grids with a high number of eigenvalues [11]. To
overcome the limitation, the paper presents L_RMA, a more
suitable approach for large, sparse eigenproblems derived from
the Krylov subspaces projection methods, in particular, the
non-Hermitian Lanczos method [12], [13], [17], [18], [19],
[20], [21]. The approach generates a sequence of tridiagonal
matrices Tk whose extreme modulus eigenvalues are gradually
better estimates of A’s extreme modulus eigenvalues with a fast
convergence rate.

A. Basics of the Non-Hermitian Lanczos Method

The following two theorems get closer to the non-Hermitian
Lanczos method and L_RMA [13]:

Theorem 1: Given a non-Hermitian matrix A ∈ Cnxn and
its eigenvalues λi(i = 1, . . . , n) with |λ1| > . . . ≥ |λn|, there
exist two biorthogonal matrices P = [p1, . . . , pn] and Q =
[q1, . . . , qn](P

TQ = In) of vectors pi and qi ∈ Cn such that
the extreme modulus eigenvalues of the matrixPTAQ converge
to λ1 and λn [12].

Theorem 2: Given a non-Hermitian matrix A ∈ Cnxn and
its eigenvalues λi(i = 1, . . . , n) with |λ1| > . . . ≥ |λn|, the
Rayleigh-Ritz procedure ensures that the extreme modulus
eigenvalues μ1 and μk (known as extreme Ritz values)
of the sequence tridiagonal matrix Tk = PT

kAQk (whose
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eigenvalues are μi, i = 1, . . . , k, with |μ1| > . . . ≥ |μk|)
derived from the biorthogonalisation of the left and right
Krylov matricesKk (A,p1, k) = [p1,Ap1, . . . ,A

k−1p1] and
Kk (A,q1, k) = [q1,Aq1, . . . ,A

k−1q1], respectively, which
span the Krylov subspaces,

Kk (A,p1, k) = span
{
p1,Ap1, . . . ,A

k−1p1

}
Kk (A,q1, k) = span

{
q1,Aq1, . . . ,A

k−1q1

}
, (6)

are gradually better estimates of λ1 and λn.
The approximate left and right eigenvectors of A

(known as Ritz vectors) are the columns of the matri-
ces Wk = Pk (V−1

Tk
)
T
= [w1, . . . , wk] and Vk = QkVTk

=
[v1, . . . , vk], respectively, where VTk

(whose columns must
not be confused with the right Ritz vectors) is the matrix of the
right eigenvectors of Tk (i.e., TkVTk

= VTk
ΛTk

).

B. Algorithm of the Non-Hermitian Lanczos Method

The non-Hermitian Lanczos method builds Krylov subspaces
using biorthogonal Lanczos vectors to construct a tridiagonal
matrix from the original matrix A. The eigenvalues of the tridi-
agonal matrix are used to approximate the eigenvalues and both
eigenvectors of A by the Rayleigh-Ritz procedure. That is, the
method builds two biorthogonal matrices Pk = [p1, . . . , pk]
and Qk = [q1, . . . , qk] of Lanczos vectors (PT

kQk = Ik) that
progressively approximate the eigenvalues of A by the eigen-
values of the tridiagonal matrix Tk = PT

kAQk, i.e., by the Ritz
values μi (i = 1, . . . , k) [12], [13]. Thus, at any iteration k, it
is verified that [13]

AQk = QkTk + rke
T
k

ATPk = PkT
T
k + ske

T
k , (7)

where ek is the k-th canonical basis vector of size k, and rk and
sk are the Lanczos residual vectors, which can be expressed as
[12], [13], [17], [18], [19], [20], [21], [22], [23]

||rk||2 = ||Avi − λTi
vi||2·|(VTk

)ki|−1

||sk||2 =
∣∣∣∣ATwi − λTi

wi

∣∣∣∣
2
·
∣∣∣(V−1

Tk

)T
ki

∣∣∣−1

, (8)

where i = 1, . . . , k. The norms of the Lanczos residual vectors
make it possible to estimate the proximity of the Ritz values
and vectors to the eigenvalues and eigenvectors of the original
matrix A. They detect when the subspaces become invariant as
a result of the Ritz subspaces becoming invariant; this is the case
when rk = 0 or sk = 0.

In exact arithmetic, the non-Hermitian Lanczos method al-
lows the tridiagonal matrix Tk to be computed with a fast
convergence rate applying the following well-known algorithm
for k = 1 to m (with m < n), which starts from arbitrary initial

vectors p1 and q1 [13]:

Tk = PT
kAQk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 γ1 0 . . . 0

β1 α2
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . γk−1

0 . . . 0 βk−1 αk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

αk = pT
kAqk, p

T
1 q1 �= 0

rk = (A− αkI)qk − γk−1qk−1, γ0q0 = 0

sk = (A− αkI)
Tpk − βk−1pk−1, β0 p0 = 0

qk+1 = rk / βk (βk = ||rk||2)
pk+1 = sk / γk

(
γk = sTk rk / βk

)
. (9)

Unfortunately, the non-Hermitian Lanczos method can suffer
from the loss of biorthogonality of the Lanczos vectors due to
finite-precision calculations (roundoff error), which can lead
to inaccurate Ritz values and vectors. This can be avoided
using an alternative approach of the non-Hermitian Lanczos
method called the non-Hermitian Lanczos method with full
re-biorthogonalisation [12], [13]. This approach orthogonalises
each newly computed Lanczos vector against all of its prede-
cessors instead of just against the previous vector, helping to
maintain biorthogonality and reducing accumulation errors. The
method calculates the Krylov subspace vectors Ak−1q1 and
Ak−1p1 at any iteration k, and the Gram-Schmidt orthogonali-
sation process is subsequently applied to these vectors to make
them orthogonal to the previous Lanczos vectors (i.e., qk w.r.t.
qk−1 and pk w.r.t. pk−1):

αk = pT
kAqk, rk = Aqk, sk = ATpk, p

T
1 q1 �= 0

rk = rk −
k−1∑
i=1

qi

(
pT
i rk

)
pT
i qi

= rk −
k−1∑
i=1

qi

(
pT
i rk

)

sk = sk −
k−1∑
i=1

pi

(
qT
i sk
)

qT
i pi

= sk −
k−1∑
i=1

pi

(
qT
i sk
)

qk+1 = rk / βk (βk = ||rk||2)
pk+1 = sk / γk

(
γk = sTk rk / βk

)
. (10)

It is often recommended to apply the Gram-Schmidt process
twice to ensure the biorthogonality of the Krylov subspace
vectors [12], [13]. It must be noted that the algorithm (10) will be
applied at each frequency (i.e., A = YB,f ) over the frequency
range studied by RMA (see Section IV).

According to (8), an algorithm termination (or stopping cri-
terion) based on the subspaces invariance could be defined by
using the norms of the Lanczos residual vectors [12], [13], [17],
[18], [19], [20], [21], [22], [23]. However, the entire subspaces
invariance can be an extremely demanding criterion. For this
reason, as the objective is to find the extreme modulus eigenval-
ues of A, a stopping criterion based on them, such as (4) [15],



292 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 40, NO. 1, FEBRUARY 2025

TABLE I
NON-HERMITIAN LANCZOS ALGORITHM WITH FULL

RE-BIORTHOGONALISATION

is finally applied, i.e.,

ε(k) =

∣∣σ(k) − σ(k−1)
∣∣∣∣σ(k−1)

∣∣ < Σ, (11)

whereΣ (e.g.,Σ = 10−10) is the tolerance set to define when the
algorithm stops, and σ are the Ritz values calculated at each it-
eration. Additionally, a maximum number of Lanczos iterations
mmx (where always mmx < n) is selected for the construction
and sizing of the Krylov subspace to avoid unnecessary iterations
in case of convergence problems of the Lanczos method.

Table I summarises the non-Hermitian Lanczos algorithm
with full re-biorthogonalisation. Two final recommendations
are given to improve computational efficiency of the algorithm
in Table I. First, the use of restart techniques [13], [21], [22],
particularly when dealing with large-scale eigenvalue problems.
This allows better memory management and adaptability to spe-
cific eigenvalue clusters. Second, the use of the shift-and-invert
transformation, which consists of defining the eigenproblem as
(A− d·I)−1x = ρx, where ρ = 1 / (λ − d). This transforma-
tion can significantly improve the convergence rate, making the
algorithm more efficient for computing eigenvalues with specific
properties, such as the smallest modulus eigenvalues.

C. Suitability of the Non-Hermitian Lanczos Method

This Subsection aims to answer the following question: Why
is it better to use the non-Hermitian Lanczos method instead
of other methods? Several methods exist in the literature for
solving eigenproblems (e.g., the QR method, Jacobi method,
PI method, Lanczos method, and Arnoldi method) [12], [13],

[17], [18], [19], [20], [21], [22], [23], [24], [25], [26]. The most
suitable ones for RMA studies of large transmission grids are
the PI, non-Hermitian Lanczos, and Arnoldi methods.

The convergence of the PI method is geometric [13], i.e.,
the modulus of the difference between the true and the com-
puted extreme modulus eigenvalues decreases geometrically at
each iteration with the ratio of the second to the first extreme
modulus eigenvalues (see Section II-B). Let C(k) be the upper
bound for the modulus of the above difference. Regarding the
Lanczos method, let D(k) be the upper bound for the modulus
of the same difference. It is verified that D(k) < C(k) [13],
i.e., at each iteration k, the estimates of the extreme modulus
eigenvalues obtained by the Lanczos method are better than
those obtained by the PI method, leading to faster convergence.
This is because the Lanczos method computes the associated
extreme modulus eigenpairs at each iteration k considering all
previously calculated vectors (see Section III-B), whereas the
PI method considers only the previously calculated vector (see
Section II-B).

Moreover, the non-Hermitian Lanczos method is an iterative
algorithm that computes a few selected eigenvalues and eigen-
vectors of a large sparse matrix. It does not exploit matrix spar-
sity directly but the inherent characteristics of sparse matrices,
such as more efficient matrix-vector multiplications, reduced
memory requirements and selective computation, making the
Lanczos method a practical and effective approach for eigen-
value computation in sparse settings. The leverage of matrix
sparsity by this method can be summarised in the following
three aspects [26]:
� Efficient matrix-vector multiplications: It is widely known

that matrix-vector multiplications involving sparse matri-
ces can be performed more efficiently than those involving
dense matrices. This is crucial in the Lanczos method
because it repeatedly multiplies the matrix with a vector
during the iteration process. Sparsity allows faster compu-
tation and reduces memory requirements.

� Reduction of storage requirements: Since the tridiagonal
matrix (9) generated by the Lanczos method is much
smaller than the original matrix, storage requirements are
significantly reduced. This is especially beneficial when
dealing with large sparse matrices, as the algorithm can
handle matrices that might be infeasible to store explicitly.

� Selective computation of eigenvalues: The selective com-
putation of eigenvalues performed by the Lanczos method
requires less overall computational cost than the com-
putation of all eigenvalues. The sparsity of the matrix
can help identify the desired eigenvalues more efficiently
since the Lanczos process tends to focus on the dominant
components of the matrix, which are often associated with
non-zero entries.

The Arnoldi method is the most popular Krylov subspace
method for solving non-Hermitian eigenproblems of large,
sparse matrices [18], [22]. However, comparative studies be-
tween the Arnoldi method and the non-Hermitian Lanczos
method do not favour either method, and the choice between the
two methods is at the discretion of the user [20], who is guided by
their advantages and disadvantages, as well as the characteristics
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Fig. 3. Flowchart of L_RMA.

of the studied matrix. The non-Hermitian Lanczos method offers
several advantages over the Arnoldi method that enhance RMA
studies [18], [21]:
� High accuracy: Concerning the approximation of eigen-

values, it can be stated from [18] that the non-Hermitian
Lanczos method is more accurate than the Arnoldi method.

� Lower computational memory requirements: A compari-
son in [21] between different algorithms for non-Hermitian
matrix eigenproblems concludes that the non-Hermitian
Lanczos method requires less computational memory than
other methods (including the Arnoldi method) for the same
workload.

� Ability to obtain both the left and right eigenvectors at the
end of the iteration process: This is a significant advantage
for RMA studies.

IV. LANCZOS METHOD-BASED RESONANCE MODE ANALYSIS

The usefulness of r_RMA is compromised when large multi-
terminal transmission grids with a high number of eigenvalues
must be studied [11]. In this case, the non-Hermitian Lanczos
method is a powerful tool to use in RMA to investigate this
type of grids characterised by large non-Hermitian admittance
matrices YB,f . Moreover, as the grid grows, these matrices
become sparse (i.e., most of their coefficients are zero), enabling
the use of sparse matrix techniques [29], [30]. Therefore, for
large multi-terminal transmission grids with sparse admittance
matrices, L_RMA, which applies the non-Hermitian Lanczos
method with full re-biorthogonalisation in the RMA (see Sec-
tion III-B), is strongly recommended.

Fig. 3 shows the L_RMA flowchart. L_RMA involves setting
A = YB,f at every frequency f over the frequency range, and the
non-Hermitian Lanczos method with full re-biorthogonalisation
(see Table I) can find an approximation at each frequency of
the smallest modulus eigenvalue λY j,f = λn,f of YB,f and the
corresponding left and right unit eigenvectors Lj,f and Rj,f ,
respectively. Based on this eigen-triplet (Lj,f , λY j,f ,Rj,f ), the
resonance modal impedance of ZB,f is computed as Zmj,f =
1/λY j,f , and the associated left and right unit eigenvectors co-
incide with Lj,f and Rj,f . Hence, L_RMA allows the evolution
envelope of the moduli of all modal impedances Zmj,f of ZB,f

over the entire frequency range to be calculated, known as |Zcm|
(5).

In order to apply the non-Hermitian Lanczos method in
L_RMA, the following must be considered:
� In L_RMA, the non-Hermitian Lanczos method algorithm

computes eigenpairs of Tk at every frequency over the
frequency range, which converge to the Ritz values and
vectors approximations (wi,f , μi,f ,vi,f ), i = 1, . . . , k.
Thus, RMA requires only the smallest modulus eigenvalue
λn,f and its eigenvectors wLn,f and vRn,f of YB,f ,

λn,f = μk,f , wLn,f = wk,f , vRn,f = vk,f , (12)

where (wk,f , μk,f ,vk,f ) is the eigen-triplet associated
with the Ritz value of smallest modulus. Consequently,
the left and right unit eigenvectors will be Lj,f = wLn,f

and Rj,f = vRn,f , respectively.
� The p and q vectors of the Lanczos algorithm must al-

ways satisfy the orthogonality condition, i.e., pT
k qk = 0.

This need not be the case for the algorithm’s initialisation
vectors, i.e., pT

1 q1 �= 0. As with the initialisation for the
PI-based method in Section II-B, the left and right eigen-
vectors at the previous frequency are good starting vectors
p1 andq1, respectively, while the starting vectors at the first
frequency are chosen as p1 = q1 = [1 · · · 1]Tnx1 [13],
[23], i.e.,

p1f(0) = q1f(0) =
z1

||z1||2
, z1 = [1 · · · 1]nx1,

p1f �=f(0) = Lj, f−Δf , q1f �= f (0) = Rj, f−Δf . (13)

� The use of the shift-inverted transformation means that
matrix A in Table I must be defined as follows: A =
(YB,f − d·I)−1. Consequently, the eigenvalue ofA in this
case is λn,f = 1 / μk,f + d, while the eigenvectors remain
unchanged; that is, they are the same as the eigenvectors of
YB,f . Setting d as the eigenvalue obtained at the previous
frequency is a good approximation, while d = 0 for the
first frequency, i.e.,

df(0) = 0, df �= f (0) = λn, f−Δf . (14)

In Section VI, it is numerically verified that L_RMA requires
less computational time than r_RMA for large, sparse admit-
tance matrix scenarios without loss of accuracy.

A numerical example of the non-Hermitian Lanczos algo-
rithm with full re-biorthogonalisation (see Table I) application
to the admittance matrix of IEEE 3-bus test power system at
100 Hz is described step by step at the end of the paper (see
Appendix section).

V. RESONANCE MODE ANALYSIS-BASED METHODOLOGY

An RMA-based methodology that incorporates both r_RMA
and L_RMA approaches is proposed. It should be noted that
these approaches can be applied to assess resonances and sta-
bility issues across any poorly damped frequency range, as
such scenarios typically result in singularities in the admittance
matrix YB,f and peak values of the ZB,f components (1) at res-
onance frequencies [7]. Moreover, since the above approaches
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Fig. 4. Flowchart of RMA-based methodology.

are based on the construction of the admittance matrix, they can
be applied regardless of the VSC model and are suitable for both
synchronous and harmonic frequency ranges. The integration
of black-box models for transmission grid components without
analytical models in the methodology is also described.

A. Description of the Methodology

The flowchart of an RMA-based methodology for studying
resonances in transmission grids is presented in Fig. 4, incorpo-
rating both r_RMA (see basics in Section II-B and flowchart in
Fig. 2) and L_RMA (see basics in Section IV and flowchart
in Fig. 3) approaches. It should be noted that the proposed
RMA-based methodology combines these two approaches ap-
propriately based on the results obtained in Section VI, where it
is numerically verified that L_RMA requires less computational
time than r_RMA for large, sparse admittance matrix scenarios,
while r_RMA remains the most efficient approach for small
transmission grids.

Thus, two different paths (r_RMA or L_RMA) based on the
sparsity ratio of thenxngrid admittance matrixYB are proposed
for RMA studies [27],

sp(%) = 100
nz

n2
, (15)

where nz = n2 − n− 2nr is the total number of zero elements
within YB, and nr is the number of branches in the grid that
connect two buses other than the reference bus. If sp > sp_lim,
then the sparsity of YB recommends using L_RMA; otherwise,
r_RMA is the better choice. The numerical study in Section VI
concludes that setting sp_lim to 98% is reasonable.

Sparsity ratio, sp, is highly related to grid size. Large trans-
mission grids with approximately more than 200 buses typically
have an admittance matrix with sparsity as high as 97% because
of the limited connections between buses and the large number
of zero elements in the admittance matrix [28].

It should be noted that, according to the study performed in
Section VI-A2), f_RMA might be a better option than r_RMA
in the flowchart of the RMA-based methodology (see Fig. 4),
with the same scope of applicability as that of r_RMA compared
to that of L_RMA for resonance studies in transmission grids.

For enhanced reader understanding of the specific application
process of the RMA-based methodology regarding the path of

Fig. 5. Flowchart of the admittance matrix calculation.

the L_RMA approach in the flowchart in Fig. 4, it is strongly rec-
ommended to analyse in detail the numerical example presented
at the end of Section IV.

B. Integration of Black-Box Models

Often, the white-box models of specific transmission
grid components, such as certain power electronics-based
components and inverter-based resources, are unavailable. In-
stead, their impedance/admittance frequency profiles are typi-
cally provided by manufacturers or obtained through measure-
ments in the form of black-box models. In such scenarios, these
black-box models can be integrated into the calculation of the
admittance matrix YB,f at each frequency (1). Subsequently,
the RMA-based methodology can be applied to this admittance
matrix to investigate resonances.

The flowchart in Fig. 5 outlines the procedure for comput-
ing the admittance matrix using both white-box and black-box
models of the transmission grid components, thereby bridging
the gap between these two modelling approaches in resonance
analyses. It is important to note that discretising the black-box
models into smaller frequency intervals is essential to avoid
overlooking critical regions of the impedance/admittance fre-
quency plots, as this could result in inaccurate characterisation
of resonance frequencies.

VI. APPLICATION

This Section analyses and compares the four RMA-based
approaches presented in the paper (RMA, r_RMA, f_RMA, and
L_RMA) using ten IEEE test power systems (IEEE 3− [31], 5−
[32], 9− [33], 14− [34], 24− [35], 30− [36], 39− [37], 57−
[38], 118− [39], and 300− [40] bus) and seven synthetic test
power systems (Central Illinois 200− [41], South Carolina 500−
[42], Texas 2k− [43], Texas 7k− [44], East Coast USA 10k−
[45], North Central USA 25k − [45] and Eastern USA 70k−
[45] bus). First, the accuracies of r_RMA, f_RMA, and L_RMA
are validated by MATSIM frequency scans of the IEEE 5− and
14− bus test power systems. After validation, the convergence
times of the four RMA-based approaches are compared for all
the test power systems and their accuracies are checked with
the 39−, 57− and 118− bus test power systems. Second, the
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application of the PFs obtained by L_RMA is illustrated by
MATSIM numerical simulations of the IEEE 5−bus test power
system. Finally, a small-signal stability study of the modified
IEEE 118−bus test power system is performed by L_RMA. The
RMA algorithms apply a fixed frequency step of 1 Hz during the
simulations. A variable frequency step could be used to avoid
calculations associated with eigenvalue conflict frequencies and
focus only on obtaining accurate resonance frequencies [15].
However, the choice of a smart variable frequency step is not
trivial and resonance frequencies might be skipped in large
multi-terminal transmission grids with multiple close resonance
frequencies. The applied tolerances for the numerical methods
used (i.e., PI method or non-Hermitian Lanczos method) are
Δ = 10−10, δ = 10−6 and Σ = 10−10, as previously proposed
in Sections II-B (see (4)) and III-B (see (11)). It is recommended
(as done in this study) to use sparsity techniques [29], [30],
especially in scenarios involving large admittance/impedance
matrices.

A. Accuracies and Convergence Times of the RMA-Based
Approaches

The accuracies and convergence times of the RMA-based
approaches are analysed in two different studies:

1) Comparison of the RMA-Based Approaches vs. MATSIM:
The IEEE 5− [32] and 14− [34] bus test power systems are used
to validate the accuracies of r_RMA, f_RMA, and L_RMA by
MATSIM simulation (see Fig. 6). It is observed that r_RMA,
f_RMA, and L_RMA assess the resonance phenomenon easily
because they summarise the frequency behaviour of the grid
using the critical mode impedance, thus avoiding the need to
study all the grid impedances. The resonance frequencies of
|Zcm| obtained by r_RMA, f_RMA, and L_RMA are compared
with the resonance frequencies of the driving point impedances
|Zbb| obtained by MATSIM simulation.

Accuracy is thoroughly investigated by comparing the
r_RMA, f_RMA, and L_RMA resonance frequencies with the
MATSIM resonance frequencies using the percentage of error
ζfr,i, i.e.,

ζfr,i = 100
| fr,MATSIM − fr,i|

fr,MATSIM
, i = a_RMA (a = r, f, L).

(16)

This error is assessed by studying the resonance frequencies
with a 0.001 Hz frequency step. The percentage of error ζfr,i
is below 0.01% (as labelled in Fig. 6), thus validating that
the r_RMA, f_RMA, and L_RMA results reveal the resonance
frequencies of the driving point impedances accurately.

2) Comparison Between the RMA-Based Approaches:
RMA, r_RMA, f_RMA, and L_RMA convergence times with
increased grid size and the sparsity ratio sp of the grid admittance
matrices are shown in Fig. 7. To calculate them, the average time
of a number of simulations of the ten IEEE and seven synthetic
test power systems over the 100 to 3000 Hz frequency range (1
Hz step size) was determined. It is worth noting that the times
displayed only correspond to the duration required to apply the
specific RMA-based approach. Therefore, the construction of

Fig. 6. Resonance assessment of the IEEE 5– (a) and IEEE 14– (b) bus test
power systems by MATSIM frequency scan, r_RMA, f_RMA, and L_RMA.

Fig. 7. Convergence times and sp as a function of the test power systems.

the grid admittance matrix is not considered at this stage. These
simulations were made using MATLAB/Simulink R2022b ver-
sion on a Windows 11 Pro 64-bit system featuring a 13th Gen
Intel CoreTM i9-13900K CPU with a clock speed of 3.00 GHz,
32 cores and x64 architecture. The system was also equipped
with 64 GB DDR5 5600MHz RAM, two SSD storage units
WD BLACK SN850X 2TB NVME M.2 2280, and a NVIDIA
GeForce RTX 4090 24GB VERTO GPU.

The results in Fig. 7 indicate that r_RMA and f_RMA are the
best approaches for sp values below 98%, while L_RMA is more
efficient than RMA and r_RMA when sp rises above 98%. Note
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that f_RMA always outperforms r_RMA, as extensively anal-
ysed in [16]. The high efficiency of L_RMA in studies with large,
sparse admittance matrices is especially confirmed in the cases
between the 2k−bus and 70k−bus grids. For example, L_RMA
is 97% and 96% faster than r_RMA and f_RMA, respectively,
for the Texas 2k−bus test power system with sp = 99.82%.
Furthermore, when analysing the East USA 70k−bus test case
with sp = 99.995%, a significant difference can be observed
(i.e., nearly 10 hours and 7.5 hours of computational time for
r_RMA and f_RMA, respectively, versus only 14 minutes for
L_RMA). It must be noted that the narrow distribution of critical
eigenvalues in large transmission grids also contributes to the
inefficiency of r_RMA compared to L_RMA. In such cases,
f_RMA is a novel alternative to overcome r_RMA inefficiency,
but it is also far less efficient than L_RMA. As discussed in
Section III-C, L_RMA offers better and faster convergence
than r_RMA and f_RMA. Considering the above RMA-based
approaches, a methodology to assess resonances in transmission
grids is proposed in Section V.

Fig. 8 compares the RMA, r_RMA, f_RMA, and L_RMA
accuracy results for the IEEE 39−, 57− and 118− bus test power
systems (only the resonance frequencies of the critical mode
impedance with the largest modulus are labelled). It is observed
that the results are identical. In order to check the accuracy nu-
merically, the moduli of the critical resonance modes at fr (i.e.,
|Zcm,fr |, or equivalently, (5) at fr) and the resonance frequencies
fr are analysed using the percentage of errors ζZcm,fr,i

and ζfr,i,
i.e.,

ζZcm,fr,i
= 100

∣∣|Zcm,fr |RMA − |Zcm,fr |i
∣∣

|Zcm,fr |RMA

ζfr,i = 100
| fr,RMA − fr,i|

fr,RMA
, i = a_RMA (a = r, f, L).

(17)

This error is assessed by studying the resonance frequen-
cies with a 0.001 Hz frequency step. The percentage of errors
ζZcm,fr,i

and ζfr,i is below 0.01%, as labelled in Fig. 8. The
same holds true for the remaining transmission grids.

B. Application of the PFs

The four RMA-based approaches provide PFs that charac-
terise the observability and excitability of the critical modes for
each bus of the grid. This means that buses with higher PFs have
a higher pollution level when harmonic currents are injected at
the resonance frequency of the critical mode (observability), and
the highest pollution level also occurs when harmonic currents
are injected into these buses (excitability).

As an example, Fig. 9(a) shows the PFs of the five critical
resonance modes of the IEEE 5−bus test power system (see
Fig. 6) obtained by L_RMA. These PFs reveal that the second
resonance frequency at 0.92 kHz is mostly influenced by bus 5,
and the fifth resonance frequency at 1.89 kHz is only influenced
by buses 3 and 4. The observability and excitability at the
resonance frequency of 0.92 kHz are validated in Fig. 9(b) and
(c) by MATSIM simulation. Fig. 9(b) shows the magnitude of
the voltages at all buses of the transmission grid when a 0.05 pu

Fig. 8. Resonance characterisation of the IEEE 39– (a), IEEE 57– (b) and
IEEE 118– (c) bus test power systems by RMA, r_RMA, f_RMA and L_RMA.

harmonic current at 0.92 kHz is injected into each bus. Fig. 9(c)
shows the time-domain waveforms of these voltages obtained
by MATSIM simulation. The highest excitability of bus 5 at
0.92 kHz can be observed because the maximum voltage occurs
when the current is injected into bus 5. Accordingly, the voltage
values decrease progressively when a current is injected into the
buses with lower PFs. Observability is demonstrated by the fact
that bus 5 consistently exhibits the most pronounced (observed)
voltage, regardless of the injection location. Moreover, the volt-
age values observed in the other buses are directly related to
the magnitude of the PFs. It is also numerically verified that
if harmonic currents are injected at frequencies other than the
resonance frequencies, the resulting values of harmonic voltages
are significantly lower than the values obtained in the example in
Fig. 9 (i.e., the risk of overvoltage is much lower when injecting
harmonic currents at non-resonance frequencies).
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Fig. 9. Harmonic power quality study in the IEEE 5-bus test power system:
(a) participation factors. (b) Influence of 0.92 kHz injected currents on voltages.
(c) Time domain simulation of the influence of 0.92 kHz currents injected into
bus 1 (left) and bus 5 (right) on voltages.

C. Small-Signal Stability Study

In this Subsection, small-signal converter-driven instabili-
ties [46] are analysed using the PMD stability criterion [7] to
demonstrate the application of L_RMA in power system stability
studies in large multi-terminal transmission grids. The PMD
stability criterion states that the grid is stable iff (see details in
[7])

mxcm,fr · Rcm,fr < 0(
mxcm,fr =

∂Xcm,fr

∂f

∣∣∣∣
f=fr

, j = 1, . . . , n ∀fr
)

(18)

where Rcm,fr and Xcm,fr are the real and imaginary parts of
the critical resonance modes Zcm,fr , respectively, and mxcm,fr

is the slope of Xcm,fr .
The application of L_RMA using the PMD stability criterion

is performed in the modified IEEE 118–bus test power system,

Fig. 10. Stability assessment of the modified IEEE 118-bus test power system
using the PMD stability criterion by L_RMA.

where five identical VSCs with the parameters proposed in [7]
are connected to buses 7, 23, 50, 79, and 101. In the scenario
under study, the real and imaginary parts of the power system
critical modes obtained by L_RMA in the frequency range from
0.1 to 3 kHz are analysed (see Fig. 10). These critical modes
have multiple resonance frequencies, and the power system is
predicted to be unstable. According to (18), this conclusion
arises from observing that the product of the slope of Xmj,1.01

and the real component of the impedance mode Rmj,1.01 of the
critical resonance mode at 1.01 kHz is greater than zero. The PFs
of the unstable critical resonance mode at 1.01 kHz reveal that
buses 7 and 117 have the most significant impact on this unstable
critical resonance mode. Consequently, the VSC connected to
bus 7 seems to be the primary contributor to the instability issue
(PFs results are omitted for brevity).

Comparing Figs. 10 to 8(c) reveals that the frequency response
remains largely consistent, although with noticeable influence
from the presence of VSCs, particularly on the resonance pat-
terns and their magnitudes. A clear example of this influence is
the increased resonance at 1.01 kHz, coinciding with the point
of instability.

Finally, the computational times for stability assessment
are obtained using the four RMA approaches: RMA required
54.27 s, r_RMA 12.82 s, f_RMA 9.54 s, and L_RMA 8.13 s.
Interestingly, unlike pure RMA computation, additional calcula-
tions to assess stability position L_RMA as the method with the
most efficient time performance. However, r_RMA, f_RMA,
and L_RMA times are quite similar, as also observed for the
IEEE 118−bus test power system case in Fig. 7. This is because
the sparsity of this grid is close to 98%, which is the limit of
application for r_RMA, f_RMA, and L_RMA. Additionally,
note that the times are slightly longer than those in Fig. 7 because
a complete stability analysis is conducted instead of focusing
only on resonances.
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TABLE II
NON-HERMITIAN LANCZOS ALGORITHM WITH FULL RE-BIORTHOGONALISATION APPLICATION TO THE ADMITTANCE MATRIX OF THE IEEE 3-BUS TEST POWER

SYSTEM AT 100 HZ
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VII. CONCLUSION

The paper presents an L_RMA approach for characterising
resonances and stability issues across any poorly damped fre-
quency range within large multi-terminal transmission grids. It
is based on the non-Hermitian Lanczos method, which improves
convergence time of PI-based methods for large multi-terminal
transmission grids with sparse admittance matrices while main-
taining accuracy. This approach can also be used to determine
PFs and study the impact of power system buses on resonances,
and for stability assessment in the presence of power electronics-
based components. The non-Hermitian Lanczos method is a
complex technique derived from the Krylov subspaces projec-
tion methods, and its application to RMA is not trivial. Inte-
grating RMA with the non-Hermitian Lanczos method in the
L_RMA approach posed several challenges. The performances
of the new approach (L_RMA) and of RMA, r_RMA and
f_RMA, are compared in ten IEEE and seven synthetic test
power systems. It is concluded that r_RMA and f_RMA are
generally the best options for small transmission grids, whereas
L_RMA is a successful approach for large transmission grids.
The sparsity ratio of the grid admittance matrix is proposed as a
criterion for distinguishing between small and large transmission
grids. Based on the results, an RMA-based methodology for
resonance studies is proposed. This methodology can determine
resonances efficiently, study the influence of grid buses on res-
onance using PFs, and assess small-signal stability by the PMD
stability criterion. It must be highlighted that the integration of
black-box models into the proposed methodology is feasible by
the frequency domain characterisation of the admittance matrix.
The studies in this paper are validated by MATSIM simulation.
In further research, it would be interesting to compare the
computational efforts of the Arnoldi and non-Hermitian Lanczos
methods in detail. However, this is out of the scope of this paper.

APPENDIX

A numerical example of the non-Hermitian Lanczos algo-
rithm with full re-biorthogonalisation (see Table I) application
to the admittance matrix of the IEEE 3-bus test power system at
100 Hz is described step by step in Table II. It should be noted
that only two iterations of the algorithm are required.
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