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Abstract: To reduce the negative impact of the power amplifier
(PA) nonlinear distortion caused by the orthogonal frequency
division multiplexing (OFDM) waveform with high peak-to-ave-
rage power ratio (PAPR) in integrated radar and communication
(RadCom) systems is studied, the channel estimation in passive
sensing scenarios. Adaptive channel estimation methods are
proposed based on different pilot patterns, considering nonli-
near distortion and channel sparsity. The proposed methods
achieve sparse channel results by manipulating the least squares
(LS) frequency-domain channel estimation results to preserve
the most significant taps. The decision-aided method is used to
optimize the sparse channel results to reduce the effect of non-
linear distortion. Numerical results show that the channel estima-
tion performance of the proposed methods is better than that of
the conventional methods under different pilot patterns. In addi-
tion, the bit error rate performance in communication and pas-
sive radar detection performance show that the proposed meth-
ods have good comprehensive performance.
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1. Introduction

In recent years, to alleviate the spectrum resource short-
age, spectrum sharing between radar and communication
has attracted significant attention from industry and
academia [1,2]. The integrated radar and communication
(RadCom) technology has great significance in civil
fields such as vehicle networking, low altitude monitor-
ing, and smart home [3].

Downlink signal sensing is further classified as active
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sensing and passive sensing modes, and this paper
focuses on passive sensing as an application scenario
[4,5]. In the active sensing scenario, the radar has fully
known the downlink signal. In the passive sensing sce-
nario, the radar only obtains limited information such as
the pilot data through the communication standard of the
transmitter. Passive radar, a pioneering technology of the
joint of radar and communication, realizes target detec-
tion and tracking by utilizing existing opportunistic illu-
minators. It has the advantages of spectrum saving and
security, however, its performance is affected by the illu-
minator [6]. And common opportunistic illuminators use
orthogonal frequency division multiplexing (OFDM)
technology [7].

The OFDM technology has the advantages of high
spectral efficiency and strong anti-multipath fading abi-
lity. However, the waveform’s dynamic range is large,
and the high peak-to-average power ratio (PAPR) leads to
the power amplifier (PA) working in the nonlinear region
[8]. In fact, high PAPR results in signal distortion that
affects channel estimation in passive radar reference sig-
nal reconstruction as well as communication channel esti-
mation and signal detection. However, reducing distor-
tion with power fallback reduces PA efficiency and
affects the operating range of the radiation source.

The nonlinear PA distortion based on receiver process-
ing mainly focuses on three aspects. The first aspect is the
theoretical analysis of communication systems affected
by the nonlinear PA distortion. Banelli et al. [9] specifi-
cally analysed the influence of nonlinear distortion on the
bit error rate (BER) of communication systems, and gave
the theoretical BER expression in the additive white
Gaussian noise (AWGN) channel. Zheng et al. [10]
pointed out that the PA distorts the pilot and data in the
digital video broadcasting for handheld (DVB-H) system,
and analysed the overall impact of the system. The sec-
ond aspect is the research on data distortion compensa-
tion assuming that the nonlinear PA distortion does not
affect channel estimation. The optimum and sub-opti-
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mum detector for OFDM signals with strong nonlinear
distortion was proposed in [11]. The third aspect is the
study on the distortion compensation considering the
degradation of channel estimation performance caused by
the nonlinear distortion. Wu et al. and Ma et al. [12,13]
proposed the decision-aided channel estimation method
under nonlinear distortion. Joint channel estimation and
detection schemes suitable for block pilot distribution
were studied [14]. To mitigate the effect of the nonlinear
distortion, some literature adopts data training based on
deep learning to achieve channel estimation and signal
detection [15—17].

The influence of nonlinear PA distortion on communi-
cation performance has attracted much attention in the
past, but the fact that the quality of reference signal
reconstruction in passive radar systems depends on chan-
nel estimation accuracy has been ignored [18]. Although
existing channel estimation methods provide guidance for
researchers, they ignore the two factors of nonlinear dis-
tortion and sparse time-domain channel. In the case of
strong nonlinear distortion, direct use of the traditional
least squares (LS) frequency-domain channel estimation
can result in poor channel estimation performance [12].
In [11,13], the proposed channel estimation methods pay
attention to nonlinear distortion but ignore the sparsity of
time-domain channels. In addition, the design of random
pilots to reduce the cost of pilots and alleviate the pollu-
tion of pilots has attracted much attention. In this case,
the traditional LS channel estimation method is no longer
applicable [19]. Channel estimation using compressed
sensing theory can achieve good results. However, it is
difficult to determine the channel sparsity or the iteration-
stopping condition of the compressed sensing algorithm.
Usually, the iteration stop threshold is empirical [20], or
it is assumed that the receiver knows some prior informa-
tion that is difficult to obtain in practice [21,22]. The
channel estimation method [21] assumes a known signal
to noise ratio (SNR). Similarly, the prior information is
channel sparsity, which may change due to non-integer
normalized path delay [22].

To solve the problem of channel estimation perfor-
mance degradation caused by strong nonlinear PA distor-
tion in the RadCom system for passive sensing, different
adaptive channel estimation methods are proposed
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according to different pilot patterns. The proposed me-
thods take both the PA distortion and sparse channels into
account. Specifically, inspired by [12,13], we adopt the
decision-aided method to reduce strong distortion accord-
ing to the PA model. The determination of channel spar-
sity in the time domain is based on the result of LS chan-
nel estimation, and the main contributions are as follows:

(1) When the pilot pattern is uniform, it is difficult to
determine the threshold for the most significant taps
(MST) in the time domain. Based on the estimation of the
maximum delay in the LS results, we get an effective
threshold value through the nonlinear distortion compen-
sation. Simulation results show that the proposed adap-
tive threshold channel estimation method is better than
the existing methods.

(i1) For the random pilot pattern, the adaptive sparsity
is got by comparing the channel noise with the valid
threshold and then completing the channel estimation
with decision-aided operation. Compared with the exist-
ing compressed sensing estimation methods with itera-
tive stopping thresholds based on empirical values, the
proposed adaptive sparsity method has a better overall
performance.

This paper is organized as follows. Section 2 describes
the system model considered, the PA model, and the tra-
ditional LS frequency-domain method involved in this
paper. In Section 3, adaptive channel estimation methods
considering both the PA distortion and sparse channels
are proposed according to different pilot patterns. The
results of channel estimates and corresponding communi-
cation and passive radar detection performance are shown
in Section 4. Finally, Section 5 concludes this paper with
potential future work.

2. System models

The RadCom system model for passive sensing scenarios
is shown in Fig. 1. We consider a multicarrier system
based on OFDM signal structure, and the PA causes the
nonlinear signal distortion. The communication receiver
restores the transmitted data based on the received signal,
and the passive radar detects the target using the dis-
torted signal, and the passive radar uses constant false
alarm rate (CFAR) detectors to detect the target based on
the distorted signal.

Channel
estimation

Channel
equalization

Passive radar

RadCom system for passive sensing scenarios
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2.1 Signal model

Assume that the OFDM system consists of N subcarriers,
in which X =[X(0),X(1),---,X(N-D]" is the fre-
quency-domain modulation symbol selected from the
multiple quadrature amplitude modulation (MQAM) con-
stellation. The time-domain signal is given as

1 © _iZHL(zfrg)
H=— X(k)e T , 0<t<T, 1)
0= 5 2 (

where T, and T, are the guard interval duration and the
useful part symbol duration, respectively. The corre-
sponding discrete form is as follows:

1 N-1 o
x(n)=—= ) X(k)e”~n, 0<n<N. )
w2

The cyclic prefix (CP) is added to the OFDM signal as
the protection interval to eliminate the interference
caused by multipath propagation. The baseband signal is
amplified by the radio frequency (RF) PA and transmit-
ted through the antenna. The structure of the CP-OFDM
waveform is shown in Fig. 2. The maximum multipath
delay T usually meets 7 < 7.
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Fig. 2 Structure of the CP-OFDM waveform

The most common memoryless PAs are soft envelope
limiters (SEL), traveling wave tube amplifiers (TWTA),
and solid-state PA (SSPA). The previously widely used
TWTA has been gradually replaced by the SSPA [23].
The SSPA model approaches the SEL property when the
smoothness parameter in SSPA approaches infinity.
This paper assumes that the signal generated by the modu-
lator passes through the SEL, which is a simplified but
useful model of the PA. Thus, the output signal of the PA
[24] is

x(m), |x(n)| < Ag

) 3
A, |x(n)| > Ag @

glx(m]= {

where A, is the PA input saturation amplitude, and 6(n)

is the phase of x(n). Although most physical devices do

not exhibit this piecewise linear behavior exactly, the

SEL is a good model after linearizing the nonlinear ele-
ments with suitable pre-distortion [25].

Then, the kth subcarrier output in the frequency-

domain can be written as
Yk)=[XKk) +Ck)IHK) +wk), 0<k<N (4

where Y=[Y(0),Y(1),---,Y(N-=1D]" e C¥! is the fre-
quency-domain signal vector from the receiver. Similarly,
C € C™! is the nonlinear distortion vector caused by the
PA, H € C™! is the frequency-domain channel impulse
response (CIR) vector, and w € C¥! is the AWGN vec-
tor.

Consider that P pilots are used to estimate sparse chan-
nels with an index set Ip = {ko,k;, -+ ,kp_,}. The received
pilot vector Y, = [Y (ky),Y (k;),---,Y (kp_)]" € C™! from
the communication receiver or the passive radar refe-
rence channel is

sz(Xp+Cp)Hp+wP=DpHp +WP (5)

where Xp = diag[X (ky),X (k;),---,X (kp_;)] is the diago-
standard pilots, Cp =diag[C (k;),
C(ky),-++,C(kp_;)] is the nonlinear distortion vector in
the pilots, and Dy € C™ is the diagonal matrix of trans-
mitted distorted pilots. Hy € C?! is the CIR in pilots, and
wp € C™! is the AWGN in the pilots. The complete fre-
quency-domain CIR H € C¥! is obtained by interpolat-
ing based on Hp.

nal matrix of

2.2 Traditional channel estimation method

Traditional channel estimate without considering pilot
distortion is derived from the LS frequency-domain
method

A -1
= (X"X) X"Yp = X, 'Yp. (6)

For clarity, the CIR at the kth subcarrier belonging to
the pilots can be presented as
Yp(k)
Xp(k)’

Hy(k) = ke, @)
the complete CIR H, s € C¥*! is then obtained by interpo-
lation.

Note that the frequency-domain CIR with the nonli-
near PA distortion is derived as

%k Yok

0= B+ a® ~ Do’

ke I. ®)

3. Proposed channel estimation methods

From (6), traditional LS frequency-domain channel esti-
mation ignores the effects of strong nonlinear distortion
and channel sparsity. In this section, inspired by the deci-
sion-aided mitigation of strong nonlinear distortion
[11,13] and preservation of the MST [20—22], we pro-
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pose corresponding channel estimation methods based on
different pilot patterns.

Assume that the maximum path delay is less than or
equal to the CP time L,, and the received pilot in (5) can
be rewritten as

YP = DPFPXLCph +Wwp = Ah +Wwp (9)

where b = [h(0),h(1),-- ,h(Le, — 1)]T is the time-domain
sparse channel vector, Fp,; is a discrete Fourier trans-
form (DFT) submatrix, and A is the PX L, measure-
ment matrix. Specifically, Fp,; is obtained by selecting
the rows of the DFT matrix with the index set
I = {ko, ki, ,kp_,} and the first L, columns. Fp,,  is
presented as

W}/:].Jo W}kvol W;G(LC"_I)
Wwho whit qu(LCp—])

Fpa, = ! N N (10)
Wf,’”‘o W[I\c],,,l 1 Wlkvp,. (Lep-1)

where W/ = e ™V ke l,, 0< g < L.
3.1 Uniform pilot pattern

Fig. 3 shows the uniform pilot pattern.

Subcarrier
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|:| : Pilot; |:| : Data.

Fig.3 Uniform pilot pattern

To get the true channel state information, existing radi-
ation sources usually insert enough pilots to obtain more
accurate results. Thus, L, < P <N can be assumed with-
out loss of generality, the LS solution of the time-domain
CIR in (9) is

his = (A"A) A"Y, = h+h, (11)

where h, is the channel estimation noise vector.

D, and h, are the two main factors that affect the
channel estimation results under strong nonlinear PA dis-
tortion. The channel estimation method proposed is as
follows:

(i) Get the sparse channel in the time domain by adap-
tive threshold.

The initial value of the effective channel threshold 7,

[26] is calculated as
T, = /2InL,0, (12)

where o, is the standard deviation of the channel estima-
tion noise vector h,. Let Dp=X,. The value of o’
depends on the LS frequency-domain channel estimation
results of (8), which is derived as

N-1

> IDFTy(fLs)| (13)

n=Le,

1
N-L,

ol =

where IDFTy(-) represents the inverse DFT operation of
the N point.

Let Dp = X5, take it into (11) to get the initial CIR esti-
mate

hi=(A"4) A", =
-1

|(XoFrs,) (XeFrs, )| (XeFpa,)' Yo (14)

The decision rule for retaining the MST can be
improved as

h(), |h@|>T,

) 15
0, |h)| < Ty >

yop (D) = {
where 0 </ < L.
(i1) Reduce the effect of strong nonlinear PA distortion
by decision-aided operation.
Simulate the distorted pilot after the PA distorts the
signal. The initial signal estimation can be obtained by
making a hard decision based on the constellation

X= HardDecision( Y ) (16)

prop

where H,,, € C™' is the complete frequency-domain
CIR obtained by the proposed method, which is interpo-
lated from the frequency-domain CIR F PchplAtpmp at the
pilot. Perform PA distortion operation, then we have

d = g[IDFT, (%)). (17)

Perform a DFT operation on d to obtain D, and then
get the distorted pilots D,. The decision-aided (DA)
operation is summarized in Algorithm 1.

Algorithm 1 DA algorithm

~

Input: Y, Fpy,, Byop, 8I-1, Ip
Output: Dy

Steps:

1: Initial signal estimation

X = HardDecision[Y/ H,,,].




LIU Yan et al.: Channel estimation in integrated radar and communication systems with power amplifier distortion 5

2: PA distortion d =& [IDFTN (X)]
3: Distorted pilots D, = [DFTN (3)] L

(iii) Set Dy = Dy, and repeat (i) to get the final chan-
nel estimation result /.

Reserving the MST is directly affected by threshold Ty,
determined by the channel noise vector k. Since the fre-
quency-domain LS channel estimation performance in the
uniform pilot pattern is better than that in other pilot
patterns, the effective threshold is calculated based on
LS results. At the same time, according to the signal
detection results, the distorted pilot is obtained by simu-
lating the transmitted signal through the PA distortion
operation. To reduce the influence of nonlinear distortion,
it is necessary to use distorted pilots for channel estima-
tion.

3.2 Random pilot pattern

The existing pilot distribution research focuses on the
random pilot design to improve the data transmission rate
[27]. The random pilot pattern is shown in Fig. 4. The
restricted isometry property (RIP) of the compressed
sensing theory indicates that the measurement using a
random matrix guarantees a high probability of sparse
recovery, that is, the randomly generated pilot mode is
statistically optimal. Uniform pilot distribution is optimal
only for least squares channel estimation methods [19].

Subcarrier

Symbol
|:| : Pilot; |:| : Data.

Fig. 4 Random pilot pattern

With P <L, and the random pilot pattern, we must
explore the sparse characteristics of wireless multipath
channels and use sparse recovery instead of the time-
domain LS. Details of the proposed method are intro-
duced.

(i) Sparse channel estimation is obtained based on
adaptive sparsity.

The LS frequency-domain channel estimation and the
effective channel threshold T, are calculated by (8) and
(12), respectively. The LS frequency-domain estimation
result is compared with the threshold to obtain the time-
domain channel sparsity K according to the following

rules:

N

k=" f[IDFT,(f.s)| (18)

n=1
where the function f[-] is defined as
L|IDFTy(Hys)| > T,
0,[IDFTy(H,s)| < Ty
The detailed procedure for the orthogonal matching

pursuit method with adaptive sparsity (AS-OMP) is sum-
marized in Algorithm 2.

f[IDFTy ()] = { (19)

Algorithm 2 AS-OMP algorithm

Input: Y, A, K

Output: ft,,,

Steps:

1: Initialization
® Residual vector r, =Y.
o Index set Ay = @.
e Channel vector i = 0=!

2:For k=1,2,---,K do
Find the index [ = arg f:%?-),(u |<" 1<—I7a_1'>|-
Update the index set Ak‘zyAk_]pU Iy. ]
Compute the path gain b, = (AiAAk) Allr .
Update the residual vector r;, = ri_; — Ay, 0,.
End for
Reconstruct channel vector 4 =0,

3: Output izprop =h.

(i) DA reduces the effect of strong nonlinear PA dis-
tortion. Refer to Algorithm 1 for details.

(iii) Set D, = D, and repeat (i) to get the final chan-
nel estimation result /2, .

For a given delay, sampling by a non-integer multiple
and subsequent leakage effects increase channel sparsity.
Due to the poor performance of LS in the frequency
domain in random pilot patterns, the threshold calculated
by (12) is not accurate enough. Therefore, the sparsity in
our proposed AS-OMP algorithm depends on the relative
value of the LS result compared with the threshold. Simi-
lar to the method proposed in the uniform pilot pattern,
the distorted pilot is still obtained by using the DA algo-
rithm, and the distorted pilot is used to further improve
the channel estimation performance.

4. Simulation results

In this section, the normalized mean square error (NMSE)
of the CIR is defined as

_—22, (20)
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where H, and H, represent the real and the estimated
channel state information (CSI) in the frequency domain,
respectively. The NMSE and the BER are obtained by
averaging over 100 independent Monte Carlo runs. The
system is equipped with 512 subcarriers, 66.67 ps useful
symbol duration, equal bandwidth sampling, 128 CP
length, data, and pilot modulation of 16 quadrature ampli-
tude modulation (16QAM) and 4QAM respectively. The
average signal power is 1, the SEL model is used for the
PA, and the passive radar coherent integration time is
0.25 s. The radar reference channel and communication
channel are extended typical urban (ETU) models [28].
OFDM symbols with pilots appear every three OFDM
symbols, of which 128 pilots are evenly distributed or
100 pilots are randomly distributed.

The system’s overall performance is evaluated accord-
ing to the NMSE, the BER, and the range-Doppler (RD)
map of the target at different PA saturation amplitudes.
The selection of saturation amplitude depends on the PA
model. The passive radar detection is demonstrated in the
scene where the reference channel’s SNR is 40 dB, the
surveillance channel’s SNR is 35 dB, and other parame-
ters are shown in Table 1.

Table 1 Surveillance channel parameters

Parameter Multipath Target
Delay/s [0, 0.1, 0.25, 0.38]x10~® (15,38, 58]/ f;
Gain/dB [-5.5,-7.8,-8.2, -11.9] [-50, —60, —45]

Doppler/Hz [0, 0,0, 0] [80, 160, —40]

In the data results, the LS frequency-domain method
obtained by (7) without considering pilot distortion is
called “traditional LS (standard pilots)”. The result
obtained by (8) with known distorted pilots is called “tra-
ditional LS (distorted pilots)”. The operation of using the
DA algorithm to reduce the nonlinear distortion for the
channel result of [29] is called the “method in [29] + DA”™.
In addition, we also refer to the methods in [12] and [20].

4.1 Performance in uniform pilot pattern

In Fig. 5 and Fig. 6, the NMSE and the BER perfor-
mance of methods using the DA algorithm to assist chan-
nel estimation are better than those without considering
pilot distortion. The traditional LS method has the worst
channel estimation performance because it ignores the
pilot distortion and the sparseness of the channel. Assum-
ing the distorted pilots are known to the receiver, the per-
formance of the LS is still limited because the MST is not
preserved. The proposed method performs better than
those methods in [12,29], thanks to the more efficient
time domain channel thresholds.

According to the input and output characteristics of the
PA, the lower the saturation level, the greater the distor-

tion of the PA [8]. It can be seen from Fig. 5 that the
NMSE performance gap of the proposed method before
and after using the DA algorithm to compensate for pilot
distortion increases as the saturation amplitude decreases.
The trend of the NMSE performance gap between the
standard pilot and the distorted pilot used by the LS
method is similar to that of the proposed method.

10°
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(a) 4 dB PA saturation amplitude
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10 I 1 1 " )
10 15 20 25 30 35 40
SNR/dB
(b) 5 dB PA saturation amplitude
10°

107 gy

10 ) y y * *
10 15 20 25 30 35 40
SNR/dB
(c) 6 dB PA saturation amplitude

: Traditional LS (standard pilots);
—— : Traditional LS (distorted pilots);
—a&— : Method in [29]+DA; —s— : Method in [12];
—— : Proposed method; —# - : Proposed method (without DA).

Fig. §
thods with the uniform pilot pattern

NMSE performance of different channel estimation me-
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—&— : Method in [29]+DA; —s— : Method in [12];
—a— : Perfect CSI; —— : Proposed method;
—% - : Proposed method (without DA).
Fig. 6 BER performance of different channel estimation methods
with the uniform pilot pattern

According to the BER performance in Fig. 6, since
the BER performance of the system is also related
to the modulation constellation and the SNR, the channel
obtained by LS method
(standard pilots) and LS method (distorted pilots) at low
saturation amplitude is limited, resulting in the overall
poor BER performance at 4 dB saturation amplitude.
By analyzing the BER performance curve difference

estimation performance

of the proposed method, the lower saturation ampli-
tude leads to greater pilot signal distortion, increasing
the error of the proposed method in acquiring sparse
channels in the first step. Therefore, the BER perfor-
mance gap before and after the proposed method uses
the DA algorithm to compensate for pilot distortion
also increases with the decrease of the PA saturation
amplitude. Due to the strong nonlinear distortion results
in greater channel noise, and this indicates that strong
nonlinear distortion cannot be ignored in channel estima-
tion.

The passive radar parameter settings are shown in
Table 1. The reference signals reconstructed by different
methods are used to suppress clutter in the surveillance
channel under uniform pilot frequency. The RD map gen-
erated by two-dimensional matched filtering is shown in
Fig. 7.

plitude/dB

Am
|

N

S

S

plitude/dB

Am
|
™)
S
S 5

(b) Method in [12]



8 Journal of Systems Engineering and Electronics Vol. PP, No. 99, June 2024

plitude/dB

ﬁ&m
3]
(=]
(=)~
y

(c) Proposed method

Fig. 7 RD map of different channel estimation methods with the
uniform pilot pattern (4 dB PA saturation amplitude)

Assuming that the perfect CSI is known, the ideal
transmission signal can be obtained by reconstructing the
reference signal, the clutter suppression processing effect
is the best, and three targets with different strengths in the
far and near can be displayed. Because the channel esti-
mation accuracy of the method in [12] is not as good as
that of the proposed method, the purity of the recon-
structed reference signal is low, and the corresponding
near range dimensional RD map has more clutter
residues, which will affect the near range target detection
with lower energy. Because the channel estimation per-
formance of the proposed method is better than that of the
method in [12], the clutter suppression effect is better,
and the target detection performance on the RD spectrum
is closer to the detection performance corresponding to
the perfect CSI.

4.2 Performance in random pilot pattern

From Fig. 8 and Fig. 9, the LS methods and method in
[12] have similar poor NMSE and BER performance. The
empirical value set by the method in [20] is not universal
as the stopping iteration condition of the OMP, resulting
in its performance instability at low SNR and strong non-
linear distortion. The NMSE and BER performance of the
proposed method is better than other methods. With the
increase of distortion, the performance difference
between the proposed method before and after using the
DA algorithm is greater.

10°

10 15 20 25 30 35 40
SNR/dB
(a) 4 dB PA saturation amplitude

10°

10 15 20 25 30 35 40
SNR/dB
(b) 5 dB PA saturation amplitude

10 15 20 25 30 35 40
SNR/dB
(c) 6 dB PA saturation amplitude
: Traditional LS (standard pilots);

—— : Traditional LS (distorted pilots);

—a— : Method in [12];—— : Method in [20];

—— : Proposed method -+ - : Proposed method (without DA).
Fig. 8
thods with the random pilot pattern

NMSE performance of different channel estimation me-
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(a) 4 dB PA saturation amplitude

10 15 20 25 30 35 40
SNR/dB
(b) 5 dB PA saturation amplitude
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(c) 6 dB PA saturation amplitude

: Traditional LS (standard pilots);

—— : Traditional LS (distorted pilots);
—&— : Method in [12]; —— : Method in [20];
—=— : Perfect CSI; —— : Proposed method ;

- - : Proposed method (without DA).

Fig. 9 BER performance of different channel estimation methods

with the random pilot pattern

In Fig. 10, due to the reconstructed reference signal of
the proposed method is closer to the transmitted signal,
the clutter suppression effect is more obvious. The noise
base in the RD map of the proposed method is lower and
flatter than that of the method in [20], which makes it
easier to distinguish targets. In Fig. 10 (b), the second tar-
get has the lowest SNR and cannot be identified from the
noise base. Compared with Fig. 10 (a), the SNR loss of
targets in Fig. 10 (b) is smaller than that of the method in
[20], but it cannot be ignored. Because the random pilot
under the simulation parameters is not optimized, its
channel estimation performance is limited, resulting in a
significant loss of targets” SNR. In addition, the pilot
design and clutter suppression research can further
improve the detection performance, but these are beyond
our work [19,30].

Amplitude/dB

(a) Perfect CSI

Amplitude/dB

Amplitude/dB

(c) Proposed method

Fig. 10 RD map of different channel estimation methods with the
random pilot pattern (4 dB PA saturation amplitude)

5. Conclusions

In this paper, we propose channel estimation methods in
nonlinear distortion scenarios to mitigate the impact of
distortion on data transmission and target detection for
the RadCom system. The key insight is to jointly use pilot
distortion compensation and channel sparsity characteris-
tics, and take different effective MST reservation opera-
tions according to different pilot patterns to improve
channel estimation accuracy. Specifically, we use the LS
frequency-domain channel estimation results to obtain the
preliminary channel estimation results, and then reserve
the channel coefficients that exceed the effective thresh-
old to obtain the sparse channel results. Finally, we use
the PA model to compensate for the distortion of the sig-
nal to obtain the distortion compensation channel results.
The numerical results show that the proposed method has
higher channel estimation accuracy and better compre-
hensive performance than the conventional method.

It is difficult but meaningful to quantitatively analyze
the impact of the proposed scheme on radar detection per-
formance under different PA distortion models. There-
fore, our future work will focus on how to quantitatively
analyze the impact of PA distortion on radar detection
performance and design waveforms to reduce nonlinear
distortion.
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