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Abstract: To investigate the real-time mean orbital elements
(MOEs) estimation problem under the influence of state jumping
caused by non-fatal spacecraft collision or protective orbit trans-
fer, a modified augmented square-root unscented Kalman filter
(MASUKF) is proposed. The MASUKF is composed of sigma
points calculation, time update, modified state jumping detec-
tion, and measurement update. Compared with the filters used
in the existing literature on MOEs estimation, it has three main
characteristics. Firstly, the state vector is augmented from six to
nine by the added thrust acceleration terms, which makes the fil-
ter additionally give the state-jumping-thrust-acceleration esti-
mation. Secondly, the normalized innovation is used for state
jumping detection to set detection threshold concisely and make
the filter detect various state jumping with low latency. Thirdly,
when sate jumping is detected, the covariance matrix inflation
will be done, and then an extra time update process will be con-
ducted at this time instance before measurement update. In this
way, the relatively large estimation error at the detection moment
can significantly decrease. Finally, typical simulations are per-
formed to illustrated the effectiveness of the method.
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1. Introduction

With the surge in mega-constellations [1,2], researchers
pay more attention to autonomous control of satellites.
Compared with the satellite formation, the distance
between the satellite in the constellation is larger, thus it
is more advantageous to use the orbital averaging tech-
niques for the control law design to reduce the influence
of high-frequency variations and decrease fuel consump-
tion [3,4]. By using orbital averaging techniques, we can
derive the mean orbital element (MOEs) in which the
short-term oscillations are filtered out while the long-
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terms and the secular motions are kept.

Traditionally, MOEs are calculated in the ground sta-
tion, and will be subsequently sent to the satellite [5]. On
the contrary, for a mega-constellation with a large num-
ber of satellites, this kind of methods are hard to accom-
plish. Onboard MOEs estimation is a suitable solution to
this problem, using the sensors like global navigation
satellite system (GNSS) receiver to generate inputs [6].
Nowadays, there are mainly two types of methods avail-
able for onboard MOEs estimation. The first category cal-
culates MOEs analytically or semi-analytically, such as
the Kozai theory [7,8], the Brouwer sputnik theory [9],
the Liu-Lin method [10], or newer theories, including the
methods discussed in [11-15] to name only a few. These
methods can be called as the direct mapping (DM) me-
thods, and improve precision by dealing with intricacy
orbital dynamic models. However, their sensitivity to the
noise and the modeling error make it not the optimal
choice. The second type adopts filters [16—19], which can
reduce the influence of noise. Wang et al. [20,21] ana-
lyzed the performance of the unscented Kalman filter
(UKF) and the extended Kalman filter (EKF) on forma-
tion flying and investigated the study of computing the
differential MOEs using the square-root UKF (SRUKF).
Zhong et al. [22] derived the semi-analytical dynamics
for osculating orbital elements (OOEs) and MOEs. Then,
the spherical simplex SRUKF was used for onboard
MOE:s estimation based on that dynamics when the satel-
lite maneuver is precisely known. Li et al. [23] gave an
onboard MOEs estimation method for geostationary
satellites by mixing Jacobi matrix and UKF. The above
methods improve the accuracy of the estimation results
and are more promising for onboard MOEs estimation.

For the methods mentioned in [20-23], there is an
implicit assumption that the maneuvering thrust of the
satellite is known and error-free while orbiting. This
drawback restricts their application, because when state
jumping happens, the satellite usually cannot get the
abrupt disturbances that cause state jumping. Conse-
quently, the performance of these filtering methods will
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degrade, and may even diverge due to the mismatch
between the actual maneuver and the nominal model.
Detailly, during iteration of these methods, the propaga-
tion of the covariance and the Kalman gain matrix have
nothing to do with the residual and finally draw on con-
stant value as demonstrated in [24]. When state jumping
occurs, the residuals will increase. However, the covari-
ance and Kalman gain cannot respond to the rapid change
of MOEs, and then, the filter diverges. By reconstructing
the standard Kalman filter (KF) to cope with unknown
inputs, this phenomenon can be mitigated. For instance,
conducting state augmentation by adding the maneuver
acceleration with covariance matrix inflation. Similar
reconstructions are applied when tracking trajectory
[25-29] of unknown-maneuvering targets.

Motivated by the problem of estimating the MOEs of a
satellite with state-jumping, an MOEs estimator based on
the Savitzky-Golay filter with adaptive frame size,
maneuvering detector, and multimode switching mecha-
nism was proposed in [30]. Although that estimator can
identify state jumping, it cannot estimate the state-jump-
ing-thrust-acceleration and is less accurate during the
state jumping period. Thus, in this paper, we propose the
modified augmented square-root UKF (MASUKF) by
reconstructing the SRUKF in [22] to cope with the state
jumping and make up for the above-mentioned problems.
The MASUKEF is composed of the sigma points calcula-
tion, the time update, the state jumping detection, and the
measurement update. It has three main specific features.
Firstly, augmentation of the state makes the filter addi-
tionally give the state-jumping-thrust-acceleration estima-
tion. Secondly, the innovation is normalized and used for
state jumping detection. In this way, the thresholds for
state jumping detection can be set concisely and the filter
can detect various state jumping with low latency.
Thirdly, when sate jumping is detected, the covariance
matrix inflation will be done, and then the time update
process will be re-conducted at this time instance before
measurement update to reduce the large estimation error
at the detection moment.

The remainder of this paper is organized as follows.
Section 2 presents OOEs and theoretical MOEs of low
Earth orbit (LEO) satellites and gives the nonlinear mea-
surement and state equations. Section 3 derives the
MASUKF for MOEs estimation. Section 4 performs the
numerical simulations which compare MASUKEF,
ASUKF, SUKF, and DM method. The delay time of the
state jumping detection is also analyzed. Finally, conclu-
sions are drawn in Section 5.

2. Augmented state and measurement
equations

To establish the augmented state and measurement equa-

tions, the dynamics and measurement model for small
eccentricity LEO satellites are given in this section by
choosing  rational order terms according to
[7,9,22,31-33]. For the sake of simplicity, only J2 pertur-
bation and drag are taken into consideration. In analyti-
cal perturbation theory, the terms of perturbation can be
decomposed, including the secular, short-periodic, and
long-periodic terms. In this paper, the derivative of the
MOEs dynamics considers secular terms, long-periodic
terms, Gauss variational equations (GVEs), and process
noise while the measurements model adds measurement
noise and short-periodic terms.

2.1 Augmented state equations

The analytical solution of orbital perturbation is deve-
loped based on the GVEs, which come in many forms
and allow for both conservative forces and non-conserva-
tive forces [31]. The form used in this paper decomposes
the forces in the NTW frame. The center of the NTW
frame is the satellite. The N axis is perpendicular to W
and T. The W axis is in the direction of the angular
momentum vector. The T axis is positive in the direction
of the velocity vector, and is tangential to the orbit. When
i#0,i#m, and 0 <e < 1, the results are

da 22
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where &=1+2ecosf+¢e*, e denotes eccentricity, a
denotes semi-major axis, Q denotes the right ascension of
ascending node (RAAN), i denotes inclination, w denotes
the argument of the periapsis, E denotes the eccentric
anomaly, M denotes the mean anomaly, f denotes the
true anomaly, u = w+ f denotes the argument of latitude,
r denotes the orbital radius, n = +/u/a® denotes the mean
motion, u =3.986x 10" m?/s? is the Earth gravitational
parameter, ay, ar, and ay are the total acceleration com-
ponents in NTW coordinate system. With v 2 [aq,
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ay,aw]’ as the acceleration vector and « % [a,e,i, <,
w, M]" as the parametric vector, the GVESs can be written
as & = g(a,v). It can be used to compute the orbital ele-
ments variation when v denotes the thrust acceleration
imposed on the satellite. Notice that the GVEs are tradi-
tionally written in OOEs, but for state equation propaga-
tion, the MOEs need to be used instead. This approxima-
tion was proved adequate in [32].

In [22], the precise propagation model of MOEs was
summarized according to the methods of Kozai and
Brouwer [7,9]. The secular and long-periodic terms under
J2 perturbation can be written as
dae. dee. die

dt ~ dt  dt
dQ..  3Joncosi(Rg 2+3J§ncosi R\ 9
dr 2 p 8 p

2
-6 l—ez+sin2i(10—5%+9\/l—e2)]
dwe. 3Dn(R:\ 5.,\ 3n(Rg ¢
= — | |2—=sin’i |+ —-
dr 2 \p 2 128 \ p
[384 +56€*+192V1—e2 - sinzi(824+ 367+
528 V1 —e2) + sin4i(430—4562 +360 V1 —¢2 )]
dM.. 3Jznx/1—e2(RE)2( 3. 2.)
= — | |1 = =sin“i|+
dr 2 p
PnN1-e(R.\'
LY e e [192VI—¢2 - 120(1-¢*)+
128 P
360+sin2i(120(1—ez)—576\/1—e2—720)+
sin4i(75(1—e2)+432\/1—62+315)]

2
where R; is Earth radius, J,=1.08264x1073, p=
a(1 —¢?) is the semilatus rectum.
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A3)

The specific force due to atmospheric drag can be
modeled as mentioned in [33], which assumes the atmo-
sphere to be spherical and co-rotating with the Earth. The
drag force per unit mass is as follows:

1SC
Fdrag = _5 mDP (vsat - vatm) ”vsat - vatm” (4)

where Cp is the drag coefficient, m denotes satellite
mass, p denotes the atmospheric density, S denotes the
cross-sectional reference area, vy, denotes the satellite
velocity, Vum, = [0,0,w,]" xr denotes the atmospheric
velocity, and r is the position vector of the satellite. The
angular velocity of the Earth is w, =7.292 115 855 3%
10~ rad/s. To reflect the major changes of the LEO
atmosphere density and get the analytical solution, the
exponential atmosphere model is used herein:

—ae\ < 1 (aecosE\*
- N - 5
P poeXp(H)Zk!( H ) )

k=0

where H is the density scale height of the atmosphere, p,
denotes the atmospheric density at radius r,. Then, as
mentioned in [22], the secular and the long-periodic terms
of the atmosphere drag can be given by
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2 2 2,2
0=00-rpw,cosi/vp)*, S, and S, are the cross-sec-
tional areas perpendicular to the tangential and subnor-
mal directions, respectively. r» and vp represent the
perigee distance and the perigee velocity magnitude,
respectively. O(e*) represents the small quantity whose
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magnitude is smaller than e.

Thus, by taking the influence of thrusts, J2 perturba-
tion, drag and process noise into consideration, the MOEs
dynamics of the satellite can be expressed as follows:

6’ = dsec ((_Z) + dlong ((_l) + ddrag,sec ((_y) +
ddrag,long (&) +g (a” USj) (8)

where . (@) and d,,,, (@) are the secular and long-peri-
odic terms of J2 perturbation, respectively. The secular
and long-periodic terms of the atmosphere drag are
denoted bY @rgsec (@) aNd Fgrag1one (@), respectively. The
vector vy denotes the state-jumping-thrust-acceleration,
g(@,vy) is used to involve the influence of the state
jumping.

To cope with the state jumping, state-augment is done
by combining the rate of the state-jumping-thrust-accele-
ration, and the modeling error is approximated as Gaus-
sian white noise:

X =

)

v, W2

a+w, ]_

a+w, }
5
where x indicates the state vector, ¥; denotes the rate of
the state-jumping-thrust-acceleration, and the vector W,
denotes the process noise, which is the reflection of mo-
deling uncertainties. W, is assumed as the white noise
with power spectral density Q). The rate of the state-
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jumping-thrust-acceleration is assumed as a Markov pro-
cess ¥, = W, and the white noise vector W, is with power
spectral density @,, which means the state-jumping-thrust-
acceleration does not change drastically. This is a reason-
able assumption because when a satellite with state jump-
ing is considered, the acceleration usually does not
change drastically except at the start and the end of the
state jumping [26].

2.2 Measurements modeling

Adequate measurements are required for MOEs estima-
tion. The onboard sensors like the GNSS receiver can
receive the instantaneous position, velocity, and time
information of the satellite. These can be converted to the
OOEs by nonlinear conversion. Thus, the measurements
can be modeled in the form of OOEs:

Aoy = @+ Ahort (6') + adrag.shon (6') + V

(10)

where vector V denotes the measurement noise, which
can be calculated by the nonlinear mapping among iner-
tial position, velocity, and OOEs through Monte Carlo
simulation. g, (@) denotes the short-periodic terms
under J2 perturbation and @ggsmon (@) denotes the short-
periodic terms caused by drag. The analytical short-peri-
odic terms of the J2 perturbation and the drag [22] are as
follows:
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Obviously, (9) and (10) are the nonlinear state and
measurement equations, which adhere to the form:

{.\'C ) = folx (), 6]+ W(t)
y(t) =h[x()]+ V(%)

where y = @, indicates the measurement vector.

3. MOEs estimator

(13)

As mentioned in Section 1, the KF method cannot give an
ideal result when estimating the MOEs of the satellite
with state jumping. In order to tolerate the mismatch
caused by state jumping, we propose the MASUKF based
on the spherical simplex SRUKF mentioned in [22]. The
MASUKF introduces the state-augment, innovation-
based detection, and the timely covariance matrix infla-
tion to cope with the state jumping. For completeness,
this paper elaborates the main steps required to imple-
ment MOE estimation based on MASUKEF.

3.1 Sigma points selection

The UKF-based algorithm needs to select a set of sam-
pling points according to unscented transformation, also
known as sigma sampling points. Moreover, the calcula-
tion amount of the UKF-based filtering algorithm is pro-

3H3

2)ecos(3M) +

—+ : * a3 + « 2a cos(2M)+
4H "4 \48H3 T 16H>  16H 48 ¢
a’ 56>  25a 139 .
(192H3 + 64H2 - 64H 192)6 COS(4M)+0( )}_eragshoncosl

B a a a a 2
M a9 snore = —K1poa 7 2H — +4]e|cosM + A + 3 + 3 ecos(3M) +
a 3 a 5 9a 6
24 oM
[4H+4+(48H3 " 326 T T6H 96)6 }COS( )+
a 5> 25a 139
AM)+0
(192113 T oar: " 6an 192)e cos() +0/(e )}

(12)

portional to the number of sigma points. To achieve
onboard applications, it is essential to reduce the amount
of calculation while maintaining the accuracy of the fil-
tering algorithm. For an n,-dimensional space, the spheri-
cal simplex sigma-point selection strategy requires 7 +2
sigma points, and has the same predictive capability as
the truncated second order filter like the traditional sym-
metrical sampling strategy that requires 2ng +2 sampling
points [34]. Thus, the spherical simplex unscented trans-
form is preferable. The point selection method for an #,-
dimensional system is as follows:

(1) Select the weight for the points lie on the hyper-
sphere centered at the origin (i; # 0) and the point at the
origin (i, = 0) by

0<W, < =0
{ W, =(1- Wo)/(ns+ b,

(i1) Use the scaled unscented transformation to adjust
the weights:

. 14
i, %0 19

1+(Wo-1) /0,
wi, = 5o
W, /o=, is#0
where o € (0, 1] denotes the scaling parameter.
(iii) Initialize the vector sequence:

is=0
(15)
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Z,=10]
1
Z' = |-——
: [ ZWI} (16)
]
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(iv) Extend the vector for j, =2,3,---,n, by
[ Js—1
: z!
Zr = L 2, s 17
Y JS(JS+1>WI] s D
. — , Is=js+1
i/ NG+ Dwy /

(v) To incorporate higher-order information, the rele-
vant weights are defined as follows:
Wy =Wy, is=0
ws=wo+ (-0 +p), i,=0

w.

Is

(18)

=w; =w;, =12, ,ns+1

where parameter B8 affects the weight of the Oth sigma
point for the covariance calculation.

3.2 Time update

Before introducing the time update process, some mathe-
matical relationships and notations need to be introduced.
Let P be the error covariance and S be the square root of
P:

P=S"S. (19)

The covariance matrix can be replaced by the respec-
tive square roots to improve numerical stability. The
MASUKEF is composed of three steps (Subsection 3.2—
Subsection 3.4) at each time instant #;.

Assume that the estimated state vector X,_,,_; and the
square root of the covariance matrix S;_i;-; of the previ-
ous k—1 iteration are known. Then, the sigma points for
time #, can be calculated through (20). The initial value
of the state vector and the covariance matrix are
%00 = E[x00] and So/0 = chol (E [x0/0 — Xoso] [*o0s0 — J"\fo/o]T),
respectively. The function chol(-) denotes the Cholesky
factorization:

Xisk=1/k—1 = Sk—l/k—lzis +£k—l/k—l~ (20)
The time update equations are written as follows:
/\./i”k—l/k—l :.fc(Xi,,k—l/k—latk—l) (21)

where x; -1 can be obtained through the Runge-Kutta
integration. The predicted state vector %,,_; and the pre-
dicted error covariance square root Sy;-; can be com-
puted by

neg+1

X = Z WT/\/is,k/k—l» (22)
=0

Journal of Systems Engineering and Electronics Vol. 35, No. 4, August 2024

Sk/k—l = qr([ \/W_({(Xlzml.k/k—l _-fk/k—l)’ \/@D,

where qr(-) denotes the QR decomposition; @, denotes
the process noise covariance and can be determined
according to @, and Q,.

The predicted sigma points can be computed by X/
and Sy1:

(23)

Xiisot =Sei1 Zi + Xy (24)
The predicted sigma points can be propagated through
Vi1 = B (xisn-1) to get the predicted measurements:

ng+1

~ my
V-1 = ZW,-S Vi k-1

i=0

(25)

The predicted measurements will firstly pass to the
modified state jumping detection part for innovation cal-
culation, and then pass to the measurement update part
for error covariance update.

3.3 Modified state jumping detection

The filter innovation &, can be used for state jumping
detection, which is composed of the difference between
the actual measurement and the predicted measurement:

&= Y= Pupp- (26)
where y; denotes the actual measurement. During the non-
state-jumping period, the filter works in normal mode,
and the value of the innovation is low. When a state
jumping happens, the innovation will increase because of
the mismatch between the nominal UKF dynamic model
and the actual state jumping. Thus, a state jumping can be
declared when innovation growth exceeds a predeter-
mined level. Considering that orbit element errors vary in
magnitude, a normalization of the innovation should be
done for a concise state jumping detection. Thus, the
dimensionless indicator 7y, is defined as

)/k _ (SZR;lgk)]/z
where R, denotes the measurement noise covariance
matrix. With & 2 [&1,82, " » & ] and Ri = diag([RfJ,
R, ’Ri,n,]), (27) becomes

27)

(28)

When state jumping does not occur, according to the
three-sigma rule, there is a 99.74% probability that
&, < 3Ry, . Thus, the threshold can be set as I = 3 4/n; to
ensure the algorithm responds to various state jumping
and possesses robustness against measurement noises.
The setting of the threshold is independent of the mea-
surement noise covariance matrix but relates to the
dimension of measurements. Equation (10) indicates that
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the dimension of the measurements is six and we have
r=36.

When state jumping happens, the filter will diverge if
the error covariance remains relatively constant. There-
fore, when the indicator exceeds the threshold, the infla-
tion of the covariance should be done to make the filter
respond to the state jumping and re-converge to the new
state. Considering that the magnitude of the covariance
matrix is positively correlated with the convergence
speed, set S;_1,-1 = Soj When state jumping happening is
a viable option. This enables most state jumping to con-
verge quickly, as demonstrated by the Monte Carlo simu-
lations in Section 4. Since the data received by the
receiver is discrete, and the time delay always exists for
the state jumping detection, there usually exists a rela-
tively large estimation error at the time instance when the
state jumping is detected, especially for large state jump-
ing. Thus, modification is made to reduce the estimation
error at that time instance by re-conducting the previous
procedures from (20) to (25) before proceeding to the
measurement update.

3.4 Measurement update

Use the cross error covariance matrix P,),_, and the pre-
dicted measurement error covariance square root S,
to generate the Kalman gain:

K. = (Pﬁk,l/sz/k,l)/sk/kfl (29)

where

ng+1

xy o A T
P;:;kfl = W,C (Xz\,k/k—l _xk/k—l)(yis,k/k—l _yk/k—l)
0 .

i =

Sypk1 = qr([ MO]:n,H,k/k—l = Pin-1)s \/R_k])

Then, the updated covariance matrix square root and
state vector can be computed by (31), which will be
passed to the k time instant.

Sk/k = qu \IWZ (xO:n5+l,k/k—l - ﬁk/k—l) -
K, W,E (y():izs+l.k/k—l _j’k/k—l)’Kk \/RkH (3 1)

R = Ripper + K = Fiu-1)

To summarize, this paper introduces the state jumping
detection based on state augmentation, and the KF is
modified with covariance matrix inflation and an addi-
tional one-step time update. Comparing with [22] and
standard UKF, the distinguished contribution is labeled
using the gold marker as shown in Fig. 1. Finally, with
the utilization of MASUKF, the mean orbital elements
are given as well as the unexpected state-jumping-thrust-
acceleration, which is always assumed to be known in
employing traditional UKF.

(30)

Set W, 0, B, X
0,, 0, R, and S,

k=0

Calculate Zf:, wys and w¢
according to (14)—(18)

I— (TR A S T S NP, P S, A
| {[Sigma points (=0, -1
: X,:,k—l/k—]zsk—l/k—lzﬂ'xk—l,k—l )
|
: Augmented state equation ||
el X ikt S X i jmrn—rstic) |
< + |
I8!
| 2t[ State prediction: Equations |
12 (22) and (23) I
1= :
| Measurement prediction: |,
| Equations (24) and (25) |
|
b 2Y | =S 1
_I Measurement: y,
- — o
& [ Tnnovation: &=y, Je | Inflation: S, =Sy, _| —g
o B
£ Sigma points (i,=0,...,n,+1) g
2, [Pimensionless indicator: Xik k=S i i X |5
(=1 — (ol 14 172 E
2 7= (&R ') . g
g i Augmented state equation | .3
2 X is,k—llk—1=fc-:(Xisyk—l/k—13tk—l) g
g v s
7 T : =
2 State prediction: Equations | £
(22) and (23) s
137 = | v &
15 Kalmat;_ galnT. Measurement prediction: %
I—a‘ K=y 1/Siu1)Suir | ) Equations (24) and (25) |~
12} |
I8} v |
|5 Update parameter | | it 1
: z covariance and '
i estimate by (31 |
= y (31) |

/Mean orbital elements / /étate-jmnping-thrust-acceleratior/
|

l

End

Fig.1 Procedures of the MASUKF-based MOEs estimator

4. Simulations and results

The purpose of this section is to evaluate the perfor-
mance of the MOEs estimator proposed in Section 3. Ini-
tially, a sample single run is done to intuitively show the
estimate results and the variation of the state-jumping-
detection-indicator. Then, comparisons among MASUKF,
ASUKF, SRUKF, and DM method are conducted to
demonstrate the advantage of the MASUKF-based MOEs
estimator. Finally, Monte Carlo simulations are done for
accuracy and state-jumping-detection-delay-time analy-
sis.

4.1 Initial conditions and parameter values

The duration of the MOESs estimation task is assumed as
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one day, and the initial MOEs are given in Table 1. The
NRLMSISE-00 model is then used to generate the initial
atmospheric density p,. With index Fy; = 150 (the solar
radio flux at 10.7 cm) and the geomagnetic coefficient
ke =5, it gives p, = 2.72x 1072 kg/m’. The other para-
meters of the atmosphere drag model are Cp =2.2, and
H = 52.4 km. The aerodynamic parameters are m = 10 kg
and §, =S, =0.25 m?. The parameters of the MASUKF
arec=1,8=2,and W, =0.25.

Table 1 Initial MOEs values
Parameter Value
Semi-major axis/km 6878.14
Eccentricity 0.02

Inclination/(°) 45
RAAN/(°) 20
Argument of the periapsis/(°) 20
Mean anomaly/(°) 20

Assume GNSS receiver is used to generate initial mea-
surements, which can directly provide the instantaneous
position, velocity and time information of the satellite, so
it does not need to process the original pseudorange or
carrier information. The one-sigma three-dimensional
velocity and position errors are assumed as 2 cm/s and
5 m, respectively. The projection of the position and
velocity measurement noise covariance onto OOEs space
can be obtained utilizing the Monte Carlo analysis, yield-
ing the results: R2 =477.8 m’, R* =6.036x 1072, R? =
1.257x 1072 rad’, R, =2.481x1072 rad’, R2 = 1.496x

6 900

6890
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6 870 . . . .
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Time/h
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45.02 F,

45.00

MM |
(VIR
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0 5 10 15 20 25
Time/h
(c) Inclination
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10 rad’, R2, = 1.497 x 10~ rad’. The discretized process
noise are Q2= 107" m’, 02=10", Q?=3x10% rad’,
02=3x102 rad, Q> =3x10" rad’, Q% =3x
107" rad’, Q2= Q% =02 =10 m/s’. The covariance

matrices R; and Q, are given by
R, = diag(R%.R,R?.R%. R’ R},

-222222222'(32)
0. = diag(Q2. 02, 0. 03, 02, O}, O 01, O3
4.2 Estimation results of MOEs and
state-jumping-acceleration

The numerical simulation starts by evaluating the MOEs-
capture-ability of the estimator when state jumping hap-
pens. Assuming that the satellite cannot know the factors
that cause state jumps, only the measured OOEs are given
for MOEs estimation, which means autonomous detec-
tion of state jumping is required. Moderate and drastic
regime jumps are analyzed. We utilize a low-thrust
approach to simulate the moderate regime, applying a
force of 0.004 N starting at 6 h into the simulation and
lasting for a duration of 6 h. Conversely, the drastic
regime is emulated using relatively high-thrust maneu-
vers, where a force of 0.5 N is exerted commencing at 18 h
into the simulation and lasting for a duration of 1 min.
The directions of the two thrusts are determined by the
vectors [‘/§ /3,373, V3/ 3] in the NTW coordinate sys-

tem. The measured OOEs and the estimated MOEs (sin-
gle run) are depicted in Fig. 2. It can be seen intuitively
that the estimated MOEs can track the state jumping.
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Fig.2 Sample single simulation comparing OOEs and estimated MOEs

The estimation error of the state-jumping-thrust-acce-
leration and the variation of the indicator are as shown in
Fig. 3. The detected applied time of the low and high
thrust is 6.05 h and 18.02 h, respectively. The detection
of high-thrust is faster than low-thrust because the higher
one will make the indicator hit the threshold faster. The
detected end time is 12.05 h and 18.03 h for the low and
high thrust, respectively.

The MASUKF estimator performance is compared
to SRUKF, ASUKF and DM method. Fig. 4 shows
the comparison between the mean-elements estima-
tion errors obtained from SRUKF and MASUKEF.
Apparently, SRUKF diverges when a state jump-
ing occurs and is hard to re-converge after the state
jumping. Fig. 5 shows the comparison between the
MOEs estimation errors gained from ASUKF and
MASUKF. The main difference between ASUKF
and MASUKF is that MASUKF inflates the cov-
ariance matrix when the indicator is greater than
the threshold, and recalculates the predicted mea-
surements before entering the measurement update
step. However, ASUKF inflates the covariance matrix
after detecting the state jumping and directly enters the
next moment. Although the MASUKF is slightly more
complicated than ASUKF when the indicator is greater
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than the threshold, Fig. 5 indicates that MASUKF esti-
mates the MOEs for that period much better than
ASUKF. The comparison between MASUKF and DM
method is done using Mont Carlo simulation in
Subsection 4.3.
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4.3 Estimation accuracy and delay time analysis

Compared with the DM method, the accuracy of
MASUKF is demonstrated. Root mean square error
(RMSE) is obtained from 100 Monte Carlo simulations
and used as a measure of estimator performance. The
RMSE of each MOE at time ¢ can be computed by
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where & = [&, (1), (1), 80 (D) 800 (1) . &0 (0, 800 D],
and k denotes the &th Mont Carlo simulation.

a 2 24T

The estimated MOEs are 3=[5,3,;,Q,@,M] . The
true MOEs are @ = [51,5,7, Q.o M]T.

The RMSE of MASCKF and DM methods are
shown in Fig. 6. The RMSE of the DM method is
bigger than that of the MASCKF. Table 2 calculates
and lists the average RMSE (ARMSE) in the time
domain.
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Fig. 6 Comparison between RMSE of estimated MOEs using MASUKF and DM method

Table2 ARMSE of MASUKF and DM method

ARMSE parameter MASUKF Method Y
Semi-major axis/m 2.855 104.1
Eccentricity 2.439x10" 1.421%10°
Inclination/(°) 6.110x10™ 4292x10°*
RAAN/(°) 8.797x10™° 6.311x107"
Argument of the periapsis/(°) 6.703x10" 3.677x10°
7.027x107 0.9551

Mean anomaly/(°)
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The RMSE of the MASUKF and the DM method
different thrust
Select 100 combinations, the relative-long-duration-

are computed for combinations.

thrust within 0.01-0.5 N, and the approximate-impulse-
thrust within 0.1-50 N.
conform to

These thrusts are selected
randomly and uniform  distribution
within their corresponding intervals. The duration of
the task is 12 h. Assume a sustained thrust of relatively
long duration commencing at 3 h into the simula-
tion and persisting for 3 h. Additionally, envision a
brief burst of thrust with an approximate impulse applied
at 9 h into the simulation, lasting for just 1 min.
Other assumptions are unchanged. As shown in Fig. 7,
MASUKF can deal
usually gives better estimation results than the DM
method. Fig. 7 also shows that the RMSE of the
MASUKEF result is large when the approximate-impulse-
thrust is applied. This is due to that some approximate-

with various situations, and

impulse-thrust can make huge trajectory change within
the time step (60 s), but the filter needs to converge grad-
ually after the state jumping is detected. In practice, it is
difficult to have such a large state jumping, and the
MASUKF may usually perform better than the DM
method at the start moment of the state-jumping. The
ARMSE parameters in the time domain are calculated
and listed in Table 3.
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Fig. 7 RMSE comparison between DM method and MASUKF

Table 3 ARMSE of MASUKF and DM method in the time domain

ARMSE parameter MASUKF Method DM
Semi-major axis/m 3.655 127.3
Eccentricity 3.529x10° 1.747x10°
Inclination/(°) 9.440x10° 5.167x10 "
RAAN/(°) 1.415%x10° 7.648x10™"
Argument of periapsis/(°) 1.050x10°° 6.480x10
Mean anomaly/(°) 1.105x10 * 1.210
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The MASUKF will process several steps to converge
to the new orbit as soon as detecting the state jumping,
which means the detection part of the MASUKEF is essen-
tial. Thus, the delay time of the detection is analyzed.
There are mainly four parameters to be considered in the
delay time analysis: the direction of the state-jumping-
thrust-acceleration, the magnitude of the state-jumping-
thrust-acceleration (ag), the start time of the state jump-
ing, and the time step of the estimator. To present the data
in a concise manner, the direction of the state-jumping-
thrust-acceleration and the start time of the state jumping
are assumed fixed. Fig. 8 depicts the variation of the
delay time with the time step and the magnitude of the
state-jumping-thrust-acceleration. The projection on the
XZ, YZ plane and the contour lines on the XY plane are
also depicted in Fig. 8. As the acceleration-magnitude
increases, the delay time decreases. When the delay time
is bigger than the time step, the delay time is not obvi-
ously influenced by the time step. Otherwise, the delay
time is equal to the time step. However, if we use the
number of the time steps contained in the delay time to
reflect the delay characteristic of the detection, we can
make a conclusion that the delay of the detection is nega-
tively related with both the acceleration-magnitude and
the time step as shown in Fig. 9.
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5. Conclusions

In this paper, the issue of MOEs estimation under state
jumping condition is discussed. A novel MASUKEF is
proposed to deal with this issue. It can detect state jump-
ing, obtain real-time MOEs, estimate state-jumping-thrust-
acceleration, and significantly decrease the estimation
error at the detection moment. The numerical simulation
shows that the filter can provide better estimated MOEs
than the SRUKF, the ASUKF, and the DM method.
Additionally, when various state jumping happens, the
MASUKEF can usually detect them with low latency, and
track them. Consequently, the accurate and efficient
MASUKEF estimator proposed in this paper is suitable for
onboard MOEs estimation with state jumping.
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