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Abstract: The observation error model of the underwater acous-
tic  positioning  system  is  an  important  factor  to  influence  the
positioning  accuracy  of  the  underwater  target.  For  the  position
inconsistency  error  caused  by  considering  the  underwater  tar-
get as a mass point, as well as the observation system error, the
traditional  error  model  best  estimation  trajectory  (EMBET)  with
little observed data and too many parameters can lead to the ill-
condition  of  the  parameter  model.  In  this  paper,  a  multi-station
fusion system error model based on the optimal polynomial con-
straint  is  constructed,  and  the  corresponding  observation  sys-
tem error identification based on improved spectral clustering is
designed. Firstly, the reduced parameter unified modeling for the
underwater  target  position  parameters  and  the  system  error  is
achieved through the polynomial optimization. Then a multi-sta-
tion  non-oriented  graph  network  is  established,  which  can
address the problem of the inaccurate identification for the sys-
tem errors. Moreover, the similarity matrix of the spectral cluster-
ing  is  improved,  and  the  iterative  identification  for  the  system
errors  based  on  the  improved  spectral  clustering  is  proposed.
Finally, the comprehensive measured data of long baseline lake
test  and  sea  test  show  that  the  proposed  method  can  accu-
rately identify the system errors, and moreover can improve the
positioning accuracy for the underwater target positioning.
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1. Introduction
The  high  accuracy  measuring  and  positioning  for  the
underwater  targets  has  become an important  issue in  the
underwater  resource  and  environment  detection,  the
underwater measurement and control, etc. For the under-

water target,  the strong absorption of the radio waves li-
mits  the application of  global  navigation satellite  system
(GNSS).  The  underwater  acoustic  navigation  and  posi-
tioning  technology  has  become  an  important  technical
mean for the underwater target positioning because of the
good propagation characteristics of the acoustic waves in
water [1–4].

With the development of the underwater acoustic navi-
gation and positioning technology, the representative sys-
tems such as  long baseline (LBL) system, short  baseline
(SBL)  system  and  ultra  SBL  (USBL)  system  have
emerged [5,6]. Among them, both the LBL and SBL sys-
tems  obtain  the  positions  of  underwater  targets  by  mea-
suring  the  propagation  time  of  hydroacoustic  signals,
which  can  improve  the  positioning  accuracy  for  the
underwater  target  by  increasing  the  number  of  acoustic
base  stations.  The  USBL  system  determines  the  target
position  by  measuring  the  propagation  time  and  the
azimuth angle [7,8].

The  acoustic  positioning  accuracy  of  the  underwater
targets depends on many factors, which include the mea-
surement  accuracy  of  acoustic  stations,  the  geometric
dilution  of  precision  (GDOP)  of  underwater  positioning
systems (i.e.,  station  layout  and  configuration  design  for
underwater positioning systems), and the observation sys-
tem  error  such  as  the  position  errors  of  underwater  sta-
tions,  the  sound  velocity  error  and  the  time  delay  error.
The  uncertainty  of  the  observation  system  error  model
caused  by  the  complex  underwater  environment  is  the
key  factor  to  restrict  the  high  accuracy  acoustic  naviga-
tion and positioning [9].

The  observation  error  can  be  divided  into  random
error, gross error, and system error. The system error has
obvious  deterministic  and  regularity,  which  has  obvious
negative  effects  in  the  practical  navigation  and  position-
ing  applications.  Effective  identification  and  compensa-
tion for the system error is an effective way to restrict the
negative impacts [10,11].
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Taking  the  underwater  acoustic  positioning  system
based  on  the  distance  intersection  as  an  example,  there
are  two  main  aspects  for  the  system  error.  (i)  The  posi-
tion inconsistency error  caused by ignoring the  structure
of  the  target  and  regarding  the  target  as  a  particle.  For
example,  in  the  process  of  cylindrical  target  positioning,
ignoring  the  position  inconsistency  between  the  beacon
and  the  target  center  will  lead  to  systematic  deviation.
(ii)  The  measure  system  error,  such  as  acoustic  time
delay,  position  error  (i.e.,  installation  and  calibration
deviation), and sound velocity correlated error, which can
be  effectively  weakened  or  suppressed  by  fine  calibra-
tion and model improvement [12,13].

At present, the identification and compensation for the
underwater  acoustic  positioning  system  errors  mainly
include  differential  elimination,  system  error  modeling,
and unified estimation. Xin constructed the single differ-
ence  and  the  double  difference  positioning  models  to
eliminate the influence of the system error [14]. The main
forms of system error modeling are error fitting, observa-
tion constraints,  and parameter  solving.  Yang et  al.  used
the relationship between the range error and the time for
the system error modeling, which can eliminate the influ-
ence  of  the  representative  errors  in  sound  velocity  pro-
files [15]. Other effective ways to restrict the representa-
tive error of sound velocity is to construct a three-dimen-
sional acoustic field model or add some constraints [16].
In addition, in the case of the accurate sound velocity pro-
file,  sound  tracking  is  a  direct  method  to  eliminate  the
influence of refractive effect [17]. Xin et al. proposed an
underwater  positioning  method  based  on  the  equivalent
sound  velocity  [18].  In  [18],  the  high  accuracy  sound
tracking  and  positioning  solution  without  the  sound
velocity  profile  was  realized  by  iteratively  solving  the
equivalent sound velocity gradient and the position of the
target  as  unknown  parameters.  In  terms  of  the  unified
estimation,  the most commonly used method is  the error
model best estimation trajectory (EMBET). The EMBET
method  based  on  the  spline  restraint  on  the  basis  of  the
traditional  EMBET method  was  studied  in  [19],  and  the
purposes to estimate trajectory, calibrate the system error
coefficients  and  identify  the  dynamic  performance
indexes of the equipment were realized.

However,  the  traditional  EMBET  method  only  com-
bines  the  observation  equation  and  the  system  error
model,  which  does  not  make  full  use  of  the  trajectory
kinematics characteristics. The EMBET method based on
the  spline  restraint  or  polynomial  restraint  needs  to  cla-
rify the form of system error. The polynomial order in the
traditional  EMBET  model  is  predetermined.  Adding  too
many  system  error  parameters  increases  the  complexity
of the model, and may also lead to the ill-condition of the

parameter  model.  Therefore,  an  optimization  criterion  is
established to adaptively select the polynomial order, and
the optimal polynomial model is used to represent the tar-
get trajectory. The position errors between the target cen-
ter  and  the  beacons  and  the  measurement  error  are  uni-
fied to decrease the parameters.

After the model is established, the system error of each
station  is  related  to  the  measurement  accuracy  and  the
distance between the station and the target. Therefore, the
selection of the number of the system errors can be trans-
formed  into  the  classification  of  the  stations.  The  tradi-
tional partitioning-based clustering methods such as the K-
means  algorithm,  the  K-means++  algorithm  and  the
model-based  clustering  such  as  Gaussian  mixture  model
(GMM) clustering algorithm need to know the number of
clusters  in  advance  [20].  However,  in  the  underwater
LBL  fusion  positioning,  it  is  difficult  to  determine  the
appropriate  identification  number  of  the  system  error
without  prior  knowledge.  Too  few  or  too  many  system
error parameters will make the identification results inac-
curate [21]. Therefore, this paper improves the similarity
matrix  of  the  spectral  clustering,  and  applies  it  to
system  errors  classification  and  identification  in  pro-
posed model.

The main contributions of this paper are as follows.
(i)  Unified  modeling.  Considering  that  too  many

parameters  will  lead  to  the  ill-condition  for  the  tradi-
tional  EMBET  model,  the  optimal  selection  criterion  of
the fusion model is proposed for the underwater position-
ing.  A multi-station  fusion  system error  model  based  on
the optimal polynomial constraint is constructed. The uni-
fied  modeling  with  the  target  trajectory  parameters  and
the  system  error  parameters  is  realized  by  multi-station,
multi-beacon, and multi-time fusion processing.

(ii)  System  errors  classification  and  identification.  In
view of the problem that  the system errors identification
is not accurate or overfitting in the process of the under-
water  cylindrical  target  positioning,  the  classification  of
the  system  errors  for  the  stations  only  according  to  the
relative distances between the stations and the target fails
to  consider  the  connection  of  the  system errors  between
the stations. Therefore, this paper establishes a multi-sta-
tion  non-oriented  graph  network.  Then  the  similarity
matrix of the spectral clustering is improved by compre-
hensively  considering  the  measurement  accuracy,  the
rotation angle of the target and the system errors. On this
basis,  the  iterative  identification  method  of  the  system
errors  based  on  the  improved  spectral  clustering  is  put
forward.

(iii) The model and method proposed in this paper are
proved  to  improve  the  target  positioning  accuracy
through the comprehensive measured data test of the LBL
lake test and the sea test. 
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2. Multi-station  fusion  system  error  model
based on optimal polynomial constraints

The EMBET method is widely used in fusion estimation
[22]. Using the measurement data of multiple stations, the
joint  equations  between  the  target  coordinate  and  the
measurement data are established, and the target position
parameters and the measurement system errors are calcu-
lated  by  the  least  square  method.  However,  too  many
parameters  will  lead  to  the  ill-condition  of  the  model
since the  traditional  EMBET method does  not  make full
use of the matching information. The target trajectory can
be accurately expressed by the time function, such as the
polynomial and spline function. However,  the traditional
polynomial model cannot adaptively match the trajectory
of  the  target  because  of  its  order  determination.  In  this
section,  the  principle  of  the  LBL  positioning  is  briefly
analyzed.  Then,  combined  with  the  traditional  EMBET
model,  the  optimal  model  selection  criterion  is  used  to
adaptively select  the order of  the polynomial  function to
represent  the  motion  model  for  the  underwater  target,
which realizes the target  position and velocity matching.
In  addition,  considering  the  position  errors  between  the
target  center  and  the  beacons,  the  measurement  element
errors  which  include  the  time  delay  error,  the  sound
velocity correlated error and the station position error are
equivalent  to  the  constant  system  error  of  each  acoustic
station. Further, the unified modeling of reduced parame-
ters for the target  trajectory and the system error is  real-
ized. 

2.1    Underwater LBL positioning

X = (x,y,z)T

m
Xi = (xi,yi,zi)T(i = 1,2, · · · ,m)

i

The underwater LBL system consists of the acoustic sta-
tions  laid  on  the  seafloor,  the  acoustic  beacons  mounted
on the target, and a calibration vessel. As shown in Fig. 1,
more than three acoustic stations are laid on the seafloor
to  form a  seafloor  positioning  baseline  array  with  a  cer-
tain  geometry.  The  positions  of  the  acoustic  stations  are
pre-calibrated by the calibration vessel. The acoustic sta-
tions  are  used  to  receive  the  signal  emitted  by  the  bea-
cons  and  measure  the  propagation  time  of  the  signal.
Assume  that  the  target  is  a  cylinder  within  the  baseline
array, and the target center position is . Sup-
pose  that  the  positions  of  acoustic  stations  are

.  Then  the  measurement
equation of the th acoustic station is as follows:

Ri =

√
(x− xi)2+ (y− yi)2+ (z− zi)2+∆i+εi (1)

Ri i ∆i

i
εi

where  is the observation of the th acoustic station, 
is the observation system error of the th acoustic station
caused by the clock error, and  is the measurement ran-
dom error.
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Fig. 1    Underwater LBL positioning system
 

n

X̄ j = (x̄ j, ȳ j, z̄ j)T( j = 1,2, · · · ,n)

θ

j

However, with the increasing complexity of the under-
water maneuvering target motion and the improvement of
the  underwater  observation  accuracy,  the  method  of
describing the underwater target as a particle cannot sati-
sfy the needs of high-accuracy positioning [23]. Suppose
that  beacons  are  uniformly  mounted  on  the  surface  of
the cylinder, as shown in Fig. 1, the positions of the bea-
cons  are .  Assume that  the
cylinder  rotates  during  the  motion  with  the  initial  phase

. Then the conversion relationship between the position
of  the th  beacon  and  the  cylinder  center  position  is
described as follows:

x̄ j = x+ r cos(( j−1)θ0+ θ)
ȳ j = y+ r sin(( j−1)θ0+ θ)
z̄ j = z

(2)

j = 1,2, · · · ,n r
θ0

where ,  is  the  radius  of  the  cylinder,  and
 is  the angle of the two lines connecting the two adja-

cent beacons and the cylinder center.

i j
j

It  is  reasonable  to  assume  that  the  signal  received  by
the th  acoustic  station  at  a  certain  time  is  from  the th
beacon, where  is random. Then, the measurement equa-
tion will be

Ri j =

√
(xi− x̄ j)2+ (yi− ȳ j)2+ (zi− z̄ j)2+∆i+εi. (3)

Substitute (2) into (3), and rewrite it in functional form
as follows:

Ri j = hi(x,y,z, θ,∆i, εi). (4)
 

2.2    Multi-station fusion system error model

m
t

t

Combined  with  the  measurement  equations  of  acous-
tic  stations  at  time ,  the  measurement  equations  of  the
target  center  position,  the  initial  phase  and  the  system
errors at time  can be obtained.
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
R1 j1

R2 j2

...

Rm jm


=


h(t)

1 (x,y,z, θ,∆1, ε1)

h(t)
2 (x,y,z, θ,∆2, ε2)

...

h(t)
m (x,y,z, θ,∆m, εm)


(5)

j1, j2, · · · , jm

m
t

where  represent  the  serial  numbers  of  the
beacons  received  by  acoustic  stations  respectively  at
time . Let

Ye = (R1 j1 ,R2 j2 , · · · ,Rm jm
)T. (6)

NAnd combine  sampling points to obtain the EMBET
model as follows:

Y1

Y2

...

YN


=


F1(x,y,z, θ,∆1,∆2, · · · ,∆m, ε1, ε2, · · · , εm)
F2(x,y,z, θ,∆1,∆2, · · · ,∆m, ε1, ε2, · · · , εm)

...

FN(x,y,z, θ,∆1,∆2, · · · ,∆m, ε1, ε2, · · · , εm)


=



(h(1)
1 ,h

(1)
2 , · · · ,h(1)

m )
T

(h(2)
1 ,h

(2)
2 , · · · ,h(2)

m )
T

...

(h(N)
1 ,h

(N)
2 , · · · ,h(N)

m )
T


. (7)

The  trajectory  kinematics  characteristics  and  the
matching  information  are  not  involved  in  the  traditional
EMBET model shown in (7). Little observed data and too
many  parameters  will  lead  to  the  ill-condition  of  the
model.  The  target  trajectory  constrained  by  the  polyno-
mial  function  based  on  the  optimal  selection  criterion  is
given  below,  and  then  the  optimal  polynomial  coeffi-
cients, the target rotation angle and the system errors are
unified modeling to decrease the parameter numbers.

X = (x,y,z)T

The target moves fast and short in the shallow sea area.
Therefore, the target trajectory approximately satisfies the
polynomial  constraints,  that  is,  the  target  position

 satisfies the following equation:
x = f1(a1,b1, · · · , t)
y = f2(a2,b2, · · · , t)
z = f3(a3,b3, · · · , t)

(8)

f1, f2, f3

a b t

X = (x,y,z)T

where  are  the  polynomial  functions  with  indefi-
nite order,  and  are the polynomial parameters,  is the
time.  The  polynomial  orders  are  determined  by  the
optimal  model  selection  criterion.  Substitute  the  target
center  position  which  satisfies  (8)  into  (3).
Equating  the  delay  measurement  error,  the  station  posi-
tion error and the sound velocity correlated error to a con-
stant error, the measurement equation will be rewritten as
follows:



Ri j =

√
(xi− x̄ j)2+ (yi− ȳ j)2+ (zi− z̄ j)2+∆Ri

x̄ j = x+ r cos(( j−1)θ0+ θ)
ȳ j = y+ r sin(( j−1)θ0+ θ)
z̄ j = z

i = 1,2, · · · ,m; j = 1,2, · · · ,n

(9)

Ri j i
∆Ri

i

where  is  the  observation  of  the th  acoustic  station,
 is  the  constant  range  error  equivalent  to  the  time

delay  measurement  error,  the  station  position  error  and
the sound velocity correlated error of the th acoustic sta-
tion.

Similarly, the fusion model of the polynomial parame-
ters,  the  initial  phase  and  the  system  errors  can  be
obtained as follows:

Y1

Y2

...
YN

 =


F1(a1,b1, · · · , θ,∆R1,∆R2, · · · ,∆Rm)
F2(a1,b1, · · · , θ,∆R1,∆R2, · · · ,∆Rm)

...
FN(a1,b1, · · · , θ,∆R1,∆R2, · · · ,∆Rm)

 =
(g(1)

1 ,g
(1)
2 , · · · ,g(1)

m )
T

(g(2)
1 ,g

(2)
2 , · · · ,g(2)

m )
T

...

(g(N)
1 ,g

(N)
2 , · · · ,g(N)

m )
T

 . (10)

The  above  formula  is  the  multi-station  fusion  system
error  model  with  the  polynomial  constraints,  where  the
order  of  the  indefinite  polynomial  is  determined  by  the
optimal model selection criterion.

R = [R1,R2, · · · ,RmN]T D =
[D1,D2, · · · ,DmN]T

For the linear models,  assume that  the true distance is
 and  the  measurement  is 

 in  the  LBL  fusion  positioning,  the
measurement data model is as follows:D = R+ e

e ∼ N(0, δ2I)
(11)

e 0
δ2I

where  is a random error vector with the mean  and the
covariance matrix .

β = (a1,b1, · · · , θ,∆R1,∆R2, · · · ,∆Rm)T

H

It is assumed that the estimated parameter of the model
is  and  the  design
matrix is  after the polynomial order is determined.

HX = H(HT H)−1HTLet .  Then the  above equation can
be written as follows:

E
∥∥∥Hβ̂−R

∥∥∥2
= ∥(I−HX)b∥2+nβδ2 (12)

β̂ β

nβ
where  is  the  estimation value of  the  parameter ,  and

 is  the  number  of  the  parameters.  According  to  the
residual sum of squares (RSS) formula, the RSS is calcu-
lated as follows:

RSS = E
∥∥∥D−Hβ̂

∥∥∥2
= ∥(I−HX)R∥2+ (mN −nβ)δ2. (13)

Then, we can get
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E
∥∥∥Hβ̂−R

∥∥∥2
= RSS+ (2nβ−mN)δ2. (14)

The  above  formula  is  the  optimal  test  statistic  of  the
polynomial system error model, denoted as

S = RSS+ (2nβ−mN)δ2. (15)

S

S

It  can  be  seen  from the  above  expression  that  the  test
statistic  does  not  depend  on  whether  the  model  is  li-
near or not. Therefore, the above statistic is still available
for the nonlinear multi-beacon measurement system. It is
required to minimize the RSS and the number of parame-
ters for the target trajectory model with the optimal poly-
nomial  constraints.  The  model  with  the  smallest  is
selected  as  the  multi-station  fusion  system  errors  model
constrained by the optimal polynomial based on the opti-
mal selection criterion.

Theoretically,  unlike  the  space-segment  ballistics,  the
complex underwater environment leads to a larger uncer-
tainty  of  the  motion  model.  And  the  trajectory  approxi-
mately  conforms  to  the  polynomial  model  during  the
small range and the short time motion of the underwater
target.  Therefore,  the  polynomial  order  is  preferred  by
using  the  preference  criterion,  which  considers  the  RSS
of the model and the number of parameters. The criterion
optimizes the polynomial order in terms of both the posi-
tioning  accuracy  and  the  model  complexity.  The  match
between the motion model and the actual motion state is
improved.  Under  the  condition  that  the  accuracy  of  the
positioning  device  is  determined,  the  selection  of  the
positioning model parameters has a great influence on the
positioning accuracy.

δ2 Q =
mN −nβ

δ2

δ2

q
RSS1,RSS2, · · · ,RSSq Q

Q1,Q2, · · · ,Qq δ2
∗ δ2

Remark  1　 If  is  unknown  and  the  statistic 
 is large, the RSS of the range can be used to give

an estimation of  since the first part of (13) is relatively
small. It can be ignored in the estimation. And the result
is  equivalent  to  the  optimal  result  with .  It  is  denoted
that  the  RSS  corresponding  to  the  system  errors  models
with  polynomial  constraints  of  different  orders  are

, and the corresponding statistics 
are . Then the estimation  of  is

δ2
∗ =min

{
RSS1

Q1
,
RSS2

Q2
, · · · ,

RSSq

Qq

}
. (16)

After  obtaining  the  multi-station  fusion  system  error
model  constrained  by  the  optimal  polynomial,  the  tradi-
tional  identification  method  is  nonlinear  parameter  esti-
mation.

σ2

When  the  observation  error  is  independent  and  obeys
the  Gaussian  distribution  with  the  mean  0  and  the  vari-
ance ,  the  stable  optimal  estimation  can  be  obtained
according  to  the  following  Gauss-Newton  iterative  for-
mula:

β̂k+1 = β̂k + (JT J)−1 JT(Y−F(βk,Xi)) (17)

β̂k k
J

where  is  the parameter  estimation in the th iteration
and  is the Jacobian matrix.

However,  (12)  shows  that  the  estimation  error  of  the
traditional estimation method is

E
∥∥∥Hβ̂−Hβ

∥∥∥2
= nβδ2. (18)

Hβ̂
Hβ nβ

It  shows  that  when  is  used  as  the  estimation  of
, the error is proportional to . The more the parame-

ters, the worse the estimation.
After  the  polynomial  is  optimized  by  the  model  opti-

mal selection criterion and the system errors are modeled
uniformly by the reduced parameters, the inaccurate sys-
tem error parameter number will lead to the low position-
ing  accuracy  based  on  the  traditional  identification
method  while  the  identification  of  redundant  parameters
is  inaccurate.  Therefore,  it  is  necessary  to  select  the
appropriate number of the system errors. It is an effective
method  to  classify  and  identify  the  system  errors  with
multiple stations. 

3. Iterative  identification  for  system  error
based on improved spectral clustering

∆R1,∆R2, · · · ,∆Rm

In the multi-station fusion system errors model (10) con-
strained  by  the  optimal  polynomial,  whether  the  system
errors  can be accurately identified has
a great influence on the positioning accuracy. Assume all
the stations be the same error parameters, that will lead to
the  inaccurate  calculation  and  the  low  positioning  accu-
racy. However,  too many error parameters will  also lead
to  overfitting  in  the  model,  therefore,  it  is  an  effective
way  to  improve  the  positioning  accuracy  to  classify  and
identify the multi-station system errors,  and to select  the
appropriate number of the system errors.

The  spectral  method  transforms  the  data  clustering
problem  into  the  graph  cut  problem  with  the  similarity
matrix.  The  predefined  truncation  function  is  optimized
by calculating the eigenvalues and eigenvectors of Lapla-
cian  matrix,  and  the  relaxation  solution  of  the  minimum
cut  problem  is  obtained.  Finally,  the  cluster  structure  of
the  data  is  obtained  by  mapping  to  the  original  problem
[24]. However, the similarity matrix established based on
the  distance  generally  reflects  the  distance  similarity
between data, and still cannot reflect the similarity of the
system errors between the stations. Therefore, the simila-
rity  matrix  of  the  spectral  clustering  is  improved  by  the
similarity  of  the  system errors  between the  stations.  The
feedback and adjustment are carried out according to the
results  of  the  measurement  element  accuracy,  the  target
rotation  angle  and  the  system  errors  identification.  An
iterative  identification  algorithm  for  the  system  error
based on the improved spectral clustering is formed. 
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3.1    Spectral method

The  purpose  of  the  spectral  clustering  is  to  cluster  the
given  data  into  different  sets  according  to  the  similarity
matrix, so that the data of the same cluster are as similar
as possible, and the data between different clusters are as
different  as  possible.  For  a  given dataset  and the  simila-
rity graph, it is illustrated in the graph theory to find a cut
that  divides  a  graph  into  several  subgraphs  with  small
connection weights  between the  subgraphs  and the  large
connection weights.

W = (wi j)i, j=1,2,··· ,n X = (x1, x2, · · · , xn)
wi j xi x j

Assume  that  the  similarity  matrix  between  data  is
 for the given dataset ,

where  denotes  the  similarity  between  and .  A
calculation method is Gaussian similarity function as fol-
lows:

wi j = exp

−
∥∥∥xi− x j

∥∥∥2

2σ2

 (19)

σ

G(V,E)
V E

W V

where the hyperparameter  is used to control the ampli-
tude  of  the  adjacent  relationship.  A  non-oriented  graph

 is  generated  by  treating  each  data  as  a  vertex
according to the similarity matrix, where  and  repre-
sent  the  vertex  set  and  the  edge  set,  respectively.  Then,
the weighted adjacency matrix of the graph is the simila-
rity  matrix .  For  the  vertex  set ,  the  degree  of  each
vertex is defined as follows:

di =

n∑
j=1

wi j. (20)

D = diag(d1,d2, · · · ,
dn) L = D−W L̃ =
D−1/2LD−1/2

T∗

t1, t2, · · · , tk k
L̃ T∗ = (t1, t2, · · · , tk)

The  degree  matrix  is  defined  as 
.  Then,  the  Laplacian  matrix  and 

 are  obtained.  Obviously,  its  solution  of  the
relaxed linear programming  is composed of the eigen-
vectors  corresponding  to  the  first  minimal
eigenvalues of , namely .

H∗ = (u1,u2, · · · ,un)T

ui ∈ Rk i H∗

(u1,u2, · · · ,un)
(C1,C2, · · · ,Ck)

A1,A2, · · · ,Ak

To map the solution of the relaxed linear programming
to  the  original  problem,  let ,  where

 is  the  line  of ,  i.e.,  it  is  a  dimension  reduc-
tion.  Cluster  by  K-means  to  get  the  label
set .  Then  the  final  clustering  result

 of the original problem satisfies the follow-
ing relationship:

Ai = {x j|u j ∈Ci}. (21)
 

3.2    System  error  identification  based  on  improved
spectral clustering

The system errors of different stations are not only related
to the relative distances between the stations and the tar-
get, but also related to the measurement accuracy. There-
fore,  the  similarity  matrix  based  on  the  station  position
cannot  fully  reflect  the  similarity  of  the  system  errors

between  different  stations.  Therefore,  the  similarity
matrix of the spectral method is improved.

The  target  positioning  accuracy  is  related  to  the  geo-
metry of the positioning system and the inverse measure-
ment  accuracy  of  the  parameter  estimation.  An effective
way  to  improve  the  target  positioning  accuracy  is  to
improve  the  inverse  measurement  accuracy  and  the  tar-
get rotation angle accuracy when the station positions are
fixed.  Therefore,  the  inverse  measurement  accuracy,  the
rotation  angle  and  the  system  errors  are  considered  to
improve  the  similarity  matrix.  Obviously,  the  difference
between the system errors identification results of the two
stations  as  the  same  type  and  the  real  system  errors  is
smaller,  the system error similarity of the two stations is
higher.  Therefore,  in  this  case  that  all  the  stations  are
involved in the positioning, the system error similarity of
any two stations is defined as

si j = exp
(
−∥α̂−α∥

2

2σ2

)
(22)

α̂ = (σ̂, θ̂,∆R̂1,∆R̂2, · · · ,∆R̂m) σ̂

θ̂

∆R̂1,∆R̂2, · · · ,∆R̂m

i j α = (0, θ,∆R1,

∆R2, · · · ,∆Rm) θ ∆R1,∆R2, · · · ,∆Rm

where ,  and  is  the  accu-
racy of the inverse measurement element,  is the estima-
tion of the target rotation angle,  are the
identification  results  of  the  station  system  errors  when
station  and  station  are  the  same  type. 

,  and  are  the  corre-
sponding true value,  respectively.  According to (22),  the
similarity  matrix  is  continuously  iteratively  updated  to
obtain  the  accurate  classification  results  of  the  system
errors,  and  then  to  improve  the  positioning  accuracy  of
the underwater targets.

m
n

θ

In the underwater LBL positioning system, it is assumed
that  acoustic  stations  are  placed  on  the  seabed-based
platform for ranging the cylinder, and  beacons are uni-
formly installed on the  cylinder.  The initial  phase  of  the
cylinder is . Then, the system errors iterative identifica-
tion  algorithm  flow  for  the  underwater  LBL  positioning
based  on  the  improved  spectral  clustering  is  shown  in
Fig. 2. The specific process is as follows:
Step  1　 Optimize  the  polynomial  order  to  construct

the kinematic equation of  the cylinder centroid based on
the optimal selection criterion. The relative position rela-
tionship  between  the  beacons  and  the  cylinder  is  deter-
mined, as shown in (9) and (2), where

θ0 =
2π
n
. (23)

Step 2　Construct the weighted graph according to the
stations’ positions. The initial similarity matrix is set to

w(0)
i j = exp

−
∥∥∥xi− x j

∥∥∥2

2σ2

 (24)
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xi iwhere  is the position of the th station.
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Fig. 2    Algorithm process
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H∗ = (u1,u2, · · · ,un)T

n (u1,u2, · · · ,un)
(C1,C2, · · · ,Ck)

Step  3　  Establish  the  degree  matrix  ,  Laplacian
matrix  and .  Carry out  the feature  decomposition of

.  The  classification  number  is  determined  according
to  the  distribution  of  eigenvalues.  Calculate  the  feature
vectors  corresponding  to  the  first  minimal
eigenvalues  and .  The  K-means
method  is  used  to  cluster  data  vectors ,
and the  label  set  is  obtained.  Finally,  the
clustering results of the original problem are obtained:

Ai = {X j|u j ∈Ci}. (25)

Step  4　 Give  different  system  errors  to  each  clus-
ter  according  to  the  clustering  results,  so  as  to  establish
the  corresponding  measurement  equation  at  a  certain
time: 

R1 j1

R2 j2

...
Rm jm

 =


g1(a1,b1, · · · , θ,∆RAk1
)

g2(a1,b1, · · · , θ,∆RAk2
)

...
gm(a1,b1, · · · , θ,∆RAkm

)

 (26)

∆RAki

Aki
Aki
∈ {A1,A2, · · · ,Ak}

where  is the system error corresponding to the clus-
ter  and .
Step 5　Construct the fusion model as shown in (10),

and  the  parameter  estimation  is  iteratively  obtained
according to (17):

β̂ = (â1, b̂1, · · · , θ̂,∆R̂Ak1
, · · · ,∆R̂Akm

). (27)

t

Step 6　Substitute  the  parameter  estimation  (27)  into
the  measurement  equation,  the  accuracy  of  the  inverse
measurement element at time  can be obtained:

σt =

√
||Yt − Ŷt(β̂)||2

m−1
(28)

m t Yt Ŷt(β̂)

t

where  is  the  equation number  at  time ,  and 
represent  the  measurement  and  the  inverse  measurement
at time , respectively.

t

Step 7　Substitute  the  parameter  estimation  (27)  into
(2), the estimation of the target trajectory and the GDOP
at time  can be obtained:

GDOPt =

√
trace(Jt

T J t)
−1 (29)

J t

t
where  is  the  direction  cosine  matrix  of  the  target  at
time .
Step 8　The estimation accuracy of the target position

can be obtained by integrating the inverse element accu-
racy and the GDOP for the whole target trajectory:

η = GDOPt ·σt (30)

GDOPt σt Nwhere  and  represent  the  average  value  of 
sampling points for the target trajectory.

A1,A2, · · · ,Ak η

Step  9　 If  the  maximum  iteration  number  is  reached
or the clustering results of the stations converge, the clus-
tering results  and the accuracy  are output.
Otherwise,  the  similarity  matrix  is  updated  according  to
the existing clustering results:

wi j =


exp

(
−∥α̂−α∥

2

2σ2

)
, Aki

= Ak j

exp
(
−∥α̂

′−α∥2

2σ2

)
, Aki

, Ak j

(31)

Aki
= Ak j

Aki
, Ak j

α̂ = (σ̂e,

θ̂,∆R̂Ak1
,∆R̂Ak2

, · · · ,∆R̂Akm
) σ̂e

α̂′ = (σ̂e
′
, θ̂′,∆R̂′Ak1

,∆R̂′Ak2
, · · · ,∆R̂′Akm

)

i j

where  and  represent  the  same  cluster
and  different  clusters  of  the  two  stations. 

.  is the average inverse mea-
surement  accuracy. 
represents  the  parameter  estimation  results  of  taking  the
station  and  the  station  as  the  same  new class.  Then,
repeat Steps 3−9 based on the updated similarity matrix. 

4. Test validation
In order to verify the effectiveness of the proposed identi-
fication  method  for  the  underwater  LBL  positioning
based on the improved spectral clustering, it is applied to
the  LBL  lake  test  of  the  underwater  maneuvering  target
trajectory  fusion  solution,  and  the  experimental  analysis
is  carried  out  using  the  LBL  station  data  and  the  target
trajectory data in Songhua Lake. On the other hand, com-
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pared  with  the  conditions  of  the  lake  test,  the  working
condition of the sea test is more complex. Therefore, the
proposed method is also used for the experimental analy-
sis  in  the  shallow sea  area.  To  further  verify  the  perfor-
mance  of  the  method,  the  calculation  results  are  com-
pared  with  the  solution  method  without  considering  the
target  rotation  angle  (Method  1),  the  solution  method
without system error identification (Method 2),  the solu-
tion method with full system error identification (Method 3)
and the system error identification method directly based
on  K-means  clustering  algorithm  (Method  4).  The  full
system error identification refers to taking each station as
a cluster, that is, the number of the system errors is equal
to the station number. 

4.1    Test scenario

m = 11

The  equipment  used  in  the  LBL  lake  test  include  the
acoustic  stations,  the  beacons,  and  the  target  cylinder.
The number of acoustic stations , 10 of which are
placed  within  1  km×2  km  of  the  bottom  and  another
mounted on a surface boat. A crane is used to control the
cylinder on a large surface ship. The distance between the
two  ships  is  50−100  m during  the  experiment.  The  bea-
cons  are  mounted  on  the  target  cylinder.  The  stations’
positions are calibrated by the survey ship before the test.
The  cylinder  is  put  into  the  water  by  the  crane  after  the
beginning  of  the  test.  After  the  cylinder  is  placed  in
water, the acoustic beacons began to emit signals, and the
acoustic stations began to receive signals and collect data.
The  cylinder  stops  when  it  reaches  a  certain  depth.  And
the  cylinder  is  pulled  to  the  water  surface  at  a  uniform
speed by the crane after the signal is emitted. During the
period,  both  the  large  ship  and  the  small  ship  drift,  and
there is displacement in the horizontal direction. After the
cylinder reaches the water surface,  stop emitting signals,
the cylinder is out of the water, and the single group test
ends.  A  global  positioning  system  (GPS)  antenna  loca-
tes  directly  above  the  cylinder  point  and  a  depth  gauge
mounted on the cylinder provides horizontal and vertical
position  reference  during  the  process  from  the  time  the
cylinder enteres the water to the time it exits the water.

The scenario of the LBL sea test is the similarity with
the lake test, but the complex environment of the sea test
results  in  only  eight  out  of  ten  acoustic  stations  valid  at
the bottom. 

4.2    Test result analysis

Firstly,  the  optimal  selection  criterion  of  the  model  is
used to adaptively select  the polynomial order.  After the
unified  modeling  of  the  multi-station  system errors  with
the reduced parameters, the proposed iterative identifica-
tion for  the system error  based on the improved spectral
clustering  is  used  for  the  parameter  identification,  the

cylinder  trajectory  estimation  and  the  accuracy  evalua-
tion.  In the two test  scenarios,  the RSS and the statistics
for different polynomial models are shown in Table 1.
 
 

Table 1    Comparison of different polynomial models

Test
scenario

Polynomial
order

RSS nβ Q S

Lake test
(m=11, N=9 999)

1 1 423.70 18 109 971 311.28
2 1 129.02 21 109 968 16.66
3 1 112.54 24 109 965 0.24
4 1 125.68 27 109 962 13.45

Sea test
(m=9, N=8 460)

1 1 456.43 16 76 124 618.73
2 1 402.20 19 76 121 564.57
3 837.81 22 76 118 0.24
4 845.77 25 76 115 8.26

 

S
S

The  statistics  decreases  with  the  increase  of  the
order when the polynomial order is less than 3.  Then, 
begins  to  increase  when  the  polynomial  order  is  more
than  3.  Therefore,  the  cylinder  trajectory  model  is  opti-
mized to the form of cubic polynomial. In the experiment,
the  reference  trajectory  of  the  cylinder  and  the  overall
layout  of  the  acoustic  stations  after  the  data  preprocess-
ing of the measured data are shown in Fig. 3.
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Fig. 3    Overall layout of stations and the cylinder
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L̃

The  iterative  identification  based  on  the  improved
spectral clustering is used to identify the system error of
the  surface  acoustic  station  and  the  underwater  acoustic
stations.  The initial  similarity  matrix  is  generated  by the
stations’ positions, as shown in (19). In the lake test and
the  sea  test,  the  underwater  acoustic  stations  are  divided
into six categories and four categories after three and two
iterations,  respectively.  When  the  classification  number
no longer changes, the system error and the rotation angle
can  be  accurately  identified.  The  variation  of  the  eigen-
values’ distribution  of  during  iterations  is  shown  in
Fig. 4 and Fig. 5.
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Select the cluster number of the stations and the identi-
fication  number  of  the  system errors  adaptively  changes
according  to  the  distribution  of  the  eigenvalues  during
iterations. It  can be seen from Fig. 4 that in the lake test
scenario, the initial cluster number is selected as 1 acco-
rding  to  the  eigenvalues’ distribution  of  the  initial  simi-
larity  matrix.  The  cluster  number  of  the  stations  finally
converges to 6 and does not change after three iterations.
The  clustering  results  are  shown in Fig.  6. Fig.  5 shows
that  in  the  sea  test  scenario,  the  initial  cluster  number  is
selected  to  be  1  according  to  the  eigenvalues’ distribu-
tion of the initial similarity matrix. The cluster number of
the stations converges to 4 and does not change after two
iterations.  The  clustering  results  are  shown  in Fig.  7.  It
can  be  seen  that  the  system error  similarity  between  the
stations is  not  only determined by the distances between
the stations and the target.
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The system error parameters are assigned according to
the final classification results of the stations, and the tar-
get  position parameters  are  solved by the model.  Taking
the  cylinder  position  provided  by  the  GPS  antenna  as  a
reference,  the  cylinder  trajectory  obtained  by  the  system

error  iterative  identification  with  the  improved  spectral
clustering  (SEI-ISC),  the  target  rotation  angle  and  the
system  error  proposed  are  compared  with  the  trajectory
results obtained by other methods. The comparison of the
RSS is shown in Fig. 8 and Fig. 9.
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σ̂

θ̂

The comparison between the measurement accuracy ,
the cylinder rotation angle , the GDOP of the target, and

ηthe  accuracy  of  target  position  calculated  by  each
method are shown in Table 2.
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Table 2    Results of various methods

Test scenario Method σ̂/m θ̂/(°) GDOP η/m

Lake test

SEI-ISC 0.098 2 179.97 4.812 9 0.472 7

Method 1 0.329 3 − 4.921 2 1.620 7

Method 2 0.432 7 74.57 5.213 1 2.256 0

Method 3 0.130 4 55.80 4.790 9 0.624 8

Method 4 0.123 2 55.90 4.790 4 0.590 4

Sea test

SEI-ISC 0.101 7 180.24 4.410 1 0.448 7

Method 1 0.339 7 − 4.236 2 1.439 2

Method 2 0.654 6 55.59 4.092 7 2.679 2

Method 3 0.181 6 158.27 4.489 4 0.815 4

Method 4 0.148 0 152.39 4.384 4 0.649 0
 

The true cylinder rotation angle is 180°. It can be con-
cluded as follows:

(i) Regardless of the rotation angle of the target or the
system  errors  of  the  stations  will  lead  to  the  inaccurate
calculation result and the low accuracy. And the calcula-
tion trajectory deviates from the reference trajectory.

(ii) For the solution method with full system error iden-
tification  or  the  system  error  identification  method
directly  based  on  the  K-means  clustering  algorithm,  the
calculation  accuracy  is  slightly  improved.  However,  the
target rotation angle and the system errors are still inaccu-
rate, which results in that the calculation trajectory devi-
ates from the reference trajectory.

(iii)  When the iterative identification for the underwa-
ter positioning system error based on the improved spec-
tral  clustering  is  adopted,  the  calculation  of  the  target
rotation  angle  and  the  system  errors  of  stations  is  more
accurate. The measurement accuracy is about 0.1 m, and
the positioning accuracy is the highest, better than 0.5 m.
And  the  calculated  trajectory  is  almost  coincident  with
the reference trajectory.

(iv)  The  positioning  accuracy  of  the  sea  test  is  lower
than that of the lake test. This is because that the working
condition  of  the  sea  test  is  more  complex  and  the  mea-
surement uncertainty factors are more numerous. 

5. Conclusions
Taking  the  target  tracking  of  the  underwater  positioning
system and the problem of the system error identification
as the background, the iterative identification method for
the underwater system error is given. Due to the ill-condi-
tion  of  the  traditional  EMBET  model  with  too  many
parameters to be estimated, a multi-station fusion system
error model based on the optimal polynomial constraint is
proposed for the underwater positioning in the small area
and the  short  time.  The unified modeling of  the  reduced
parameters  for  the  trajectory  parameters  and  the  system

error  coefficients  is  realized.  In  view  of  the  problem  of
the  inaccurate  system error  identification or  the  over-fit-
ting in the process of the target positioning, the classifica-
tion of the system errors of the stations only according to
the  distances  between  the  stations  and  the  target  fails  to
consider  the  connection  of  the  system error  between  the
stations.  Therefore,  a  multi-station  non-oriented  graph
network is established, and an improved spectral cluster-
ing iterative identification method based on the measure-
ment accuracy, the rotation angle and the system error is
proposed.  The  system  error  of  the  stations  is  accurately
identified, and the accurate estimation of the target posi-
tion  parameters  is  realized.  Finally,  it  is  applied  to  the
LBL lake test and the sea test scenarios. And the system
error  of  the  stations  is  accurately  identified,  and  the  tar-
get positioning accuracy is improved.
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