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Abstract: With the rapid development of low-orbit satellite com-
munication networks both domestically and internationally,
space-terrestrial integrated networks will become the future
development trend. For space and terrestrial networks with limi-
ted resources, the utilization efficiency of the entire space-terres-
trial integrated networks resources can be affected by the core
network indirectly. In order to improve the response efficiency of
core networks expansion construction, early warning of the core
network elements capacity is necessary. Based on the inte-
grated architecture of space and terrestrial network, multidimen-
sional factors are considered in this paper, including the number
of terminals, login users, and the rules of users’ migration during
holidays. Using artifical intelligence (Al) technologies, the regis-
tered users of the access and mobility management function
(AMF), authorization users of the unified data management
(UDM), protocol data unit (PDU) sessions of session manage-
ment function (SMF) are predicted in combination with the num-
ber of login users, the number of terminals. Therefore, the core
network elements capacity can be predicted in advance. The
proposed method is proven to be effective based on the data
from real network.
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1. Introduction

With the rapid development of low-orbit satellite [1]
communications, space networks, and terrestrial net-
works are gradually forming two independent informa-
tion communication networks. Although space networks
have wide coverage areas [2] and robust disaster tole-
rance, network performance can be greatly affected by
environmental conditions, terrestrial weather, and build-
ings. Currently, the system capacities [3] and speeds are
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far lower than those of terrestrial 5th generation mobile
communication technology (5G) networks. Although ter-
restrial 5G networks have high performance, big capacity,
and excellent service quality, they cannot be applied in
remote areas, such as the scenes of oceans,
mountains/suburbs with problems of business continuity
and ubiquitous service. At present, there is a trend of inte-
grating satellite and 5G networks. As a supplementary
extension, satellite communications enhances the capabil-
ities of 5G networks, and space networks extend the spa-
tial dimension of the terrestrial networks, enabling global
coverage communication with high reliability and high
security [4].

The integration of space and terrestrial networks plays
an important role in the research areas of enhanced 5G
and 6th generation mobile communication technology
(6G) scenarios [5,6]. In the space-terrestrial integrated
networks (STIN), the advantages of both networks are
combined and an effective solution for “always-online”
communication is provided.

From the perspective of long-term development of
integrated networks, space networks mainly include space
access networks and space core networks, while the ter-
restrial networks mainly include terrestrial access net-
works and terrestrial core networks, respectively [6]. In
both space networks and terrestrial networks, the core
networks are the core of network control nodes and have
a great effect on controlling user registration, session
management, mobility management, traffic control and so
on. Therefore, the utilization efficiency of STIN
resources can be affected by the core networks indirectly.
For space networks or terrestrial networks, it is necessary
to improve the response efficiency of expansion and con-
struction for core networks.

Recently, with the development of digital transforma-
tion, the artificial intelligence (AI) technologies have
been widely used in the communication networks [7],
covering the whole processes of network planning, con-
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struction, maintenance, optimization, and operating, for
example, fault prediction [7—10], performance prediction
[11], energy conservation of base station [12], business
model prediction [13], load balancing [14], network
anomaly detection, and capacity prediction [15,16].

Al technologies have been applied to core networks as
well. Long short-term memory (LSTM), gradient boost-
ing decision tree (GBDT), autoregressive integrated mov-
ing average (ARIMA) model, and Prophet algorithms
[17-21] have been used to predict the central processing
unit (CPU) and memory usage of access and mobility
management function (AMF), session management func-
tion (SMF), and user plane function (UPF) network ele-
ments in core networks [15,18,19,21]. However, these
research focus on CPU and memory usage. There is no
research on predicting the capacities of core network ele-
ments (AMF, SMF, unified data management (UDM))
yet, especially combined with the number of login users
and the number of terminals.

Considering multi-dimensional factors such as the
number of user terminals, the number of login users, and
the rules of user migration during holidays, the capacities
of 5G core network elements (AMF, SMF, UDM) are
predicted in this paper. Network demand capacity in the
future can be predicted in advance, which contributes to
the rapid development of 5G and voice over long-term
evolution (VoLTE) users. Therefore, the health of net-
work load can be monitored in real time with dynamic
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thresholds, and the capacity expansion cost can be
reduced. Furthermore, the utilization rate of network
resources, as well as the response efficiency of capacity
expansion construction can be effectively improved.

This paper is organized as follows. An overview of
STIN is depicted in Section 2, including network archi-
tecture and evolution routes of STIN. The method of core
network capacity warning is proposed in Section 3, con-
sisting technical scheme and algorithm. Implementation
and results are described in Section 4. Finally conclu-
sions are drawn in Section 5.

2. An overview of STIN
2.1 Network architecture

With 5G and space networks being incorporated into the
“new infrastructure” category in China, STIN are the
future trend of new information infrastructure. More and
more research focus on improving the coverage of STIN
and offering “always-online” capabilities [22-24]. This
can be achieved by utilizing information technology
resources and respective advantages efficiently, and solv-
ing the problems of high dynamic network topology,
mixed business differentiation, and difficulty in platform
heterogeneous interoperability.

The overall architecture of STIN meets the require-
ments of ubiquitous multi-level access in the future. The
STIN architecture is shown in Fig. 1.
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STIN architecture consists of the following systems
[25-29]:

(i) Space system with communication, navigation, and
remote sense

i) Remote sensing satellite: space information;

i) Navigation satellite: dynamic information;

iii) Communication satellite: communication informa-
tion;

iv) Satellite plus highaltitude platform station (HAPS):
constellations, high-altitude airships, drone, aircraft, and
other platforms.

(ii) Terrestrial network (transmission) system

1) Interchange (access / fusion) gateway: space remote
communication station and terrestrial gateway;

ii) Terrestrial stations, transmission, and core networks.
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2.2 Evolution routes of STIN

From the perspective of fixed, mobile, and space-inte-
grated access, the third generation partner project (3GPP)
protocols are mainly used in terrestrial networks, includ-
ing fixed and mobile access. The non-3GPP access meth-
ods are also supported at the same time. In contrast, non-
3GPP protocols such as digital video broadcast (DVB)
are initially adopted in space networks. The two systems
are developed independently initially and interconnected
from the terminal to the access networks. From the per-
spective of long-term development, the evolution of inte-
gration can be divided into three stages: business integra-
tion, system integration, and deep integration. These
stages are shown in Fig. 2 [24,30-34].
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Fig. 2 Three stages of integration and evolution

Stage 1 Business integration stage

Integration mode: multi-mode terminals, network inter-
working, and private satellite protocol;

Development strategy: as an emergency supplement to
real networks, rely on narrowband communication capa-
bilities of satellite in orbit, in order to solve the emer-
gency communication requirements such as short mes-
sages and voice in remote areas without cellular scena-
rios [30-34].

Stage 2 System integration stage

Integration mode: some of network elements is inte-
grated with satellite, and the 3GPP standard communica-
tion system is adopted in STIN.

Development strategy: the coverage capability of cellu-
lar networks can be enhanced by STIN, providing users
with seamless coverage voice and wide/narrow band
mobile communication services over the entire domains
[30-34].

Stage 3 Deep integration stage

Integration mode: toward 6G standard, network ele-
ments are on-board based on demand and deployed in a
distributed manner.

Development strategy: based on beyond 5G (B5G) sys-
tem integration, the network elements are deployed on
demand and AI on-board to provide terrestrial cellular
users with high reliability and high-quality intelligent net-
works. Considering the limited resource and capacity of
space nodes, as well as the topological time-varying
nature of the satellite constellation of non-geostationary
satellite orbit (NGSO), it is necessary to efficiently uti-
lize the physical resources of the STIN and predict the
capacity and bandwidth usage of corresponding network
elements in advance. During the initial adaptation, inter-
mediate use, and later release of STIN network resources,
Al algorithms are introduced to predict network element
resources and assist in the intelligent management of net-
work elements. In order to predict capacity, first of all,
the resource pool of the STIN should be abstracted to
form differential space and terrestrial resource supply
capabilities; secondly, the network topology and the
capacity of space nodes’ resources are imported. Finally,
Al algorithms are introduced to predict resource capacity
requirements [30—34].
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Due to the reason that the lack of satellite data, the net-
work capacity management of terrestrial network is stu-
died in this paper.

3. Core network capacity warning

The core network is one of the important networks in the
STIN. In order to bear the significant increase in data
traffic and ensure the expansion needs of data-intensive
services, the number of 5G core network devices, which
play an important role in global resource management
and data service carrying, will be sharply increased. The
implementation cycle of expansion takes a long time. It is
often difficult to respond to market expansion needs

Journal of Systems Engineering and Electronics Vol. 35, No. 4, August 2024

timely. The capacity of core network elements and expan-
sion plans should be predicted in advance to ensure user
perception and alleviate the pressure of future traffic
increase.

3.1 Technical scheme

In order to solve the urgent demand of network for the
rapid development, a capacity early warning and schedul-
ing module is developed on the network functions virtua-
lization orchestration (NFVO) system, which can give
early warning, once the network element capacity is
beyond the threshold. The technical scheme architecture
is shown in Fig. 3.
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Fig.3 Technical scheme of capacity warning and scheduling module

A two-level architecture with headquarter and regions
is adopted in this system. The NFVO in headquarter is the
main management platform of the core network, provid-
ing management and maintenance abilities for the whole
company’s 5G core and other core network sub-domains.
The data of business operational condition, software
license, and the cloud resource hardware availability is
reported per hour by the NFVO in regions, to the NFVO
in headquarter. The algorithm/threshold requirements are
reported by the operation and maintenance staff to the
NFVO in headquarter. The forecast of market develop-
ment, the capacity construction plan of order receiving
and feedback can also be imported later. In addition, the
number of terminals in business domain and develop-
ment users can also be provided to the NFVO headquar-
ter. Based on these data, the network element capacity
can be predicted by the capacity early warning and
scheduling module comprehensively.

3.2 Algorithm
3.2.1 Prophet

Prophet is an algorithm designed to predict single-vari-
able time series data sets. In the Prophet model, the prior

knowledge of multiple variables is used to predict the
time series of a single variable and with nonlinear charac-
teristics. Comparted to using the LSTM algorithm, the
result of using the Prophet algorithm is quite similar.
However, the training cost and the using difficulty is
lower. The fitting speed of the Prophet algorithm is very
fast, and various different combinations can be tried in a
limited time. The overall performance of using Prophet is
relatively better, therefore, the Prophet is taken in this
paper. Unlike traditional time series prediction methods, a
new solution to transform the prediction problem into a
fitting problem is proposed in the Prophet algorithm.
Based on the decomposition of the time series as an addi-
tive model, the trend term, cycle term, and holiday term
are decoupled to solve the time series prediction problem
[35,36].
The Prophet model can be decomposed as

y(#) = g(®) + s(t) + h(t) + &, (D

where g(f) is the trend function with non-periodic
changes, s(f) describes the periodic function with peri-
odic changes, i.e., seasonality; h(r) represents the effects
of holidays with potential irregular schedules, and ¢, are
the unique changes not fitted by the model. The detailed
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information can be found in [35].

In this paper, a number of three network element
capacity, the number of login users (NU), the number of
terminals (NT) are studied. For each network element
capacity from one province, the length of sliding window
from history input data is defined with inlen, the length of
interval between the input data and output data is defined
with space, the length of the output date is noted with
outlen, D is the data including network element capacity,
NU, and TU. In that way, data D[i:i+inlen—1] used to pre-
dict Dl[i+inlentspace:i+inlentspacetoutlen—1], with i
being the starting date index. The prophet algorithm is
implemented by the following steps.

Step 1 Data pre-processing

The average values of the adjacent data are interpo-
lated once there is empty data. After data preprocessing,
the data is normalized respectively and divided into the
training and test sets. The data format after preprocessing
is set as D:[date, network element capacity, NU, NT]
with four dimensions.

Step 2 Parameter configuration

The model hyper-parameters is configured as follows:

yearly seasonality=40,

growth="‘linear’,

changepoints=None,

n_changepoints=25,

changepoint_range=0.8,

yearly seasonality=40,

weekly seasonality=‘auto’,

daily_seasonality="auto’,

seasonality mode="‘additive’,

seasonality prior scale=10.0,

holidays_prior_scale=10.0,

changepoint prior scale=0.05,

mcmce_samples=0,

interval width=0.80,

uncertainty _samples=1000,

stan_backend=None.

3.2.2 DeepState

In the analysis of time series, some classic methods, such
as ARIMA and Holt Winters, can be rebuilt as state space
models. The state space model can be modeled each time
series separately and similar patterns between sequences
cannot be utilized, therefore, it is ineffective for limited
historical data.

The state space model is combined with deep learning
in DeepState model. The recurrent neural network is used
to map the features into the parameters of the state space
model, which can predict the probability distribution of
the sequence values at each time index. Similar patterns
from a large number of series and features are learned,

and the model is therefore explainable [37,38].

Moreover, there is stronger prior knowledge in Deep-
state, therefore, less training data should be required. In
this paper, the historical data is only about one year, there
are also some missing values. A robust algorithm should
be chosen. Various algorithms haven been tried in this
paper, and Deepstate is found to have a better perfor-
mance than DeepAR and other algorithms, therefore,
DeepState is compared with Prophet in this paper.

A state transition and an observation model is included
in the state space model. The rule of hidden state chang-
ing over time is described in a state transition, with the
transition probability p(l|l._;), and latent state [, € R:,
where ¢ is the time index in the training range of
{1,2,---,T} [37].

For the observation model, the conditional probability
of the observations under a given latent state p(z]|l,) is
defined, with z, being the Gaussian observation model.

The process of the DeepState model is performed as
follows.

Firstly, the recurrent neural network (RNN) model is
used to calculate the network output:

h, = RNN(hr—l . X;) (2)
where x, is the feature and assumed as a covariate vector,
h,_, is the previous network output.

Then the value k; is used to calculate the parameters of
the state space model:

0, = ¢p(h,). (3)
Finally, the likelihood is estimate by
pss = (zi7101.7) C))

where pss is calculated marginal probability of a given
observation value z;.r using parameter 6,7, z,.r is target
time series (observations value) from time 1 to 7, 6,.; is
the parameter of state space model from 1 to 7'[37].

The future data can be predicted by maximizing the log-
likelihood learning network parameters. The detailed
information can be found in [37].

In this paper, the DeepState model is implemented by
the following steps:

Step 1 Data preprocessing

The same as Step 1 in Subsection 3.2.1.

Step 2 Parameter configuration

The model hyper-parameters are configured as follows:

freq="D",

prediction_length=30,

epochs=20,

cell_type= “Istm”

num_batches_per_epoch=50,

use_feat dynamic_real=True.
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3.3 Model evaluation

In order to evaluate the performance of the prediction,
two measurements, one is coefficient of determination R2,
and the other is the mean square error (MSE), are adopted
in this paper.

3.3.1 Coefficient of determination

The performance of a predictor can be indicated by the
coefficient of determination R. The correlation between
the observed values and the predicted values of the
regression model can be illustrated by the percentage of
effective variance. The mean value is often used to be the
benchmark error. R [39] is calculated as follows:

S 0-97
=1

i
D05-5)
j=1

where y; represents the actual observation value, y; is the
average value, 9; denotes the predicted value, and j is the
time index .

If R*=0, the numerator equals the denominator, and
each predicted sample value equals the mean value. If
R=1, the predicted value and the true value in the sam-
ple are entirely same without any error [39].

R=1- 5

33.2 MSE

MSE is based on the square of the difference between the
actual and predicted values. It is often used as the loss
function of linear regression. The smaller the value of
MSE is, the better the accuracy of the prediction model to
describe the experimental data is. MSE [40] is computed
by

l m
MSE = — =9 6
~ Z ;=5 (6)
where m represents the total amount of data.

3.4 Correlation analysis

Before performing the aforementioned algorithm, the
cross-correlation function (CCF) was used in this paper to
analyze the correlation between each feature and each
network elements capacity, aiming to select the features
that significantly affect the capacity of each network ele-
ment. CCF [41] can be obtained by

N

3065 7)

(7)

2 (= X) (1 7)

t=1

ccf, =

where X, represents the value of time series X at time ¢,
Y,,, denotes the value of time series ¥ at time #+n, n is the
time difference, N implies the number of data, X and ¥
are the average value of X and ¥, respectively. The ccf
indicates the degree of correlation between X and Y [41].

The closer the absolute value of the CCF result is to 1,
the stronger the correlation can be discovered. Moreover,
it is known that X and Y are negatively correlated if the
result of CCF is negative [41].

4. Implementation and results

Data from September 01, 2021 to Novermber 06, 2022 in
one province taken from China Unicom real network is
used in this paper, with a number of 414 in total. The data
is collected once per day, and includes three network ele-
ments: AMF, UDM, and SMF. The network elements
capacity refer to the number of registered users of AMF,
the authorization users of UDM, and protocol data unit
(PDU) sessions of SMF, respectively. All data is arranged
in a chronological order.

Applying the data format from Subsection 3.2.1 and
Subsection 3.2.2, a number of 384 data (from September
01, 2021 to October 07, 2022) is used for training, and a
number of 30 data (from October 08, 2022 to November
06, 2022) is used to be predicted.

4.1 Results of correlation analysis

The correlation analysis between each network element
capacity and each feature is based on the data sequences
of AMF, UDM, and SMF network elements capacity and
features from September 01, 2021 to April 17, 2022. The
features include holiday, workday, weekend, NU, and
NT. The correlation analysis results are shown in Table 1.

Table 1 Results of correlation analysis

Feat AMF/Ten UDM/Ten SMEF/
I
caure thousand users thousand users Ten thousands sessions
NU/Ten 0.876026 0.985335 0.847536
thousand users
NT/Ten
0.871045 0.968 826 0.833428
thousand users
Holiday —0.264972 -0.027671 —0.299663
Workday —-0.143109 —0.008093 —-0.180952
Weekend —-0.008 03 0.000481 —0.028388

Aiming to describe the correlations between each net-
work element capacity and each feature more intuitively,
the scatter diagrams are plotted. Some of the scatter dia-
grams are shown in Fig. 4 and Fig. 5. The closer the scat-
ter plot to a straight line is, the higher the correlation
exists. With an example of holidays and AMF shown in
Fig. 4, it can be inferred that there is no correlation
between holidays and the value of AMF. The results of
UDM and NU in depicted in Fig. 5, it can be clearly seen
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that the UDM is strongly positively correlated with login
users.

Holiday

0 1 1
0 20 40 60 80 100

AMF/Ten thousand users
Fig. 4 Scatter diagram of AMF and holiday
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Fig.5 Scatter diagram of UDM and NU

It can be concluded that there is strong and positive
correlations between the network element capacity of
AMF, UDM, and SMF with NT and NU, and there is no
correlation between holiday, workday, or weekend.
Therefore, NT and NU are added to the algorithms for
predicting the network element capacity of AMF, UDM,
and SMF.

4.2 Results of algorithm

42.1 AMF

The true value, the predicted value using Prophet algo-
rithm, and the predicted value using DeepState algorithm
for the registered users of AMF are shown in Fig. 6. The
results of R* and MSE to evaluate the accuracy are
depicted in Table 2.
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Fig. 6 Prediction of AMF capacity
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Table 2 Accuracy evaluation of AMF capacity

Parameter Prophet DeepState
MSE 0.000029 0.008465
R 0.944 0.83
422 SMF

The true value, the predicted value using Prophet algo-
rithm, and the predicted value using DeepState algorithm
for the registered users of SMF are shown in Fig. 7. The
results of R° and MSE to evaluate the accuracy are
depicted in Table 3.

SMF/Ten thousand sessions
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Fig. 7 Prediction of SMF capacity

Table 3 Accuracy evaluation of SMF capacity

Parameter Prophet DeepState
MSE 0.000068 0.048908
R 0.893 0.36
423 UDM

The true value, the predicted value using Prophet algo-
rithm, and the predicted value using DeepState algorithm
for the authorization users of UDM are shown in Fig. 8.
The results of R* and MSE to evaluate the accuracy are
depicted in Table 4.
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Fig. 8 Prediction of UDM capacity
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Table 4 Accuracy evaluation of UDM capacity

Parameter Prophet DeepState
MSE 0.000014 0.002061
R 0.954 0.98

From the graphic results of three network elements, it
can be seen that the Prophet algorithm performs better for
predicting AMF and SMF, while the performance is simi-
lar for predicting UDM.

For the results of MSE, using Prophet, the perfor-
mance is always better than using DeepState. For the
results of R, the prediction of AMF and SMF is better
using Prophet, while the R is quite similar for predicting
UDM. Moreover, the authorization users of UDM are
normally quite stable. Although AMF is related to the
mobility of users, the number of registered users of AMF
in one province is also stable. The PDU sessions of SMF
are related to the users using the business, which are in a
dynamic state, therefore, compared to AMF and UDM,
there is fluctuation between the predicted values for SMF.

5. Conclusions

The architecture of STIN is depicted in this paper. Three
stages of integration and evolution routes are described in
detail. As an important network in STIN, the response
efficiency of core networks expansion construction
should be improved. The method of time series predica-
tion is innovatively applied to the core network in this
paper. Based on the correlation analysis between each
feature and each network elements capacity, the regis-
tered users of AMF, authorization users of UDM, PDU
sessions of SMF are predicted in combination with the
number of NU, and NT. Taking the data from real net-
work, a good prediction result is observed, with R being
0.954 maximum and MSE being 0.000 014 minimum.
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