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Abstract: With the continuous development of network func-
tions virtualization (NFV) and software-defined networking (SDN)
technologies and the explosive growth of network traffic, the
requirement for computing resources in the network has risen
sharply. Due to the high cost of edge computing resources,
coordinating the cloud and edge computing resources to
improve the utilization efficiency of edge computing resources is
still a considerable challenge. In this paper, we focus on optimiz-
ing the placement of network services in cloud-edge environ-
ments to maximize the efficiency. It is first proved that, in cloud-
edge environments, placing one service function chain (SFC)
integrally in the cloud or at the edge can improve the utilization
efficiency of edge resources. Then a virtual network function
(VNF) performance-resource (P-R) function is proposed to repre-
sent the relationship between the VNF instance computing per-
formance and the allocated computing resource. To select the
SFCs that are most suitable to deploy at the edge, a VNF place-
ment and resource allocation model is built to configure each
VNF with its particular P-R function. Moreover, a heuristic recur-
sive algorithm is designed called the recursive algorithm for max
edge throughput (RMET) to solve the model. Through simula-
tions on two scenarios, it is verified that RMET can improve the
utilization efficiency of edge computing resources.

Keywords: cloud-edge environment, virtual network function
(VNF) performance-resource (P-R) function, edge resource allo-
cation.
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1. Introduction

With the development of network technology and smart
terminal devices, diversified network services and appli-
cations continue to emerge such as Internet of Things ser-
vices [1], health monitoring [2], autonomous driving [3],
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virtual/augmented reality [4], and remote computing [5].
Meanwhile, Internet users are growing explosively,
which will bring huge challenges to both the underlying
data forwarding network and network service instances.
However, the traditional network service provisioning
and management paradigm cannot support such massive
services. To overcome this limitation, several promising
network innovations, such as Network functions virtual-
ization (NFV) and cloud/edge computing, have been pro-
posed and already implemented in the industry [6].

NFV technology has been considered as a key to solv-
ing the bottleneck of the traditional network since it was
first proposed by European Telecommunications Stan-
dards Institute (ETSI) [7] in 2012. NFV adopts a software-
based virtualization approach to replace traditional dedi-
cated middleboxes with VNFs deployed on commercial
on-the-shelf (COTS) devices. Based on NFV, a complex
network service can be decomposed into multiple inde-
pendent VNFs, and the user traffic only needs to pass
through an ordered VNF sequence, called SFC [8], to
complete the required network service. Meanwhile, with
the support of software-defined networking (SDN) [9,10]
and network slicing technology [11], NFV management
and operation (MANO) have become more efficient and
concise [12]. Hence, network service providers (NSP)
prefer to deploy network functions in the form of VNFs,
which causes explosive growth in demand for computing
resources.

As a result, cloud service providers (CSP) have been
widely deployed cloud and edge computing nodes in the
network and provide strong computational power for
countless VNFs. Users can purchase cloud and edge com-
puting resources flexibly and conveniently to complete
the required network services. Compared with cloud
computing nodes, edge computing nodes are closer to
users and have extremely low access delay [13]. On the
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other hand, since the deployment location is close to
users, the cost of edge computing nodes is much higher
than cloud computing nodes, greatly limiting the deploy-
ment scale of edge computing nodes. Therefore, it is dif-
ficult for users to complete complex network services by
purchasing only edge computing resources, but they need
to purchase edge computing resources to collaborate with
cloud computing resources. For users, how to deploy
SFCs with limited edge resources and abundant cloud
resources to maximize the utilization of edge resources
purchased remains a considerable challenge.

In this paper, from the perspective of CSPs, we aim to
maximize the utilization efficiency of limited and pre-
cious edge computing resources based on the network
service requirements of NSPs in cloud-edge environ-
ments. Since the current definition of cloud-edge net-
work is relatively vague, we adopt the view generally
accepted by existing literature that a network containing
both edge computing nodes and cloud computing nodes
can be called a cloud-edge network [14]. This work has
two vital innovations:

(i) We consider VNF placement and each SFC as a
placement object, and determine whether it should be
deployed in the cloud or at the edge. We formulate one
new regulation for SFC placement in cloud-edge environ-
ments: VNF instances contained in the same SFC should
integrally be deployed in the cloud or at the edge. As for
the cloud-edge SFC in the actual situation, we believe
that the main purpose of the cloud-edge SFC is to com-
press data at the edge servers to save bandwidth. In this
paper, the cloud-edge SFC is divided into two separate
SFCs for processing. In the existing researches of VNF
placement in cloud-edge scenarios, the core decision-
making problem is selecting the most suitable server for
each VNF instance. However, the VNFs within one SFC
may be deployed simultaneously in edge servers and
cloud servers. In this situation, due to the extensive
access delays of cloud servers, the overall delay of this
SFC must be large, and the edge computing resources uti-
lized by this SFC are wasted. Thus, we need a new regu-
lation to avoid the situation. Moreover, the new regula-
tion also brings a new optimized objective: selecting
SFCs most suitable to deploy at the edge.

(i) We introduce the resource consumption peculiarity
of each VNF type into the consideration of resource allo-
cation. We propose the VNF performance-resource (P-R)
function to represent the functional relationship between
the performance indicator of one VNF instance (e.g.,
throughput and processing delay) and the allocated
resource for the VNF instance in a specific hardware
environment. Through the P-R function, we can link
resource allocation with the user requirements directly.

According to the throughput and quality of service (QoS)
requirements of user traffic, P-R function can help us to
calculate the least computing resources required by each
VNF instance in SFC. Unlike most existing VNF
resource allocation studies where fixed computing
resources are allocated to VNF instances based on VNF
type, this work dynamically determines resource alloca-
tion by VNF P-R function and service requirements. This
dynamic approach can prevent insufficient or redundant
resource allocation caused by fixed approaches, making a
big difference in resource-constrained edge scenarios.

Based on the two innovations, we build a network ser-
vice slice model including cloud and edge computing
resources, where we configure every VNF in the slice
with its own particular P-R function. We take the utiliza-
tion efficiency of edge computing resources purchased by
users as the key performance indicator (KPI) and take the
total throughput of the SFCs deployed at the edge abbre-
viated as edge throughput (ET), as the measure of utiliza-
tion efficiency of edge computing resources and set the
optimization objective to find a subset of all SFCs which
can be deployed in edge server cluster and maximize ET.
We name this optimization problem as max ET problem
and prove this problem is a non-deterministic polynomi-
cal (NP)-hard problem. Algorithms with polynomial time
complexity cannot obtain the optimal solution of the NP-
hard problem. Therefore, we use the recursive algorithm
to solve the max ET problem. Specifically, to simplify the
max ET problem, we decompose this NP-hard problem
into two sub-problems: how to place an SFC into the
edge servers; find the optimal SFC subset satisfying the
objective. Respectively, we design a heuristic algorithm
based on VNF P-R function and a the recursive algo-
rithm for max ET (RMET) algorithm to solve sub-prob-
lems. Moreover, we conduct simulation tests in two edge
computing scenarios, and the results verify our main con-
tribution: the RMET algorithm can obtain the optimal
solution of the NP-hard problem to maximize ET within
an acceptable time complexity in the small-scale sce-
nario.

The remaining sections of this paper are organized as
follows. In Section 2, we present related researches and
discuss the novelty of our work. Section 3 introduces the
research motivation and innovation. In Section 4 and Sec-
tion 5, the system model, constraints, and objective for-
mula are demonstrated. Finally, Section 6 contains the
algorithm simulation and results analysis, while Section 7
concludes this paper.

2. Related work

This section presents the related research results of com-
puting resource placement and dynamic resource alloca-
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tion in cloud-edge environments. Moreover, we discuss
the differences between the existing researches and this
work.

2.1 Resource allocation in cloud-edge environment

In the network scenario containing cloud-edge comput-
ing resources, study of VNF placement and resource allo-
cation study differs from that in traditional data center
networks (DCN). After reviewing and evaluating the typ-
ical resource allocation researches in DCN [15], we deem
that the resource allocation schemes for DCN cannot be
directly adopted to the cloud-edge network since the dif-
ferences between the edge and the cloud. Here, we
present relevant research on the collaborative allocation
of cloud and edge computing resources. Du et al. [16]
designed a greedy heuristic algorithm to optimize com-
puting task offloading in edge computing systems. Its
optimization goal is to minimize the total cost of edge
systems, including computing, communication and trans-
mission costs. Huang et al. [17] proposed a cloud edge
collaborative task offloading mechanism and designed a
heuristic service scheduling algorithm to reduce the total
service delay and energy consumption at the edge. Long
et al. [18] proposed a cloud edge collaborative architec-
ture to minimize the energy consumption of the cloud
edge network, and designed a greedy annealing algo-
rithm to obtain an optimized computing task offloading
strategy. Slim et al. [19] designed a distributed low-cost
service offloading algorithm. Edge nodes directly select
feasible offloading nodes based on local information to
offload services. The distributed offloading algorithm
will centrally offload the services to one or several cur-
rently optimal offloading nodes, which is likely to cause
network congestion and computational exhaustion of the
offloading nodes. Peng et al. [20] optimized the comput-
ing offload of Internet of Things (IoT) service applica-
tions in cloud edge networks, aiming to reduce the com-
puting delay and energy consumption of IoT service
applications at the same time, and introduced constrained
multi-objective evolutionary algorithms to solve the opti-
mization problem. Wu et al. [21] constructed a cloud
edge collaborative multitask computing offloading
model. With the optimization goal of minimizing both
delay and energy consumption, Wu et al. [21] used parti-
cle swarm optimization algorithm to solve the optimiza-
tion problem. In [22], the branch and bound algorithm
was introduced into the problem of computing task
offloading. By optimizing task offloading, the computing
and energy consumption of computing devices in cloud
edge networks were minimized.

In [23], a general framework of 5G network slice,
which jointly contains both cloud and edge servers with

different amounts of resources, was proposed for the first
time. This framework provides a fundamental model for
the cloud-edge resource placement problem in the 5G
slice network. Moreover, Zhang et al. [23] considered the
interference between VNF inside the server and designs a
heuristic placement algorithm to maximize the overall
network throughput.

Randriamasinoro et al. [24] aimed to optimize the
resource allocation problem in the cloud-edge network
environment, which divided the server clusters that pro-
vide computing services into three categories: edge com-
puting nodes, central clouds, and public clouds. The
delays of three kinds of computing nodes depend on the
distance between the node and the user. Randriamasinoro
et al. [24] presented a completed formulation of the opti-
mized resource allocation problem in the edge-cloud
environment and designed algorithms to minimize the
overall computing resource cost in the network while
meeting QoS constraints.

Zhang et al. [23] and Randriamasinoro et al. [24] both
took the problem of collaborative allocation of cloud and
edge computing resources into consideration and
achieved the optimization goal well. However, in these
models, the computing resources required by different
types of VNF are set as fixed values, and the relationship
between the packet processing performance of VNF and
the allocated computing resources is not considered. In
this paper, we dynamically allocate computing resources
to VNF as an important optimization method to improve
the utilization efficiency of edge computing resources and
reduce service delay.

2.2 Dynamic computing resource allocation for VNF

In many models related to the allocation of network com-
puting resources, the computing resource required by a
specific type of VNF instance is usually configured as a
constant, which is quite helpful in reducing the complex-
ity of modelling. However, in actual deployment, the
computing resources of VNF instances are dynamically
allocated by network managers. In NFV management
platforms, such as OpenStack [25], the computing
resource of any VNF can be customized.

Agarwal et al. [26] proposed the concept of flexible
allocation of computing resources for VNF instances for
the first time. In this paper, the m/m/1 service queue
model represents the packet processing behavior of a
VNF instance. The service rate of the queue corresponds
to the packet processing rate of the VNF instance. Based
on this, a heuristic algorithm is designed to optimize the
VNF placement and improve the service QoS. However,
Agarwal et al. [26] did not clearly define the relationship
between the VNF processing rate and the allocated
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resources but directly quantified the server’s processing
capacity by request/s and allocates it to different types of
VNF. Although this suggests that the computing
resources required by different types of VNF for process-
ing one request are the same, the cost by different types
of VNF instances for processing one request is different.
Thus, we discuss this issue in Section 3 in detail.

Alameddine et al. [27] discussed dynamic task offload-
ing and scheduling in edge computing. In [27],
researchers set a minimum computing resource p¢ for
each application a in the edge server. The actual allo-
cated computing resource of application a is p,, a
dynamic value that exceeds p¢. The processing delay of
application a is calculated as the ratio of user workload to
p.. We can find that two types of applications with the
same computing resources will have the same processing
delay. Therefore, [26] and [27] have the same problem,
which is not considering the differences in resource con-
sumption rates of different applications. Hence, in this
work, the functional relationship between the delay and
the allocated resource of each VNF type is unique and
only bound to the VNF type and hardware environment.

Li et al. [28] discussed the relationship between cen-
tral processing unit (CPU) allocation and VNF process-
ing performance, and designs the finedge platform, which
can dynamically allocate computing resources for VNFs
to achieve cost-efficient purposes. The focus of [28] is to
utilize the least CPU core to achieve the best VNF pro-
cessing performance. The working mode of the finedge
platform is based on a state machine and real-time deci-
sion-making. From the user traffic entering the traffic
monitoring mode, Finedge assigns CPU cores to VNFs in
the corresponding SFC according to the traffic attribute.
Our work is proactive, and VNF placement and resource
allocation are performed based on known network ser-
vice requirements, including all VNFs, SFCs, and QoS
requirements.

2.3 VNF performance testing

How to measure the processing performance of VNF is
the basis for linking VNF performance with allocated
resources. In [28], researchers conducted a performance
test for one VNF instance, basic monitoring, and the
results indicate that the performance of basic monitoring
improves with the increase of allocated computing
resources. Van Rossem et al. [29] introduced an approach
to VNF profiling that regards one VNF under test as a
black box and proposes a performance metric to quantify
the VNF performance precisely. Researchers test several
VNF types and record the trend of packet rate and packet
loss rate with different assigned computing resources.
During the experiment, Van Rossem et al. [29] proposed

the concept of saturated resources boundary. According
to the test results, the VNF performance can hardly
improve before the assigned computing resource reaches
the saturated resources boundary but will increase signifi-
cantly when the assigned resource exceeds the boundary.
This concept provides a theoretical basis for one parame-
ter in the proposed system model: VNF start-up resource.

3. Motivation and innovation

In this section, we present the motivation and innovation
of this work in two aspects. We first stipulate an SFC
placement regulation to avoid wasting the edge comput-
ing resource. Moreover, we propose the VNF P-R func-
tion as a basis for the dynamic allocation of computing
resources to VNF instances according to the service
requirements.

3.1 A regulation for SFC placement in
cloud-edge environments

In network services, the most fundamental and vital opti-
mization objective is to reduce service delay. The origi-
nal intention of edge computing is to reduce user access
delay by decreasing the distance between computing
resources and users. Because of the much higher deploy-
ment cost, edge computing resources are more precious
and limited.

In existing VNF placement researches, the presenta-
tions of optimization results are the mappings from VNF
instances to servers. In cloud-edge environments, if we
only focus on selecting servers for VNFs, it turns out that,
in one same SFC, part of the VNF instances will be
deployed in cloud servers and the others in edge servers.
However, SFC crossing cloud and edge servers will cause
a waste of computational resources. Here, we demon-
strate the explanation with a simple cloud-edge scenario.

In the cloud-edge scenario shown in Fig. 1, the user’s
smartphone initiates a service request, and the SFC corre-
sponding to this request is VNF1-VNF2-VNF3-VNF4.
The four lines with different colors represent four for-
warding paths of this SFC. For the red path, all VNF
instances are deployed in edge servers. On the contrary,
in the blue path, all VNF instances are in cloud servers.
Green and orange paths contain VNF instances deployed
in both cloud and edge servers. We use T to denote the
transmission delay between the user device and the cloud
server. To simplify the modeling complexity, we assume
that the delays between servers in the same cluster
(cloud/edge) are the same and VNF instances of the same
type have the same processing rate. Then, we use delay-
color to represent the total delay of different color paths
and show the relationship among the overall delays of the
four SFC paths:
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Delay —blue = Delay —red + T,
Delay — green = Delay —red + 7,
Delay — orange = Delay —red +27.
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Fig. 1 Four forwarding paths in cloud-edge scenario

We can find that although the green and orange paths
occupy part of the edge computing resources, their over-
all delays are still higher than or equal to the latency of
the blue path. The high transmission delay between the
cloud and the edge conceals the low-latency feature of
edge computing.

Based on the above explanation, we set the following
regulations: VNF instances in the same SFC should inte-
grally be deployed in the cloud or at the edge.

In actual scenarios, there exist cloud-edge SFCs that
need to be deployed on both cloud and edge servers. For
such cloud-edge SFCs, we believe that the main purpose
of the SFCs lies in saving bandwidth by firstly compress-
ing data at edge servers. In this paper, we divide the cloud-
edge SFC into two separate SFCs. As for the large-band-
width SFC without data compression, the algorithm in
this paper will deploy the unprocessed large-bandwidth
SFC on edge servers to maximize ET. After being com-
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pressed by edge servers, the data is processed through the
other SFC. Therefore, the processing results are consis-
tent with the actual situation.

Based on this regulation, one main objective of this
research is to select SFCs most suitable to be deployed at
the edge.

3.2 VNFP-R

As mentioned in Section 2, in [26] and [27], VNF
instances of different types with the same computing
resources have the same processing rates. We deem that
this setting does not conform to the actual working situa-
tion of VNF instances and propose the following new
hypothesis:

Hypothesis 1  For every VNF instance, there is a
functional relationship, P = function(R), between its pro-
cessing performance (P) and allocated computing
resource (R), and this function is only determined by the
VNF type and hardware environment.

Proof = We conduct a verification experiment in a
server with CPU Intel Xeon E5-2609 v4. We test two
common VNF types: firewall (FW) and network address
translation (NAT). We create independent instances with
one CPU core for both VNF types and use the same data
plane development kit (DPDK) [30] settings to accele-
rate hardware forwarding. Then, we use the trex tool to
test and record the latency and throughput of VNF
instances with different CPU utilization rates. In this
experiment, when a certain amount of computing
resources is allocated to one VNF instance, the VNF per-
formance will fluctuate within a stabilized interval and
cannot be completely stabilized at a fixed value. There-
fore, we take the performance lower limit of the interval
as the value of the VNF performance under the CPU allo-
cation situation, i.e., we take the upper limit in the delay
test and the lower limit in the throughput test. The experi-
mental results are shown in Fig. 2.
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Fig. 2 Results of confirmatory experiment
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Thus, the proof is complete. O

Results indicate that, with the same hardware environ-
ment and CPU allocation, VNF instances of two types
have different processing delays and throughputs. With
the increase in computing resources, the delay is gradu-
ally decreasing, and the throughput is gradually increas-
ing. The curve of processing performance is smooth and
can be approximately fitted to a continuous function
within a specific interval. Moreover, this experiment
proves that simple network test tools can test and mea-
sure the function in Hypothesis 1, P = function (R).

The confirmatory experiment confirms that VNF
instances of different types have different resource con-
sumptions for processing one request. Therefore, we hope
that the VNF type can be taken into consideration in
terms of computing resource allocation. Based on
Hypothesis 1, we propose VNF P-R function to assist the
precise resource assignment, defined as Performance
Indicator (f,y).

Performance Indicator refers to a certain VNF instance
performance indicator, such as delay or throughput. f is
the VNF type of the VNF instance, and ¢ denotes the
computing resource allocated to the instance. This func-
tion represents the performance indicator that an f-type
VNF instance can achieve with  assigned computing
resources.

P-R function accomplishes the link between the VNF
performance and the allocated computing resource, and
the VNF performance needs to meet the service require-
ments. Therefore, we can accurately allocate computing
resources for each VNF instance according to the P-R
functions of all VNF types in the service slice and the ser-
vice requirements of all SFCs. In the subsequent sections,
we discuss how to place VNF instances, allocate
resources based on service requirements with the help of
P-R Function, and determine whether each SFC should be
deployed in the cloud or at the edge. Additionally, this
paper considers two service requirements: throughput and
delay QoS.

4. System model

We consider a cloud-edge network environment as
depicted in Fig. 3, which consists of three parts: cloud,
edge, and user devices. The network and computing
resources of the cloud and edge are divided into multiple
network slices. Each network slice supports one network
service and simultaneously includes cloud and edge
resources. In this section, the proposed system model
focuses on VNF placement and resource allocation within
one network service slice. We comprehensively define
the hardware resource parameters and the network ser-
vice parameters inside the network service slice and

describe the mapping between the network service and
the service deployment on hardware.

N ~Slice lﬂ E‘ﬂ 5

Slice n

i — J
i Slice IEH i . ﬁ

User devices
20

Fig.3 System model diagram

Slice n

We use an undirected graph, G(S, L), to represent the
network topology of the network slice where S is the set
of all servers and L is the set of all links. For S =S.+S.,
S. and S, represent the set of cloud servers and the set of
edge servers, respectively. The set of all links is denoted
by I(u,v) € L and I(u,v) indicates the virtual link between
server u and v. For each server s € S and each link /€ L,
k, represents the computing capacity of s; b,(u,v) repre-
sents the bandwidth of . In this model, we default that
the computing capacities of all servers are the same, i.e.,
k, is a constant. The transmission delay of I(u,v) is
denoted by 7(u,v).

F represents the set of VNF types in the network slice.
f € F represents a specific VNF type. This model consi-
ders the two most fundamental network service require-
ments: throughput and delay. We configure each VNF
type with two exclusive P-R functions, Delay(f,y),
Throughput(f,¥), respectively representing the process-
ing delay and throughput of the f-type VNF instance
with ¢ computing resource. For the deployed VNF
instance, we use ¥(f,s) to indicate the computational
resource assigned to the f-type VNF instance in server s.
The remaining unallocated computing resource of server
s is denoted by k..

To simplify the model and distinguish the resource
consumption features of different VNF types more
clearly, in our model, Throughput(f,¥) and Delay(f,¢)
are respectively approximated as linear functions and
power functions, we have

Throughput(f,¢) = a,(¢ /), M

Delay(f,¢) = ¢”., v, € (=0,0). @

In (1), a, is the rate of throughput change with
assigned computing resource, and S, represents the start-
up resource of f-Type VNF instance, i.e., the minimum
computing resource required for f-type VNF instance to
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start processing. The setting of parameter 8, is out of
consideration for the compute-intensive VNF types,
which cannot operate normally unless the assigned
resource reaches the start threshold. As for lightweight
VNF types, such as FW and NAT, 8, can be configured
as 0. In (2), y, is the exponent in the power function, and
Vs € (=00,0).

¢ € C denotes the set of all SFCs in the network slice.
Each SFC c¢ is composed of several VNF types arranged
in sequence. f, (i) represents the ith VNF in ¢, f. (i) € F.
We use a two-tuple < A.,D5 > to denote the service
requirement of SFC ¢, where A, represents the peak flow
rate of ¢, and DS represents the delay QoS requirement
of ¢. To clearly describe the deployment of each SFC, we
use p, to represent the transmission path of ¢, |p.| = |c|,

and p.(i) € S denotes the server where the ith VNF in ¢
is deployed. Section 3 stipulates that one SFC must be
deployed integrally in the cloud or at the edge. We use
6 (c) to indicate the deployment status of SFC ¢, set §(c)
as 0 if ¢ is deployed in the cloud, and 1 otherwise.

In this system model, we define the relationship
between VNF instance, server, and SFC: (i) There can be
instances of multiple VNF types in one server, but there
can only be one VNF instance of the same type. (ii) The
instances of one same VNF type can simultaneously exist
in multiple servers. (iii) Each VNF type in one SFC only
corresponds to one VNF instance such that the transmis-
sion path of each SFC is unique, regardless of traffic
bifurcation. The key notations used in this paper are
shown in Table 1.

Table 1 Key notations

Notation Description
G(S,L) Network topology
§S=8:+S. Set of servers, where S is the set of cloud servers, and S, is the set of edge servers
L Set of links. I(u,v) € L represents the link between server u, v (u,v € S)
F Set of VNF types
C Set of SFCs
ks Computing capacity of server s, s € S
kY Remaining computing resource of server s, s € S
by(u,v) Bandwidth of link I(u,v)
w(f,s) Computing resource assigned to f-type VNF instance in server s
T(u,v) Transmission delay of link #(x,v)
Se (@) The ith VNF type in SFC ¢, f.(i) € F
pe (i) Server in which £ (i) is deployed
ar Slope of f-type VNF throughput-resource function
Br Intercept of the horizontal axis of f-type throughput-resource function
Yr Exponent of f-type VNF delay-resource function
< /chSQS> Service requirement of SFC ¢, where A, is the peak flowrate of ¢, and D?OS is the delay QoS of ¢
6(c) 0 if SFC c is deployed in the cloud, and 1 if ¢ is deployed at the edge

5. Constraints and objective

In this section, we describe the constraints and the objec-
tive (11) and start by discussing the constraints.

5.1 Constraints

Firstly, the total computing resource assigned to VNF
instances inside server s must be less than the computing
capacity k. Therefore, we have

Do) <k, Vses. 3)

feF

Then, we need to ensure that the total traffic through
link I(u,v) cannot exceed the bandwidth of /(u,v), which

can be expressed as
lel-1
DD QAdpd) =, puli+ 1) =) <by(w,v),  VIEL. (4)
ceC =1
Due to the QoS requirement of network service, we
must avoid congestion when user traffic passes through
VNF. Congestion will cause higher delay and increase the
possibility of packet loss. Therefore, we hope that the
processing rate of each VNF instance is higher than the
arrival rate of data packets. Based on the P-R function
defined in Section 3, the processing rate, i.e., throughput,
of the f-type VNF instance in the server s is
Throughput(f,¥(f,s)). Then, the sum of flowrates of all
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SFCs passing through this VNF instance cannot exceed
the throughput of this instance, which can be indicated as

lcl

DDA = fip)=9)<

ceC =l

Throughput(f,¢(f,s)),
VfeF;VseS; o(f,s)>0. %)

Based on the placement regulation in Subsection 3.1,
all VNF instances in one SFC must be integrally located
in the cloud or at the edge. Thus, we can obtain

lel
[[eheso=1, s =1
©

Il

[Jeheso=1, 6@ =0

i=1
where VYceC, (p.()eS.), (p.(i)eS.) are Boolean
expressions whose values are 1 for true and 0 for false.

Finally, we discuss the most vital constraint, the SFC
QoS constraint. The total delay of SFC ¢ consists of three
parts: transmission delay, processing delay, and access
delay. We use D! to represent the overall transmission
delay of ¢, which is the sum of link delays of all the links
in the transmission path. For each link, the link delay
consists of a queueing delay and a transmission delay.
When (4) is satisfied, there is no queuing delay on the
link between servers. Therefore, the link delay equals the
link transmission delay. Due to the extremely close physi-
cal distance between nodes in cloud data center, the link
transmission delay is extremely low. We set the average
link transmission delay between servers as ¢. Thus, the
average link transmission delay of ¢ is denoted by D' and
can be calculated as
=1
DL= " xt(p(i), pli+ 1)
N )

) {0, P = pui+1)

1, else

i

The overall processing delay of ¢ is denoted by D?,
which is composed of the processing delays of all the
VNF instances in its transmission path, i.e.,

lc|

D! = Delay (f(Dp(f. (D, p. ). (8)
i=1
The third part is the access delay, denoted by D?. If
SFC c is deployed at the edge, the access delay is 0. If the
service chain is deployed in the cloud, the access delay is
the transmission delay between the user terminal and the
cloud entry, represented by T'. Thus, we express D¢ as

a

=16(c)- 1T . )

c

0, 6(c)=1
{T, 5()=0

where D, is the sum of D!, D? and D¢, which cannot
exceed the QoS delay, D¥S. Therefore, we have the fol-
lowing QoS constraint:

D.=D.+D’+D! <D, VceC. (10)

5.2 Objective formula

This model aims to maximize the utilization of edge com-
puting resources. We use the total throughput of all SFCs
deployed at the edge to measure the edge resource utiliza-
tion efficiency. Thus, we can obtain the following objec-
tive formula:

max Z o(c)A.

ceC

s.t. (1)=(10) . (11)

This objective formula can maximize the utilization
efficiency of edge computing resources while satisfying
all the constraints. We name this problem the max ET
problem. In the next section, we provide the solution.

6. Algorithmic solution

This section presents the algorithmic solution of the max
ET problem. First, we prove the complexity of the prob-
lem. Since many existing studies have proved that the
VNF placement problem in the network is NP-hard, we
introduce a new decision-making problem to our model:
whether to place SFCs in the cloud or at the edge. Now,
we prove that the max ET problem is still an NP-hard

problem.

Theorem 1  Max ET problem is an NP-Hard prob-
lem.

Proof  Reduce (11) as while the number of edge

servers, |S,|, and the length of each SFC, |c|, are limited
to 1, and the constraints (4), (7)—(10) are removed, the
problem will become a classic knapsack problem. The
backpack capacity is the computing resource capacity of
the only edge server; the item volume is the computing
resource required by the only VNF in the SFC, and the
item value is the flow rate of the SFC.

The max ET problem can be reduced to the knapsack
problem, an NP-complete problem, which means that
solving the max ET problem is NP-hard. O

The above proof shows that the max ET problem can
be reduced to the knapsack problem. Thus, we regard the
max ET problem as a much more complicated knapsack
problem. The set of edge servers, S, is the backpack, and
the SFC set, C, corresponds to the object set. The objec-
tive is to find a subset of C, that can be placed into S,
and has the largest total throughput. Compared with the
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classic knapsack problem, we summarize three chal-
lenges of the proposed optimized problem.

Challenge 1 Satisfaction of QoS constraint: The
QoS constraint has the highest priority. SFCs with rigo-
rous QoS requirements cannot afford high access delays
and must be deployed at the edge. Therefore, we must
place SFCs with strict QoS into S, first.

Challenge 2 Maintenance of remaining computing
resources in S,. When solving the knapsack Problem, the
remaining volume of the knapsack must be continuously
updated. The edge servers are composed of several inde-
pendent servers, and their remaining computing resources
should be maintained independently and respectively.

Challenge 3 Placement of SFC into S,. As for the
knapsack problem, after one object was put into the knap-
sack, the state of this object is simple. In the proposed
model, putting an SFC into S, is essentially the process
of selecting edge servers for all the VNFs contained by
the SFC. The state of this SFC in S, is still being deter-
mined, and we need to decide further which server in S,
fits each VNF best.

Then, we discuss the algorithmic solution in three parts
with the above three challenges as clues.

6.1 Prior placement based on QoS constraints

Due to (10), part of SFCs cannot be placed in the cloud
because of their strict QoS requirements. This subsection
estimates which SFCs must be placed at the edge.

Based on (7)—(9), we can calculate the minimum total
delay when an SFC is placed in the cloud. When
deployed in the cloud, the internal transmission delay is
the same as the delay at the edge, and the access delay is
T. Computing resource in the cloud is relatively suffi-
cient. In theory, the maximum computing resource that
can be assigned to one VNF instance is the total comput-
ing capacity of a single server, k,. This paper does not
consider multiple servers to co-process one VNF
instance. Therefore, the theoretical minimum processing
delay of an f-type VNF instance is

lc|

min D’ = Z Delay (£.(i),k,). (12)

Then, we obtain the minimum total delay of SFC c, as

lel

min D, = (|| - 1)t+ZDelay(ﬁ(i,k5)+T,

i=1

8(c) = 0. (13)

If min D, of SFC in the cloud is higher than the QoS
requirement, this SFC has to be placed at the edge prefer-
entially.

6.2 Recursive algorithm for max ET problem

The most used solution to the knapsack problem is
dynamic programming. However, due to Challenge 3, the
rest space of the knapsack, i.e., the remaining computing
resource of edge servers, cannot be simply represented by
an integer, and the number of possible states of edge
servers is infinite. Therefore, it is impossible to encode
the remaining space of the knapsack as index and use
data structures such as array and list to store the current
state of S, and the corresponding ET value. Therefore,
dynamic programming is not suitable for the max ET
problem.

The network environment of this model is inside one
network service slice, which only supports one single net-
work service. As a result, the number of SFCs inside the
slice is theoretically small, i.e., the size of the object set is
small. Hence, adopting recursive methods to solve max
ET problem will not cause an intolerable time and space
cost. Therefore, we propose the recursive algorithm for
max ET, abbreviated as the RMET algorithm.

The key to recursion is the derivation of the recursive
formula. First, we sort all the SFCs in descending order
according to A.. We use ET(n,S,) to represent the recur-
sive function where ET refers to total throughput of ser-
vice chains at the Edge, and n is the recursive index.
Here, S, refers to the set of edge servers and includes the
VNF instances placement state in S,. Analogous to the
knapsack problem, S, is the current state of the knapsack,
including the SFCs already placed at the edge and the
remaining computing resources of all the edge servers.
ET(n,S,) represents the max total throughput by placing
the first n SFCs into the current S,. The objective of the
max ET problem is to obtain ET(|c|,S (the initialS,))
and the corresponding placement scheme.

We utilize a top-down approach to figure out this issue.
If we have reached the last step, we need to determine
whether to place the last SFC at the edge (n =|C|, S, is
empty). For the last SFC ¢ (n), there are two operations:

(1) Not place c(n) at the edge. The total throughput is
ET,S.)=ET(n-1,S,).

(i) Place c(n) at the edge. The total throughput is
ET(n,S,)=ET(n—-1,82)+ A, S: is the state of edge
servers after placing ¢ (n) into S,.

We choose the operation with higher throughput, and
obtain the recursion formula

ET(n,S,)=max(ET(n-1,5,),4.,»+ET(n-1,57)). (14)

According to the recursive formula, the recursive func-
tion ET is shown in Algorithm 1. When index n is O,
recursion has reached the bottom, and there is no SFC in
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S,. Thus, 0 is returned. Then, we calculate the total
throughput without c(n) in S,, denoted by res;. To fi-
gure out whether S, has enough resources to contain
c(n), we define the SFC placement function,
SFCP(c, A.,S ), which returns 1 if ¢ (n) can be placed into
S., and 0 otherwise. When there is not enough resource
for ¢(n), return res,. If the placement of ¢(n) succeeds,
we use res, to represent the total throughput with ¢ (n) in
S.. We take the larger one between res; and res, as the
return value. In Step 8 and Step 11, record(n,i,res) is the
result recording function, recording the result of every
recursive round. When the recursion is completed, the
record function can record the entire recursion tree and
we can get the optimal placement scheme.

Algorithm 1 Recursive function: ET(C,n,S,)

Input: C, n, S,

Output: res

1 if n<0 then

2 return O;

3end

48:=S.;

5res; =ET(C,n-1,S.,);

6 if SFCP (¢(n), Ay, S:) =1 then
7 res;=A.m+ ET(C,n—1,57);
8 else

9 record(n,0,res;);

10 return res; ;

11 end

12 res =res; >res,res; : res,;

13 record(n,0,res,);

14 record(n, 1,res,);
15 return res

6.3 SFC placement and resource allocation at the edge

Placing an SFC into edge servers is selecting the most
suitable edge server for every VNF type within this SFC.
We propose a heuristic SFC placement algorithm to
improve the resource utilization efficiency in edge servers
while satisfying the throughput and delay QoS require-
ments of SFCs.

According to the service requirements < A., D >, we
must ensure that the throughput and delay of ¢ satisfy the
constraints (5) and (10) simultaneously. The flow rate is a
serial flux parameter, and every VNF instance on the
deployment path p. must guarantee that A. can pass
smoothly. With A, and P-R function, the required com-
puting resource can be calculated directly. However, the
overall delay of SFC deployed in S, is the sum of the
delays of all links and VNF instances on p.. It cannot be

directly utilized to calculate computing resources.

Therefore, we perform the placement of SFC ¢ in two
steps.

Step 1 Calculate the required computing resources
according to A, and select the appropriate server for each
VNF instance.

Step 2 Verify the scheme in Step 1. If the delay QoS
is satisfied, the plan is completed. Otherwise, revise the
plan until the delay QoS is satisfied.

Now, we move to Step 1. For each f-type VNF in
SFC, there are two states in S,: (i) f-type VNF instance
has already existed; (ii) f-type VNF instance does not
exist.

In the case of State 1, we choose to expand the exist-
ing instance. Since existing instances already contain
startup computing resources, expansion can save startup
resources compared to redeployment. Meanwhile, expan-
sion can improve the performance and reduce the pro-
cessing delay of VNF instances. According to (1), we can
obtain the expansion resource required by f, (i)-type VNF
instance for processing A., which is denoted by i, as fol-
lows:

o1 =]y +Brp- (15)

We use S* to represent the set of servers that contain
f.()-type VNF instance and have remaining resources
greater than . Then, we expand the f,(i)-type VNF
instance inside the server, which has the least remaining
resource in S*. Now we explain why we select the server
with the least resource in S,. We arrange the SFC set in
descending order of A, before performing the recursion.
The recursion is carried out from top to bottom, which
means the flow rate of each subsequent SFC is higher
than the current one. Compared with VNF instances of
the same type in the subsequent SFCs, the instance in the
current SFC requires the least computing resource. There-
fore, selecting the server with the least remaining
resources in S, can improve the success rate of finding
expansion targets for VNF instances of the same type in
the subsequent SFCs.

If the remaining resources of servers containing f-type
VNF instances are all less than ¥, then the situation is
the same as State 2, where we must create a new f-type
VNF instance in S,. We use ¢, to denote the resource
required by a new f,(i)-type VNF instance to process
throughput A, as follows:

@2 = Ac/ gy +Bra - (16)

Then, we select the server with the most remaining
resource to create the new instances, which can increase
the expansion success rate of VNF instances in subse-
quent SFCs. If there is no server with remaining
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resources greater than i, in §,, there is not enough com-
puting resource for SFC ¢, and 0 is returned. When all the
VNF instances in SFC ¢ complete the server selection,
Step 1 is accomplished.

Next, we move to Step 2, where we test whether the
preliminary scheme meets the delay QoS. If delay QoS is
satisfied, the VNF placement and resource allocation for
SFC c¢ is completed. Otherwise, we need to adjust the
allocated computing resources of VNF instances to
reduce the total delay. First, we calculate the delay excess
D* as follows:

D" =D.— D5 = (lc|- D) t+
lel

> Delay (£:i), ¢(f: (0, pe () =D . (17)
i=1
For the f-type VNF instance, the computing resource
required to shorten the delay by D* is denoted by ¢*. The
calculation is as follows:

¢ —(p+¢") =D

(p+¢)" =¢" =D
pt¢"=(p"-D)" (1%)
¢ =" -D)" -

We use ¢*(i) to represent the computing resources
required by the f, (i) instance to shorten the processing
delay by D* in the Step 1 scheme. Then, we select the
instance with the smallest " (i) for expansion. When the
remaining resources of p.(i), i.e., k;((,.), are less than
Y (i), then expand the f.(i) instance by k; , and update
D as

D =D —(¢" = (p+k, ,)") . (19)

Then, we remove this instance from ¢ and repeat the
above process until D* equals 0. For the worst situation,
D~ is still greater than 0 when all the servers in S, are
full-loaded, which means the delay QoS of SFC ¢ cannot
be satisfied, and 0 is returned.

When Step 2 is completed, we are faced with a prob-
lem, there could be multiple instances with throughput
redundancy in S,. We use §(f,s) to denote the through-
put redundant resource of the f-type instance in server s.
To improve resource utilization efficiency, we modify the
selection of expansion targets in Step 1. We first look for
expansion targets in instances that include redundant
throughput. The complete algorithm description is shown
in Algorithm 2.

Algorithm 2 SFCP algorithm

Input: C, 4., DS, S,
Output: 1 if placement completes; 0 otherwise

1 for f.(i) e c do

A
2 Y= —+Br;

afC(i)

A
3 Yo=—+PB,;
a.fc(i)

4 if f, (i)-Type instance € s, s € S, then

5 S*={s]|s> f.(i)—Typeinstance, s € S ,};
6 S™={s|o(f.(i),s)>0,5€S5};

7 so=arg max(6(f.(D),s)),(s€S5™);

8 if (6(f. (D), s0) + k) > ¢, then

9 pz(l) = S0,

10 if 6 (f.(0), s0) = ¢, then

11 0 (f(D),50)— = @13

12 else

13 6 (fe(D),50) = 0;

14 kiu— = (o1 = 6(f: (1), 50));

15 @ (fe(D), s0)+ = (@1 = 6(f. (D), 50));
16 end

17 end

18 else

19 5o = arg max (k}),(s € S*);
20 if kK > (1) then

21 pe (i) = s0:k}, = 15
22 @ (fo(1),50)+ = @15

23 else

24 if s € S.,k, =¥, then
25 p. ()= Soék;, =¥,
26 @ (fe(D), 50)+ = @23
27 else

28 return 0;

29 end

30 end

31 end

32 end

33 if D, < D then

34  return 1;

35 else

36 D'=D,-D>5,

37 end

38 while ¢ # @ do

39 for f.(i)ecdo

40 @ () =) =D)7e — g3
41 end

42  k=arg ming*(i);so = p.(k);
43 if k) > cp*l then
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44 k;) = gp*’

45 o (fu(k),s0)+ = ¢ 0 (fo(k), o)+ = ¢";
46 return 1;

47 else

48 o (fe(k), s0)+ = ki ;6 (fo(k), so)+ = ki 3
49 ki =0;

50 D =D = (" = (p+k )"0);

51 remove f.(k) from c;

52 end

53 end

54 return 0

7. Simulation and numerical results

In this section, we test and demonstrate the perfor-
mance of the RMET algorithm through simulations
in specific scenarios. We first present three com-
parison algorithms. Then, we build two network scenar-
ios including a randomly generated scenario and an
autonomous driving network scenario. Based on two sce-
narios, we test four algorithms and analyze the numerical
results.

7.1 Comparing algorithm

We design three comparing algorithms:

(i) Greedy algorithm: For each VNF instance in each
SFC, select the optimal server in the current state, that is,
the server with the largest remaining space, to create a
new instance.

(i1) Aggregation algorithm: For each VNF instance in
each SFC, select an existing instance of the same type for
expansion. If there is no deployed instance of the same
type, select the server with the most sufficient remaining
resources to create a new instance.

(iii) Deep reinforcement learning algorithm: Accord-
ing to [31], we implement the SFC placement algorithm
based on deep reinforcement learning (DRL) to maxi-
mize the utilization efficiency of edge computing
resources.

7.2 Scenario 1: random generated scenario

The network parameters in Scenario 1 are randomly ge-
nerated, and the purpose is to test the performance of the
RMET algorithm from a mathematical point of view. In
Scenario 1, the numbers of edge servers, VNF Types, and
SFCs are 6, 10, and 10, respectively. The flow rates of
SFCs and P-R function parameters of each VNF type are
randomly generated within a specific range. The
sequence of the VNF types in each SFC is also randomly

generated. The specific network service parameters are
demonstrated in Fig. 4, Table 2, and Table 3.

SFC, °—> 2 —> 3 —>» 4 —> —-e
sic, @—2—3—4
sic, @— 33—+ —Q—0
sic, @— 33— 1 —0—0Q—0
SFC; 0—» 2 —»(5 —>» 17 —-e
SFC, G—» 3 —»(5 —
s,c, @— 3 —B—0— 71 —0—0
SFCq c—b 2 —» 4 — G —> 7 —-o
SFC, G—» 2 —» 5 — 00— 7 —-Q
sic, @— 3 —B—0—7—0
Fig. 4 Network service parameters of Scenario 1
Table 2 Key parameters in Scenario 1
S Type ay By Yf
1 10 0 -2
2 8 0 -4
3 12 0 -8
4 3 1 -3
5 0.5 10 -1
6 5 8 -6
7 2 2 -9
8 2 5 -7
9 0.5 0.5 -3
10 6 0 -5
Table 3 SFC parameters in Scenario 1
SFC Flowrate/(request/s) DS /ms
SFC1 55 20
SFC2 50 15
SFC3 45 10
SFC4 45 30
SFC5 35 20
SFC6 30 10
SFC7 25 15
SFC8 20 30
SFC9 15 25
SFC10 15 15

In Scenario 1, the placement schemes of RMET,
Greedy, and Aggregation are shown in Fig. 5. Then



918 Journal of Systems Engineering and Electronics Vol. 35, No. 4, August 2024

we measure the total throughput at the edge (ET),
the number of VNF instances in edge servers, and
the remaining computing resources, as shown in Fig. 5.
RMET algorithm selects SFC 1, 2, 3, 4, 6, 8, 10 to
deploy at the edge and has the largest ET, 260. Greedy
Algorithm chooses SFC 2, 3, 7, 8, 9, 10 with ET
being 170. Aggregation selects SFC 2, 3, 6, 7, 8, 9,
10 with ET being 200. The results indicate that com-
pared with Greedy and Aggregation, the RMET
algorithm maximizes the total throughput at the edge
using the same computing resource. Moreover, we com-
pare the computing time of RMET algorithm with the lat-
est reinforcement learning algorithm, as shown in Fig. 5.
The results indicate that the SFC placement algorithm
based on DRL can approach the optimal solution but
takes a long time to converge. Meanwhile, the RMET
algorithm can obtain the optimal solution within less
computing time.

v [

RMET
SFC: 1,2,3,4,8, 10 VNE7
VNF4
Greedy
SFC:2,3,7,8,9,10 VN7

'VNF5
VNF9
VNF4

VNF1 RRuE
VNF9

(a) VNF placement and resource allocation scheme of three algorithms

Aggregation
SFC: 2,3,6,7,8,9, 10
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Fig. 5 Simulation results of Scenario 1

Then, we focus on the number of VNF instances in
the edge servers. NFV MANO system at the edge
needs to monitor and control all the VNF instances.
The more VNF instances, the more computing and
bandwidth resources are cost. We can find that the total
number of VNF instances in the edge servers of
RMET, Aggregation, and Greedy schemes are 13, 16,
and 33, respectively. This result verifies that RMET
and Aggregation algorithm reduce the MANO cost
by scaling deployed instances instead of creating new
ones.

We also record the computing times of the three
algorithms. All algorithm simulations in this paper
are conducted using Intel(r) Core(TM) i5-7500 CPU.
In Scenario 1, the computing times of RMET, Agg-
regation, and Greedy algorithms are 688 ms, 7 ms, and
6 ms, respectively. Although the computing time of
RMET is the largest, it still does not exceed 1 s. VNF
placement and computing
pre-decisions based on existing information and do

resource allocation are
not require high real-time performance. Therefore,
the calculation time of RMET is completely accep-
table.

7.3 Scenario 2: automatic driving scenario

We now move to Scenario 2, where we simulate the auto-
matic driving network slice. As shown in Fig. 6, this net-
work slice containing edge and cloud computing
resources provides auto-driving support for vehicles at an
intersection. The maximum number of vehicles in this
intersection is 50. There are four high-performance

servers in the edge node, and each server has 100 units of
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computing resources. We set the level of driving automa-
tion as 4 or above, which means fully auto-driving and
has extremely strict QoS requirements [28]. The access
delay between each car and the cloud is 5 ms. There are
nine types of VNF instances in the slice, including NAT,
traffic monitoring (TM), FW, and six automated driving
network functions (ADNF) 1 to 6. This network slice
contains six SFCs, which respectively have their own
QoS requirements. Each car will continue to send service
requests in the coverage area of the network slice. The
specific network service parameters are demonstrated in
Fig. 7, Table 4 and Table 5.

RMET
SFC: 1,2,3,4,5 VNF4
VNF3
Greedy
SFC: 1,2,4,5,6
Aggregation

SFC:1,2,5,6 | VNF4

VNF7

I
(a) VNF placement and resource allocation scheme of three algorithms
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Fig. 6 Simulation results of Scenario 2
SFC, 0—» 2 —» 4 —>» 3
v @@
w“ @B 06
" @—O—0—0
@ 0
2 —» 7 —>
v, @— @@
Fig. 7 Network service parameters of Scenario 2
Table 4 Key parameters in Scenario 2
VNF J-Type ay By Vr
FW 1 150 0 -10
™ 2 100 0 -8
NAT 3 80 0 -8
ADNF1 4 7 0 -5
ADNF2 5 5 5 -3
ADNEF3 6 10 0 -3
ADNF4 7 15 5 =5
ADNF5 8 0.6 0 -2
ADNF6 9 12 0 =5
Table S SFC parameters in Scenario 2
SFC Flowrate/(request/s) DS /ms
SFC1 10 1
SFC2 8 2
SFC3 7 12
SFC4 6 12
SFC5 5 15
SFC6 1 20
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The QoS requirements of SFC 1, 2 are all 1 ms, which
is less than the cloud access delay. To satisfy the QoS re-
quirements, SFC 1, 2 must be deployed at the edge. Fig. 8
shows the placement schemes and results analysis of
RMET, Greedy, and Aggregation algorithm in Scenario
2. When using Greedy and Aggregation algorithms, SFC
1, 2 are also preferentially deployed at the edge. Other-
wise, the QoS requirements cannot be guaranteed, and the
placement schemes are meaningless. Results indicate that
the RMET algorithm has the largest ET of 1800
requests/s, while the total throughput at the edge of
aggregation and greedy are 1200 requests/s and 1500
requests/s. Regarding the number of VNF instances,
RMET and aggregation are less than greedy and have
lower MANO costs. The computing time of RMET for
Scenario 2 is 178 ms, which is much lower than the com-
puting time in Scenario 1. Compared with RMET, the
DRL algorithm still takes a longer time in Scenario 2.
Thus, RMET can maximize the ET and the time con-
sumption is acceptable.

Access delay: 5 ms
Cloud

Access delay: 0
Edge

a Max number of vehicles: 50

Fig. 8 Simulation results of Scenario 2

Finally, we want to discuss the particularity of VNF8
in SFC 6. The resource consumption rate of VNF8 is
extremely high. Although the request frequency of SFC 6
is only one request/s for each vehicle, VNFS still requires
numerous computing resources. When using the Greedy
and Aggregation algorithms, SFC 6 is deployed at the
edge, and VNF8 almost occupies the computing resource
of one whole server. Differing from greedy and aggrega-
tion, the RMET algorithm will calculate the largest edge
throughputs with and without SFC 6 deployed at the edge
and choose the one with a larger ET. Therefore, RMET
can avoid the situation that part of SFCs occupies too
much computing resource at the edge to maximize the
overall utilization efficiency of edge computing
resources.

In summary, in both random and autonomous driving

scenarios, the placement scheme of RMET algorithm has
the largest edge throughput. Simultaneously, the RMET
can reduce the number of VNF instances in edge servers
and reduce the overhead of maintaining and managing
VNF instances. The computational time of RMET does
not exceed 1 s, which is completely acceptable for proac-
tive network service placement. Therefore, the RMET
can effectively improve the utilization efficiency of edge
computing resources.

8. Conclusions

In this paper, we focus on optimizing the placement of
network services in cloud-edge environments to maxi-
mize the efficiency of edge computing resources. We for-
mulate one new regulation for SFC placement in cloud-
edge environments: VNF instances contained in the same
SFC should integrally be deployed in the cloud or at the
edge. Moreover, based on confirmatory experiments, we
propose the concept of P-R function, which describes the
relationship between the VNF instance performance and
the allocated resource. With P-R function, we can calcu-
late the required computing resource for every type of
VNF instance in one network service according to the
service requirement. We then present a VNF placement
and resource allocation model in cloud-edge environ-
ments and configure each VNF type in the model with its
particular P-R function. By taking the edge throughput as
KPI, we obtain the max ET problem. We propose the
RMET algorithm as the solution, which contains two
parts: (i) a recursive strategy for selecting SFCs to be
deployed at the edge; (ii) a heuristic solution for placing
SFC into edge servers and allocating computing resources
precisely based on the P-R function and service require-
ment. To verify the performance of the RMET algorithm,
we conduct simulations in random scenario and auto-
driving scenario. The simulation results demonstrate that
RMET can improve the utilization efficiency of edge
computing resources. Furthermore, our future work will
aim to adopt the P-R function to other network scenarios,
such as the [oT network and the large-scale DC network.

References

[1] COLAKOVIC A, HADZIALIC M. Internet of things (10T):
a review of enabling technologies, challenges, and open
research issues. Computer Networks, 2018, 144: 17-39.

[2] PANTELOPOULOS A, BOURBAKIS N G. A survey on
wearable sensor-based systems for health monitoring and
prognosis. IEEE Trans. on Systems, Man, and Cybernetics,
Part C, 2009, 40(1): 1-12.

[3] YURTSEVERE, LAMBERT J, CARBALLO A, et al. A sur-
vey of autonomous driving: common practices and emerging
technologies. IEEE Access, 2020, 8: 58443-58469.

[4] ALTURKI R, GAY V. Augmented and virtual reality in
mobile fitness applications: a survey. Cham: Springer, 2019.

[5] FENG C, HAN P C, ZHANG X, et al. Computation offload-



HAN Yingchao et al.: SFC placement and dynamic resource allocation based on VNF performance-resource ...

(6]

(7]

(8]
(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

(23]

[24]

ing in mobile edge computing networks: a survey. Journal of
Network and Computer Applications, 2022, 202: 103366.
CAOK,HU SY, SHI Y, et al. A survey on edge and edge-
cloud computing assisted cyber-physical systems. IEEE
Trans. on Industrial Informatics, 2021, 17(11): 7806—7819.
ETSI GS NFV 001. Network functions virtualisation (NFV);
use cases. Nice: European Telecommunications Standards
Institute, 2013.

RFC 7665. Service function chaining (SFC) architecture.
Lake Wylie: RFC Editor, 2015.

MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et
al. OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review, 2008,
38(2): 69-74.

MCKEOWN N. Software-defined networking. INFOCOM
Keynote Talk, 2009, 17(2): 30-32.

ZHANG S L. An overview of network slicing for 5G. IEEE
Wireless Communications, 2019, 26(3): 111-117.
DESOUSA N F S, PEREZ D A L, ROSA R V, et al. Net-
work service orchestration: a survey. Computer Communica-
tions, 2019, 142/143: 69-94.

SHI W S, CAO J, ZHANG Q, et al. Edge computing: vision
and challenges. IEEE Internet of Things Journal, 2016, 3(5):
637-646.

REN J, ZHANG D Y, HE S W, et al. A survey on end-edge-
cloud orchestrated network computing paradigms: transpar-
ent computing, mobile edge computing, fog computing, and
cloudlet. ACM Computing Surveys, 2019, 52(6): 1-36.
WANG K, ZHOU Q H, GUO S, et al. Cluster frameworks
for efficient scheduling and resource allocation in data center
networks: a survey. IEEE Communications Surveys & Tuto-
rials, 2018, 20(4): 3560-3580.

DU M Z, WANG Y, YE K J, et al. Algorithmics of cost-
driven computation offloading in the edge-cloud environ-
ment. IEEE Trans. on Computers, 2020, 69(10): 1519-1532.
HUANG M F, LIU W, WANG T, et al. A cloud-MEC col-
laborative task offloading scheme with service orchestration.
IEEE Internet of Things Journal, 2019, 7(7): 5792-5805.
LONG X, WU J G, CHEN L. Energy-efficient offloading in
mobile edge computing with edge-cloud collaboration. Proc.
of the International Conference on Algorithms and Architec-
tures for Parallel Processing, 2018: 460—475.

SLIM F, GUILLEMIN F, HADJADJ-AOUL Y. CLOSE: a
costless service offloading strategy for distributed edge
cloud. Proc. of the 15th IEEE Annual Consumer Communi-
cations & Networking Conference, 2018. DOI: 10.1109/CC
NC.2018.8319276.

PENG G, WU H M, WU H, et al. Constrained multiobjec-
tive optimization for loT-enabled computation offloading in
collaborative edge and cloud computing. IEEE Internet of
Things Journal, 2021, 8(17): 13723-13736.

WUJZ,CAO ZY, ZHANG Y J, et al. Edge-cloud collabo-
rative computation offloading model based on improved par-
tical swarm optimization in MEC. Proc. of the IEEE 25th
International Conference on Parallel and Distributed Sys-
tems, 2019: 959-962.

ELIE E H, NGUYEN T M, ASSI C. Joint optimization of
computational cost and devices energy for task oftloading in
multi-tier edge-clouds. IEEE Trans. on Communications,
2019, 67(5): 3407-3421.

ZHANG Q X, LIU F M, ZENG C B. Adaptive interference-
aware VNF placement for service-customized 5G network
slices. Proc. of the IEEE Conference on Computer Communi-
cations, 2019: 2449-2457.

RANDRIAMASINORO N M, NGUYEN K K, CHERIET
M. Optimized resource allocation in edge-cloud environment.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

921

Proc. of the Annual IEEE International Systems Conference,
2018. DOI: 10.1109/SYSCON.2018.8369606.

SEFRAOUI O, AISSAOUI M, ELEULDJ M. OpenStack:
toward an open-source solution for cloud computing. Interna-
tional Journal of Computer Applications, 2012, 55(3): 38—42.
AGARWAL S, MALANDRINO F, CHIASSERINI C F, et
al. VNF placement and resource allocation for the support of
vertical services in 5G networks. IEEE/ACM Transactions on
networking, 2019, 27(1): 433-446.

ALAMEDDINE H A, SHARAFEDDINE S, SEBBAH S, et
al. Dynamic task offloading and scheduling for low-latency
IoT services in multi-access edge computing. IEEE Journal
on Selected Areas in Communications, 2019, 37(3):
668-682.

LI M, ZHANG Q X, LIU F M. Finedge: a dynamic cost-effi-
cient edge resource management platform for NFV network.
Proc. of the IEEE/ACM 28th International Symposium on
Quality of Service, 2020. DOI: 10.1109/IWQ0S49365.2020.
9212908.

VAN ROSSEM S, TAVERNIER W, COLLE D, et al. Profile-
based resource allocation for virtualized network functions.
IEEE Trans. on Network and Service Management, 2019,
16(4): 1374-1388.

HU X, CAO W, ZHU H Q. Data plane development kit
(DPDK). Florida: CRC Press, 2020.

FAN W T, YANG F, WANG P L, et al. DRL-based service
function chain edge-to-edge and edge-to-cloud joint offload-
ing in edge-cloud network. IEEE Trans. on Network and Ser-
vice Management, 2023, 20(4): 4478-4493.

Biographies

HAN Yingchao was born in 1987. He received
his M.S. degree from Harbin Institute of Technol-
ogy, Harbin, China, in 2012. He is pursuing his
Ph.D. degree at the School of Electronics and
Information Engineering, Harbin Institute of
Technology, Harbin, China. His research inter-
ests include design of the aircraft and networking
communication.

E-mail: 21B90567@stu.hit.edu.cn

MENG Weixiao was born in 1968. He received
his B.S. degree in electronic instruments and mea-
surement technology and Ph.D. degree in infor-
mation and communication engineering from
Harbin Institute of Technology, Harbin, China, in
=y 1990 and 2000 respectively. He is now a profes-
sor in the School of Electronics and Information
Engineering, Harbin Institute of Technology. His

research interests include wireless communication and networking, sky
and ground information transmission and networking, and integrated
communication perception.

E-mail: wxmeng@hit.edu.cn

FAN Wentao was born in 1995. He received his

B.S. and Ph.D. degrees of information and com-

munication engineering from Beijing University

’ of Posts and Telecommunications, Beijing, China,
in 2017 and 2023 respectively. His research inter-
ests include cloud/edge computing, network
orchestration, data center network, and remote
direct memory access (RDMA) system.

E-mail: fanwentao@cmss.chinamobile.com



