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Abstract: Missile  interception  problem  can  be  regarded  as  a
two-person  zero-sum  differential  games  problem,  which
depends  on  the  solution  of  Hamilton-Jacobi-Isaacs  (HJI)  equa-
tion. It has been proved impossible to obtain a closed-form solu-
tion  due  to  the  nonlinearity  of  HJI  equation,  and  many  iterative
algorithms  are  proposed  to  solve  the  HJI  equation.  Simultane-
ous  policy  updating  algorithm  (SPUA)  is  an  effective  algorithm
for solving HJI equation, but it is an on-policy integral reinforce-
ment learning (IRL). For online implementation of SPUA, the dis-
turbance  signals  need  to  be  adjustable,  which  is  unrealistic.  In
this  paper,  an  off-policy  IRL  algorithm  based  on  SPUA  is  pro-
posed  without  making  use  of  any  knowledge  of  the  systems
dynamics.  Then,  a  neural-network  based  online  adaptive  critic
implementation  scheme  of  the  off-policy  IRL  algorithm  is  pre-
sented. Based on the online off-policy IRL method, a computa-
tional  intelligence interception guidance (CIIG)  law is  developed
for  intercepting  high-maneuvering  target.  As  a  model-free
method,  intercepting  targets  can  be  achieved  through  measur-
ing system data online.  The effectiveness of the CIIG is verified
through two missile and target engagement scenarios.
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learning  (IRL), online  learning, computational  intelligence  inter-
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1. Introduction
Precision  guided  weapons  have  the  advantages  of  high
guidance accuracy, great lethality and high combat effec-
tiveness, among which guidance accuracy is the underly-
ing fundamental issue. Since the birth of guided weapons,
theoretical  exploration  and  applied  research  have  been
carried out on various guidance laws. For example, ideal
proportional  navigation  guidance  (IPNG),  generalized
proportional  navigation  guidance  (GPNG),  and  realistic
true  proportional  navigation  guidance  (RTPNG).  Such
proportional  navigation  guidance  (PNG)-based  control

laws  and  their  variations  are  easy  to  implement  in  engi-
neering and have been applied extensively in actual mis-
sile combat missions [1]. As is known, it is more difficult
to  intercept  maneuvering  targets  than  non-maneuvering
targets and stationary targets. In order to improve the per-
formance  of  PNG-based  guidance  law  in  intercepting
maneuvering  targets,  augmented  PNG  (APNG),  linear
quadratic optimal guidance (LQOG) [2], adaptive sliding
mode guidance (ASMG) [3],  backstepping guidance law
[4] and adaptive dynamic surface guidance (ADSG) [5,6]
were  derived,  respectively.  These  guidance  laws  are  all
closed-form guidance laws,  which are investigated using
model-based  methods.  First,  establish  the  mathematical
model  of  the  guidance,  then solve  the  guidance  problem
through  modern  control  theories  and  technologies,  and
consequently obtain the closed-form guidance laws.

In  addition  to  the  analytic  guidance  law  mentioned
above,  some  numerical  optimization  algorithms  are  also
used  to  solve  the  guidance  problem,  such  as  model  pre-
dictive  static  programming  (MPSP).  Dwivedi  et  al.  used
the MPSP algorithm to calculate the suboptimal solution
of  trajectory  optimization  in  midcourse  guidance  [7,8],
reentry  ballistic  guidance  law  of  reusable  space  vehicle
[9],  impact-angle  constraint  suboptimal  guidance  [10],
and unmanned aerial vehicle (UAV) autonomous landing
[11].  The MPSP algorithm is essentially a Newton itera-
tive algorithm [12]. The guidance laws based on numeri-
cal  algorithms  also  need  to  establish  the  mathematical
model  of  guidance problem, and then solve optimal  gui-
dance problem iteratively.

In  actual  engineering  application,  it  is  usually
intractable to obtain the accurate mathematical models of
complicated  engineering  systems,  therefore,  the  model-
based methods cannot achieve the optimum performance
when  the  approximate  models  are  used.  In  recent  years,
there has been a new and accelerated paradigm shift trend
in  the  communities  of  aerospace  guidance  and  control,
where  the  amount  of  computation  far  exceeds  the  basic
algebraic  operations  required  to  evaluate  model-based
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guidance and control laws, this led to the emerging con-
cept of computational guidance law (CGL) [13]. The dis-
tinguishing trademark of CGL is that it  relies heavily on
real-time on-board data sampling and numerical comput-
ing  operations  to  obtain  guidance  instructions,  thereby
eliminating  the  need  for  system  modeling,  gain  adjust-
ment,  important  pre-mission  planning,  or  extensive
offline  design  [14].  Generating  guidance  instructions
through  data  and  computation  often  requires  iterations.
Therefore, in dynamically evolving scenarios, how to use
sampled  data  to  generate  online  guidance  instructions
efficiently,  reliably,  and  robustly  is  not  trivial,  which  is
still an open issue.

Different  from  model-dependent  guidance  laws,  the
design  of  data-driven  CGLs  always  involve  machine
learning  technologies.  Data-driven  computational  guid-
ance algorithm can be implemented through offline train-
ing or online learning, then the implicit mapping relation-
ships  between  the  guidance  instructions  and  the  training
datasets are learned. As an interdisciplinary subject in the
communities  of  artificial  intelligence  and  control,  rein-
forcement  learning  (RL)  which  is  supposed  to  get  the
approximate  solution  of  the  control  system  optimization
problem  by  using  sampled  data,  has  been  broadly  intro-
duced and developed in the field of artificial intelligence
and machine learning. The problem-solving framework of
RL  includes  value  iteration  (VI)  algorithm  and  policy
iteration (PI) algorithm, which first appeared in the solu-
tion  methods  of  Markov  decision  problem  [15].  The
approximate solutions of H2 and H∞ control problems can
be  obtained  by  using  VI  or  PI  algorithm  through  a  ran-
dom or directed exploration in the control strategy space
[16,17].  In  recent  years,  RL-based  missile  interception
guidance laws have attracted increasing interest, but most
of  the  algorithms  use  offline  training  or  partial  systems
dynamics is required. In [18–21], RL-based guidance law
was  proposed  for  missile  homing-phase  interception
guidance  problem,  which  used  observations  consisting
solely  of  line-of-sight  (LOS)  rate,  and  the  above-men-
tioned  guidance  laws  based  on  RL  algorithm  were  real-
ized  by  offline  training.  The  approximate  optimal  guid-
ance laws and cooperative guidance laws based on online
adaptive  dynamic  programming  were  introduced  in
[22–26], where the guidance laws were solved using neu-
ral  network  (NN)  based  online  PI  algorithms.  But  these
algorithms are on-policy RL methods, in which the value
function  is  evaluated  by  employing  sampled  data  gener-
ated by evaluating policies [27], and the systems dynam-
ics is required.

Off-policy  integral  RL  (IRL)  was  first  introduced  for
solving control optimization problem of nonlinear contin-
uous-time  dynamic  system  in  [28,29].  Unlike  on-policy

RL  algorithm,  the  optimal  control  policy  and  the  value
function are learned by employing data generated by off-
policy sampling,  and the system dynamics  is  completely
unknown.  In  [30,31],  the  offline  off-policy  IRL  method
was  employed  to  learn  the  solution  of  Hamilton-Jacobi-
Isaacs (HJI) equation related with the H∞ optimal control
problem of nonlinear system with unknown internal sys-
tem model.

In order to realize a completely model-free, data-driven
guidance  technology  for  intercepting  high-maneuvering
target, a computational intelligence interception guidance
(CIIG) law using online off-policy IRL algorithm is intro-
duced in this paper. A linear-in-parameter NN structure is
built  to solve the approximate Nash equilibrium solution
of  the  missile-target  interception  two-person  zero-sum
differential games problem without using any knowledge
of  the  system  dynamics.  Interception  problem  can  be
solved through online data sampling. The organization of
this paper is as follows. The general two-person zero-sum
differential  games  problem  statement,  simultaneous  pol-
icy  updating  algorithm  (  SPUA)  algorithm,  and  off-pol-
icy IRL method are presented in Section 2. In Section 3,
the  engagement  geometry  of  missile  and  target  is  given,
and  then,  the  CIIG  law  for  intercepting  high-maneuver-
ing  target  is  presented.  Two  engagement  scenarios  of
missile  and  target  are  provided  in  Section  4.  Section  5
concludes the paper. 

2. Nonlinear  zero-sum differential  game  and
off-policy IRL algorithm

 

2.1    Problem formulation and preliminary

In  this  section,  the  background  knowledge  review  and
preliminary  results  of  two-person  zero-sum  differential
games  are  provided.  Consider  a  class  continuous-time
nonlinear affine in control input game system defined as

ẋ = f (x)+ g (x)u+ k (x)w (1)

x ∈ Rn u ∈ Rm

w ∈ Rq

f (x) ∈ Rn

g (x) ∈ Rn×m k (x) ∈ Rn×q

Ω ⊂ Rn f (x) g (x)
k (x) f (0) = 0

x = 0
u (t) ∈ L2 [0,∞) w (t) ∈ L2 [0,∞)

where  is  the  system  state  vector,  and
 represent  control  input  and  disturbance  input  of

the two participants in the game, respectively. 
is  internal  dynamics,  and  are
input-to-state  matrix  and  disturbance  coefficient  matrix,
respectively.  On a compact  set , , ,  and

 are  locally  Lipschitz  continuous and ,  that
is,  is  a  system  equilibrium  point.  Assume  that

 and .
For nonlinear game system in (1), define the following

infinite-horizon performance index function.

J (x0,u,w) =
w ∞

0

(
Q (x)+uT Ru−γ2wTw

)
dt =w ∞

0
r (x,u,w)dt (2)
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r (x,u,w) = Q (x)+uT Ru−γ2wTw
Q (x) ⩾ 0 R > 0 γ > 0 R

u

w

where  utility  function 
with , , and , assume  is a diagonal
matrix.  Game  theory  addresses  the  problem  of  policy
interaction  between  the  two  participants,  each  of  which
has an objective contained in a cost function that the par-
ticipants try to minimize or maximize. In two-person zero-
sum  differential  games,  the  objective  of  participant  is
to  minimize  the  performance  functional,  whereas  the
objective of player  is to maximize it, that is

V∗ (x0) =min
u

max
w

J (x0,u,w) =

min
u

max
w

w ∞
0

(
Q (x)+uT Ru−γ2wTw

)
dt. (3)

H∞
γ > 0 γ

It  is  worth  noting  that  this  problem  is  equivalent  to  a
suboptimal  control  problem  for  some  prescribed

,  and  the  system L2-gain  is  less  than  or  equal  to 
[32].  Define  a  value  or  cost  function  for  the  policies  of
the two players as

Vu,w (x (t)) =
w ∞

t

(
Q (x)+uT Ru−γ2wTw

)
dt. (4)

Then  the  Hamiltonian  function  associated  with  the
value function is

H (x,u,w,∇V) = Q (x)+uT Ru−γ2wTw+
∇VT ( f (x)+ g (x)u+ k (x)w) (5)

∇V = ∂V/ ∂x
V∗

where .  Appling  the  stationarity  conditions
on (5) with , one gets

∂H (x,u,w,∇V∗)
∂u

= 0

∂H (x,u,w,∇V∗)
∂w

= 0
. (6)

One can get the optimal control inputs of the two par-
ticipants for the game problem, that are

u∗ = −1
2

R−1
1 gT ∂V

∗

∂x
, (7)

w∗ =
1

2γ2
kT ∂V

∗

∂x
. (8)

In  the  light  of  the  Bellman’s principle  of  optimality,
the following optimality condition is obtained.

0 =min
u

max
w

H (x,u,w,∇V∗) (9)

By  substituting  (7)  and  (8)  into  (9),  we  get  the  well-
known HJI equation.

0 = Q (x)+
(
∂V∗

∂x

)T

f (x)− 1
4

(
∂V∗

∂x

)T

gR−1
1 gT ∂V

∗

∂x
+

1
4γ2

(
∂V∗

∂x

)T

kkT ∂V
∗

∂x
(10)

If  there  exists  a  minimal  non-negative  solution

V∗ (x) ⩾ 0 : Rn→ R to the HJI equation (10), and then the
action strategy pairs given in (7) and (8) are Nash equilib-
rium  saddle-point  solution  [33].  The  Nash  equilibrium
strategy  is  inherently  robust,  once  the  equilibrium  is
reached,  no  participant  can  unilaterally  deviate  from  its
Nash  strategy  to  improve  its  payoff.  If  a  player  deviates
from its optimum behavior and the opponent sticks to its
optimum policy, the former cannot get the optimal bene-
fit from the game.

Because HJI equation (10) is a nonlinear partial differ-
ential equation, finding the analytic solution of HJI equa-
tion  is  usually  intractable.  Furthermore,  complete  know-
ledge  of  nonlinear  game  system  dynamics  is  needed  to
solve (10). Therefore, a various of offline numerical cal-
culation  methods  have  been  investigated,  and  then  the
approximate  optimal  solution  of  two-person  zero-sum
differential games problem is obtained. 

2.2    On-policy IRL algorithm for
solving HJI equation

By  differentiating  (4),  one  can  get  the  following  nonli-
near system Lyapunov equation (LE).0 = Q (x)+uT Ru−γ2wTw+ ∂

V
∂x

( f (x)+ g (x)u+ k (x)w)

V (0) = 0
(11)

V (x) ⩾ 0
u w

∂V/ ∂x
∂V∗/ ∂x

A solution  is the cost function (4) associated
with  control  policies  and  specified.  Noting  that  the
LE (11) is linear with respect to the value function gradi-
ent ,  but  the  HJI  equation  (10)  is  nonlinear  with
respect  to  the  optimal  cost  function  gradient .
Therefore,  HJI  equation can be iteratively solved by uti-
lizing one of several offline algorithms based on solving
the LE iteratively [34].

Inspired  by  the  integral  reinforcement  learning  me-
thods introduced by artificial intelligence scientists, a dis-
cretized  version  of  LE  for  nonlinear  continuous-time
game system in line with [35] is given as follows:

Vu,w (x (t)) =
w t+∆t

t
r (x,u,w)dt+

Vu,w (x (t+∆t)) ,Vu,w (0) = 0 (12)

[t, t+∆t)
where  the  integral  in  (12)  could  be  regarded  as  a  rein-
forcement term on the time interval . According
to  (12),  an  on-policy  IRL  algorithm  which  is  termed  as
SPUA in [27] is introduced as shown in Algorithm 1.

Algorithm 1　SPUA for H∞ control problem
i = 0 Vi

ui = −
1
2

R−1 gT ∂Vi

∂x
,wi =

1
2γ2

kT ∂Vi

∂x

Step 1　Set ,  give an initial  value function ,  and
initial disturbance and control policies associated

.
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Vi+1 (x) Vi+1 (0) = 0
Vui ,wi

i+1 (x (t)) =
w t+∆t

t
r (x,ui,wi)dt+Vui ,wi

i+1 (x (t+∆t))

wi+1 =
1

2γ2
kT ∂Vi+1

∂x

ui+1 = −
1
2

R−1 gT ∂Vi+1

∂x∥∥∥Vi+1−Vi

∥∥∥
Ω
⩽ ε ε > 0

i = i+1

Step 2　Solve for  with  by using
　 　 (13)
Step  3　Update  the  disturbance  policy  and  control  po-
licy using

　　　　　　 ,　　　　　　(14)

　　　　　　 .　　　　　 (15)
Step  4　 If ,  (positive  real  number
and  small),  stop  calculation,  else  set ,  move  to
Step 2 and go on iteration.

Vu,w (x)

f (x)

In  [35],  it  has  been proved that  solving for  in
(11)  is  equivalent  to  calculating  the  solution  of  (13).
Although solving (11) and (13) can obtain the same solu-
tion,  the  knowledge  of  internal  dynamics  is  not
required  by  solving  (13),  which  is  required  explicitly  in
(11).  The  SPUA  for  two-person  zero-sum  differential
games  also  includes  policy  evaluation  step  and  policy
update  step,  which can be regarded as  an IRL algorithm
for two participants to learn the optimum strategies in an
uncertain scenario.
 

2.3    Off-policy  IRL algorithm and NNs-based  online
implementation

SPUA is  an  on-policy  learning  algorithm.  For  on-policy
learning,  the  sampled  data  are  generated  by  using  the
evaluating  control  and  disturbance  strategies.  Therefore,
when  online  implementation  of  SPUA,  the  disturbance
policies need to be adjustable and specified, which is usu-
ally  unrealistic  for  practical  applications.  To  overcome
this  drawback,  motivated  by  [30],  an  online  off-policy
integral RL algorithm is proposed to solve the HJI equa-
tion  without  making  use  of  any  prior  information  of  the
system  dynamics.  Then,  a  NN-based  implementation  is
given.
 

2.3.1    Off-policy IRL algorithm for solving HJI equation

Firstly, the system dynamics in (1) is rewritten as

ẋ = f (x)+ g (x)ui+ k (x)wi+ g (x) (u−ui)+
k (x) (w−wi) (16)

u ∈ Rm w ∈ Rq

ui ∈ Rm wi ∈ Rq

Vui ,wi

i+1 (x)
Vui ,wi

i+1 (x)

where  and  are behavior policy and actual
disturbance,  respectively.  and  are strate-
gies  to  be  evaluated  and  updated.  Let  be  the
solution  of  (11),  and  differentiating  along  with
the system dynamics in (16) yields

V̇ui ,wi

i+1 =
(∇Vui ,wi

i+1

)T ( f + gui+ kwi)+(∇Vui ,wi

i+1

)T g (u−ui)+
(∇Vui ,wi

i+1

)T k (w−wi) . (17)

Using (11), (14) and (15) one can obtain:

V̇ui ,wi

i+1 = −r (x,ui,wi)−2uT
i+1R (u−ui)+

2γ2wT
i+1 (w−wi) = −Q (x)−uT

i Rui+γ
2wT

i wi−
2uT

i+1R (u−ui)+2γ2wT
i+1 (w−wi) . (18)

[t, t+∆t)
Calculating integral on both sides of (18) over the time

interval  yields  the  off-policy integral  RL equa-
tion as follows:

Vui ,wi

i+1 (x (t+∆t))−Vui ,wi

i+1 (x (t)) = −
w t+∆t

t
r (x,ui,wi)dt−w t+∆t

t
2uT

i+1R (u−ui)dt+
w t+∆t

t
2γ2wT

i+1 (w−wi)dt.

(19)

u
w

Vui ,wi

i+1

ui+1 wi+1

It is worth noting that for arbitrary behavior strategy 
and practical disturbance  which are acted on the game
system,  (19)  could  be  used  to  solve  cost  function ,
evaluated  control  strategy  and .  The  off-policy
integral  RL  algorithm  for  iteratively  solving  HJI  equa-
tion (10) using (19) is given as shown in Algorithm 2.

Algorithm 2　Off-policy integral RL for calculating the
solution of HJI equation

u
w

i = 0 V0

w0 u0

Vui ,wi

i+1 (x) ui+1 wi+1 Vui ,wi

i+1 (0) = 0∥∥∥Vi+1−Vi

∥∥∥+ ∥∥∥ui+1−ui

∥∥∥+ ∥∥∥wi+1−wi

∥∥∥ ⩽ ε ε > 0

Vi+1 (x)
ui+1

V∗ (x) = Vi+1 (x) u∗ = ui+1

i = i+1

Step 1　Use the behavior policy  and the actual distur-
bance  to  collect N system  data  which  contain  system
state, disturbance input and control input at different sam-
pling time interval.
Step  2　Set ,  give  an  initial  cost  function ,  and
initial evaluated policy  and .
Step  3　 Reuse  the  collected  data  to  solve  (19)  for

,  and , with .

Step 4　If , 
(positive  real  number  and  small),  stop  iteration  and  out-
put  as  the  approximate  optimal  solution  of  HJI
equation  (10),  output  as  the  approximate  optimal
control  input,  i.e.,  and ,  else set

, go to Step 3 and go on iteration.

In  [27],  Wu  et  al.  proofed  that  SPUA  approach  was
essentially  a  Newton  iteration  algorithm  for  pursuing  a
solution  of  the  fixed-point  equation  in  a  Banach  space,
the convergence could be established by the Kantorovich’s
theorem. The following theorem proves that Algorithm 2
has the same solution and convergence as the SPUA.

Vui ,wi

i+1

Theorem  1　 Equation  (19)  which  is  an  off-policy
integral  RL  equation  has  the  same  solution  of  the  cost
function  as the discretized version of LE (13).

Vui ,wi

i+1 (x)

Vui ,wi

i+1 (0) = 0 Vui ,wi

i+1 (x)

Proof　From the  derivation  of  (19),  first  assume that
 is  the  solution  of  (11),  then  (19)  is  derived  by

using (14)  and (15).  On the  other  hand,  with  the  bound-
ary condition , it can be proved that 
is  the  unique  solution  of  (19)  by  contradiction  in  Theo-
rem 1 [30]. Therefore, (11) and (19) have the same solu-
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Vu,w (x)

tion. At the same time, it has been proved that infinitesi-
mal version of LE in (11) and discretized version of Lya-
punov  equation  (13)  have  the  same  solution  in
Lemma 1 [35].  Consequently,  the  off-policy  integral  RL
equation  in  (19)  can  get  the  same  solution  for  the  cost
function as (13). □

i

Remark  1　 It  can  be  shown  that  (19)  and  (13)  have
the same solution, thus the algorithm convergence of the
off-policy  IRL  method  is  the  same  as  the  SPUA  in  line
with [27], that is, with the increase of iteration step , the
solution of iteration equation (19) will gradually approach
the optimal solution of the HJI equation in (10).

f (x)

Remark  2　Different  from [30]  in  which  the  off-po-
licy IRL algorithm is  presented to learn the approximate
optimal solution of HJI equation without system internal
dynamic  model ,  the  Algorithm  2  proposed  above
can get the approximate optimal solution of HJI equation
without using any knowledge of the system dynamics.

Noting that  (19)  is  a  scalar  equation,  the least  squares
method can be utilized to calculate the solution when the
linear-in-parameter  NNs  are  used  to  approximate  the
value function and control policies. 

2.3.2    NNs based online implementation of
Algorithm 2

Vui ,wi

i+1 (x) ui+1 wi+1In order to solve ,  and  in (19) by using
system sampled data, a NNs-based actor-critic structure is
introduced.  According  to  the  famous  Weierstrass  high-
order  approximation  theory  [36]  which  points  out  that
any  continuous  functions  can  be  fitted  using  the  infinite
dimensional  set  of  linear  independent  basis  functions,
here three NNs, i.e., one critic NN and two actor NNs, are
applied  to  approximate  the  value  function,  disturbance
strategy and control strategy, respectively. For the actual
implementation,  it  generally  only  needs  to  fit  a  function
using a finite-dimensional functions set on a compact set.
Thus, the three NNs are given as

V̂i+1 (x) =WT
c ρ (x) , (20)

ûi+1 (x) =WT
aϕ (x) , (21)

ŵi+1 (x) =WT
dφ (x) , (22)

ρ (x) =
[
ρ1 (x) ,ρ2 (x) , · · · ,ρL1

(x)
]T ∈ RL1

ϕ (x) =
[
ϕ1 (x) ,ϕ2 (x) , · · · ,ϕL2

(x)
]T ∈ RL2 φ (x) =[

φ1 (x) ,φ2 (x) , · · · ,φL3
(x)

]T ∈ RL3

Ω ⊂ Rn L1 L2

L3

Wc ∈ RL1 Wa ∈ RL2×m

Wd ∈ RL3×q

where  is  the  lin-
early  independent  basis  function  vector  for  the  critic
NN,  and 

 are the linearly indepen-
dent  basis  function  vectors  for  actor  and  disturber  NNs,
respectively, which are all defined on . ,  and

 are the numbers of neurons in the hidden layer of the
three  NNs  respectively. ,  and

 are weight vectors which are constant vectors.

R = diag(r1,r2, · · · ,rm)Define ,  substituting  (20)−(22)  in
(19) yields:

e (t) =WT
c (ρ (x (t+∆t))−ρ (x (t)))+

w t+∆t

t
r (x,ui,wi)dt+

2
m∑

j=1

r j

w t+∆t

t
WT

a, jϕ (x)ν1
jdt−2γ2

q∑
k=1

w t+∆t

t
WT

d,kφ (x)ν2
kdt

(23)

ν1 =
[
ν1

1, ν
1
2, · · · , ν1

m

]
= u−ui ν2 =

[
ν2

1, ν
2
2, · · · , ν2

q

]
=

w−wi Wa, j Wa Wd,k

Wd e (t)
e (t)

where , 
,  is  the jth  column  of  matrix ,  is  the

kth  column of  matrix ,  and  is  the fitting error  of
(19).  can be regarded as a residual error of continu-
ous-time system temporal difference [37]. Note that (23)
is linear in the NNs weight vectors. Define

W =
[
WT

c ,W
T
a,1, · · · ,WT

a,m,W
T
d,1, · · · ,WT

d,q

]T
, (24)

ω (t) =



ρ (x (t+∆t))−ρ (x (t))

2r1

w t+∆t

t
ϕ (x)ν1

1dt
...

2rm

w t+∆t

t
ϕ (x)ν1

mdt

−2γ2
w t+∆t

t
φ (x)ν2

1dt
...

−2γ2
w t+∆t

t
φ (x)ν2

qdt



, (25)

λ (t) =
w t+∆t

t
(−r (x,ui,wi))dt =w t+∆t

t

(
−Q (x)−uT

i Rui+γ
2wT

i wi

)
dt. (26)

Then, (23) can be rewritten as

e (t)+λ (t) =WTω (t) . (27)

W W

e (t) W ∈ RL1+m·L2+q·L3

N > L1+m ·L2+q ·L3

t1 tN

ŵi ûi

N

Note  that  (27)  is  linear  in  parameter ,  therefore 
can be solved in the sense of least-squares by minimizing
the  square  of  error .  Because  of ,
therefore one needs to collect  sys-
tem data about system state, disturbance signal, and con-
trol  input  from  to  in  the  state  space.  Then,  for  the
given  evaluating  policies  and ,  using  this  informa-
tion  to  calculate  (25)  and  (26)  at  different  sampled
points, one can get

Ω = [ω (t1) ,ω (t2) , · · · ,ω (tN)] , (28)

Λ = [λ (t1) ,λ (t2) , · · · ,λ (tN)]T. (29)

The least-squares solution of (27) is given as

W =
(
ΩΩT

)−1
ΩΛ. (30)

V̂i+1 ŵi+1 ûi+1Then  one  can  obtain ,  and  using
(20)−(22).  Reusing  the  collected  data  to  solve  (30),  one
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u∗

w∗
can  get  the  approximate  optimal  control  input  pairs 
and .
Remark  3　 Equation  (30)  is  a  batch  least-squares

equation, one can also use recursive least-squares method
to solve this problem, as shown in [31].

x (t+∆t)

∆t x (t) , x (t+∆t) , · · · , x (t+N∆t)

x (t+∆t)
t

Remark 4　Although (23) contains , the sys-
tem data can be sampled continuously over the same time
interval ,  i.e., .  Thus,
none  of  the  knowledge  of  game  system  dynamics  is
needed  to  calculate  the  future  system  state  at
instant . 

3. CIIG
In this section, for the typical engagement scenario of air-
to-air  missile  intercepting  high-maneuvering  target,  the
CIIG algorithm based on online off-policy IRL method is
proposed.  The  guidance  system  can  be  modeled  in  the
pitch  plane  and  yaw  plane  respectively,  therefore  the
interception  problem  in  the  yaw  plane  is  taken  as  an
example to present the CIIG law.

In  the  yaw  plane,  the  engagement  geometry  of  inter-
ception scenario is indicated in Fig. 1.
 
 

O
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V
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α
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a
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Fig. 1    Missile and target engagement geometry
 

As shown in Fig.  1,  the  missile  dynamic  equations  in
the yaw plane are given as

ẋM = VMcos α
żM = −VMsin α
α̇ = −aM/VM

ȧM = (µM −aM)/τM

(31)

(xM,zM)
VM α

aM VM

τM µM

where  are the missile position coordinates in the
inertial reference frame,  represents missile velocity, 
is the flight-path angle (FPA) of missile. Missile accelera-
tion  is assumed to be perpendicular to its velocity ,

 is the autopilot time constant of missile, and  is the
acceleration  instruction  of  missile.  The  equivalent  first-
order model of missile autopilot is considered here. And,

the dynamics of target has the same form.
ẋT = VT cos β
żT = −VT sin β
β̇ = −aT/VT

ȧT = (νT −aT )/τT

(32)

(xT ,zT )
VT β

aT

VT τT

νT

where  are  the  target  position  coordinates  in  the
inertial  reference  frame,  represents  target  velocity, 
is the FPA of target. Target acceleration  is assumed to
be perpendicular  to its  velocity  too,  is  the autopi-
lot  time  constant  of  target,  and  is  the  acceleration
instruction of target.

Assume  that  missile  and  target  both  have  constant
speeds,  the  relative  motion  equations  of  missile  and  tar-
get in the engagement scenario are given as

ṙ = Vr = VT cos(β− θ)−VMcos(α− θ), (33)

θ̇ =
[
VT sin(β− θ)−VMsin(α− θ)]/r, (34)

θ θ̇ r
Vr

where  represents  LOS  angle,  is  LOS  rate,  repre-
sents  missile-target  relative  distance,  and  is  closing
velocity, i.e., range rate along the LOS.

t

rZEMD (t)

At an instant , the quantity of terminal zero effort miss
distance  (ZEMD) is  calculated  as  the  minimum distance
between  missile  and  target  if  neither  the  missile  nor  the
target maneuvers from this moment [38], i.e.,  is
calculated as

rZEMD (t) =
r2θ̇√

V2
r + r2θ̇2

. (35)

Vr < 0 θ̇

Vr θ̇

In the terminal guidance phase, from (35), one can see
that  keeping  and  regulating  to  zero  can  ensure
that the target is  captured effectively.  Therefore,  the dis-
tance rate  and the LOS rate  need to meet the follow-
ing conditions.

Vr < 0, θ̇→ 0. (36)

rZEMD (t)
rZEMD (t)

x1 = θ x2 = θ̇

In the interception problem, the expectation of missile
is  to  minimize ,  however,  the objective of  target
which is an opponent is to maximize . Therefore,
the guidance application can be regarded as solving a two-
person  zero-sum  differential  games  problem.  Select

 and  as the system state,  take the derivative
of  both  sides  of  (34),  and  substitute  (31),  (32),  and  (33)
into it, one can obtain:

ẋ1 = x2

ẋ2 = −
2Vr

r
x2+

cos(α− θ)
r

aM −
cos(β− θ)

r
aT

. (37)

In the real guidance process, it is important to note that
the  guidance  procedure  will  end  when  the  minimum
detection  distance  of  seeker  is  greater  than  the  missile-

WANG Qi et al.: Computational intelligence interception guidance law using online off-policy integral ... 1047



r r

|β− θ| = π/2, |α− θ| = π/2

target  distance ,  i.e.,  the  parameter  appearing  in  the
denominator in (37) will not be zero throughout the guid-
ance  process.  Therefore,  the  system  dynamics  satisfies
locally  Lipschitz  condition.  Furthermore,  from  (37),  it
can  be  seen  that  is  an  uncon-
trollable  and  unstable  equilibrium.  Hence,  the  guidance
law domain of validity meets the constraint of the follow-
ing conditions.

Ω = {x : |β− θ| , π/2, |α− θ| , π/2,Vr < 0}. (38)

Next, the CIIG law is proposed by using the online off-
policy IRL algorithm, the computation procedure of CIIG
is given in Algorithm 3.

Algorithm 3　CIIG law
k = 1

aM aT

[(k−1) N∆t,kN∆t)

V∗k (x) a∗M,k
a∗T,k

a∗M,k

a∗M,k k = k+1

aT [(k−1) N∆t,kN∆t)

Step 1　Set ,  collect N system data  using the mis-
sile acceleration  and the target actual acceleration 
from the time interval ].
Step  2　After  the  system  data  are  collected,  use  Algo-
rithm  2  to  solve  the  approximate  optimal  cost  function

, missile approximate optimal control input  and
target  approximate  optimal  disturbance  strategy  of
the kth calculation cycle.
Step 3　Take  as the actual behavior control strategy
of missile to be used. If the missile target distance is less
than a certain value, stop updating , else set ,
and collect N system data with the target actual accelera-
tion  from  the  time  interval ],  then
go to Step 2.

r Vr α β

a∗M,k

Remark 5　Because , ,  and  are changed over
time, (37) is a time-varying differential equation, the mis-
sile  optimal  control  policy  need  to  be  updated  peri-
odically.
Remark  6　The  real-time  performance  of  the  Algo-

rithm  3  is  a  challenge  when  implementing  it  online.  As
shown  in  Algorithm  2,  integral  and  iterative  procedure
are required. The calculation of integrals is usually time-
consuming and increases exponentially with the increase
of  the  system  state  dimension  and  the  number  of  basis
functions.  The  amounts  of  integral  which  remain  invari-
ant  during the iteration process can be precalculated and
stored, therefore, the integrals only need to be calculated
once  for  all,  which  can  reduce  the  number  of  integral
evaluations.  On the other  hand,  the appropriate  selection
of the set of basis functions and its sizes can also be help-
ful to balance convergence and computational time. 

4. Simulation verification
Two  computer  simulation  examples  are  carried  out  to
illustrate the effectiveness of CIIG, where one is to inter-
cept non-maneuvering target, and the other is to intercept

high-maneuvering target.

Ω

The  hidden  layer  neurons  of  critic  NN,  actor  NN and
disturber NN on  are set as follows:

ρ (x1, x2) =
[
x4

1, x
3
1 x2, x2

1 x2
2, x1x3

2, x
4
2, x

2
1, x1x2, x2

2

]T
, (39)

ϕ (x1, x2) =
[
x2, x2

1 x2, x3
2

]T
, (40)

φ (x1, x2) =
[
x2, x2

1 x2, x3
2

]T
. (41)

Wc ∈ R8 Wa ∈ R3×1 Wd ∈ R3×1 W ∈ R14

∆t
N = 100

V0 u0

w0

Thus, , , ,  and .
The numerical simulation calculation step  is set to be
0.005  s,  and  take ,  i.e.,  collect  100  data  points
every  0.5  s  along  the  system  state  trajectories,  therefore
Algorithm 2 needs to be used for solving the solution of
HJI equation every 0.5 s. The initial values of ,  and

 in  Algorithm  2  are  set  to  be  zero.  The  approximate
optimal control strategy of the missile obtained in the pre-
vious cycle will be used as behavior policy of the missile
in  the  next  cycle.  The  behavior  policy  of  target  is  its
actual  maneuver  strategy,  therefore  target  acceleration
does not need to be adjustable. 

4.1    Non-maneuvering target

Numerical simulation conditions of Example 1 are shown
in Table 1.
 
 

Table 1    Simulation conditions of Example 1

Parameter Symbol Value

Initial position of missile/m (xM ,zM) (0, 0)

Initial FPA of missile/(°) α 0

Missile velocity/(m·s−1) VM 600
Initial position of target/m (xT ,zT ) (5 000, 0)

Initial FPA of target/(°) β 210

Target velocity/(m·s−1) VT 200
Target acceleration/g aT 0

Missile autopilot
first-order lag/s

τM 0.1

Target autopilot
first-order lag/s

τT 0.1

 

Q (x1, x2) = q1x2
1 +q2x2

2 q1 = 0 q2 = 4×107 R = 1
γ = 10

t = 5.0 s
t = 5.0 s

The parameters of utility function of example 1 are set
as , , ,  and

.  Numerical  simulation  results  of  example  1  are
shown  in Fig.  2–Fig.  6.  The  actor  NN  weights  learned
during  the  online  learning  guidance  stage  are  shown  in
Fig.  2,  the  weights  of  the  NN  are  updated  every  0.5  s.
Fig.  3 shows  the  number  of  iterations  per  calculation
cycle, as can be seen that the maximum iteration number
is 40 at . The learning processes of the actor NN
weights  at  are  shown  in Fig.  4.  The  actor  NN
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weights  converge  ultimately,  and  the  approximate  opti-
mal  control  strategy  of  the  missile  is  obtained.  The  nor-
mal  acceleration  instruction  and  response  histories  of
missile are demonstrated in Fig. 5, where g is the acceler-
ation  of  gravity. Fig.  6 shows the  missile  and  target  tra-
jectories.
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Fig.  2      Actor  NN weights  learned  during  the  online  learning  gui-
dance stage of Example 1
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Fig. 3    Number of iterations per calculation cycle of Example 1
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Fig. 4    Actor NN weights learning process at t=5.0 s of Example 1
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Fig. 5    Missile acceleration instruction and response for intercept-
ing non-maneuvering target
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Fig. 6    Missile and target trajectories of Example 1
  

4.2    High-maneuvering target

Numerical simulation conditions of Example 2 are shown
in Table 2.

 
 

Table 2    Simulation conditions of Example 2

Parameter Symbol Value

Initial position of missile/m (xM ,zM) (0, 0)

Initial FPA of missile/(°) α 0

Missile velocity/(m·s−1) VM 600
Initial position of target/m (xT ,zT ) (8 000, 0)

Initial FPA of target/(°) β 190

Target velocity/(m·s−1) VT 300
Target acceleration/g aT 12

Missile autopilot
first-order lag/s

τM 0.1

Target autopilot
first-order lag/s

τT 0.1

 

Q (x1, x2) = q1x2
1 +q2x2

2 q1 = 0 q2 = 108 R = 1
γ = 10 q2

The parameters of utility function of Example 2 are set
as , , ,  and

.  In  this  scenario,  the  value  of  is  greater  than
that  of  intercepting  non-maneuvering  target,  to  improve
the  missile  acceleration  and  reduce  miss  distance.  In
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t = 3.0 s t = 12.0 s

Example 2, the CIIG law proposed will be compared with
the  adaptive  dynamic  surface  guidance  (ADSG)  law
introduced in [5,6] and APNG law. Simulation results of
missile-target  engagement  are  shown  in Fig.  7–Fig.  11.
Fig.  7 shows the missile  and target  trajectories,  the miss
distance  is  0.111  m  and  0.236  m  by  using  CIIG  and
ADSG respectively, and the guidance accuracy of the two
guidance algorithms is comparable. The miss distance of
APNG  is  5.624  m.  The  normal  acceleration  instruction
and  response  histories  of  the  three  guidance  algorithms
are demonstrated in Fig. 8. At the end of the trajectories,
the  acceleration  commands  calculated  by  APNs  tend  to
saturate.  In the initial  phase, the target is non-maneuver-
ing, and after 1.5 s,  the target actuates a circular maneu-
ver with acceleration of 12g, i.e., the maneuvering accel-
eration is 12 times that of gravity. In the initial, the accel-
eration instruction of missile guided by CIIG is driven by
white  noise.  The  actor  NN  weights  learned  during  the
online  learning  guidance  stage  are  shown  in Fig.  9.
Fig.  10 shows  the  number  of  iterations  per  calculation
cycle, as can be seen that the maximum iteration number
is 14 at  and . The learning processes of
the actor  NN weights at  these two calculation cycles are
shown  in Fig.  11.  The  actor  NN  weights  converge  ulti-
mately, pointing out that the approximate optimal control
strategy for the missile is obtained.
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Fig. 7    Missile and target trajectories of Example 2
 

From the above simulation results, one can see that the
approximate  Nash  equilibrium  solution  of  missile-target
two-person  zero-sum  differential  games  problem  is
obtained by using off-policy IRL when the online learn-
ing  process  converges.  Because  the  Nash  equilibrium
strategy is inherently robust, the CIIG algorithm is effec-
tive in intercepting high-maneuvering targets.
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Fig. 8    Missile acceleration instruction and response for intercept-
ing high-maneuvering target
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dance stage of Example 2

 

 
 

0 3 6 9 12 15

Time/s

0

5

10

15

N
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

Fig. 10    Number of iterations per calculation cycle of Example 2
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Fig. 11    Actor NN weights learning process of Example 2
  

5. Conclusions
A model-free, data-driven the CIIG law which can inter-
cept high-maneuvering target is introduced in this paper.
Firstly,  the  missile-target  interception  problem  is
regarded as a nonlinear two-person zero-sum differential
games problem, in which the missile is a minimizing par-
ticipant  and  the  target  is  a  maximizing  opponent.  And
then,  an  online  off-policy  IRL  algorithm  is  proposed  to
solve this  nonlinear  differential  game problem, the algo-
rithm proposed has the same convergence as SPUA. The
NNs  based  framework  is  presented  to  carry  out  the  off-
policy  IRL  algorithm  online,  and  a  batch  least  squares
method  is  applied  to  update  the  weight  vectors  of  NNs.
Based  on  the  online  off-policy  IRL  method,  the  CIIG
algorithm  for  intercepting  high-maneuvering  target  is
introduced. Finally, numerical simulation results of air-to-
air missile intercepting non-maneuvering target and high-
maneuvering target are given to verify the effectuality of
the CIIG law proposed.
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