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Abstract: Beamspace  super-resolution  methods  for  elevation
estimation  in  multipath  environment  has  attracted  significant
attention,  especially  the  beamspace  maximum  likelihood  (BML)
algorithm. However, the difference beam is rarely used in super-
resolution  methods,  especially  in  low  elevation  estimation.  The
target  airspace  information  in  the  difference  beam  is  different
from the  target  airspace  information  in  the  sum beam.  And the
use of difference beams does not significantly increase the com-
plexity  of  the  system  and  algorithms.  Thus,  this  paper  applies
the difference beam to the beamformer to improve the elevation
estimation performance of BML algorithm. And the direction and
number  of  beams  can  be  adjusted  according  to  the  actual
needs. The theoretical target elevation angle root means square
error (RMSE) and the computational complexity of the proposed
algorithms  are  analyzed.  Finally,  computer  simulations  and  real
data  processing  results  demonstrate  the  effectiveness  of  the
proposed algorithms.

Keywords: elevation estimation, beamspace, multipath environ-
ment, maximum likelihood.
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1. Introduction
In  recent  decades,  target  height  estimation  in  multipath
environment has attracted significant attention [1–3]. The
target height is directly calculated by the elevation angle,
so  the  height  estimation  is  equivalent  to  the  elevation
angle  estimation.  The  direct  signal  and  reflected  signals
passing  along  the  Earth’s surface  enter  the  radar’s main
beam together. The direct and reflected signals are indis-
tinguishable  in  time,  Doppler,  and  space  domain,  resul-
ting in a degradation of target elevation estimation perfor-
mance [4,5]. The reflected signals are not limited to only
one path, but are equivalent to one path by the echo with
a broad spatial extent in the Fresnel reflection area [6,7].
Thus,  this  paper  assumes  that  the  reflected  signals  only

contain the specular reflection signal. Additionally, array
radar may not handle data from massive arrays very well
in  element-space  because  of  the  large  data  transmission,
storage,  and  computation  [8].  Therefore,  many
beamspace  algorithms  convert  the  data  from  element-
space  to  a  lower-dimensional  beamspace  and  then  esti-
mate  target  angle  [9–11].  Compared  with  the  processing
in element-space, the processing in beamspace can obtain
better performance by losing certain degrees of freedom,
such  as  lower  signal  to  noise  ratio  (SNR)  resolution
threshold,  reduced  amount  of  data  transmission,  storage,
and computation [10,11].

The angle estimation algorithms based on sum and dif-
ference  beams  are  classical  methods  in  monopulse  radar
[12–14]. However, for monopulse methods, the reflected
signal  can only be regarded as  interference and is  elimi-
nated  in  multipath  environment  [15]  in  general,  and  the
information  about  the  space  domain  in  the  reflected  sig-
nal  is  lost.  Although  the  monopulse  methods  based  on
sum  and  difference  beams  are  also  used  in  array  radar
[16,17], the estimation performance is still limited due to
the  low  degree  of  freedom  of  the  beam.  The  discrete
Fourier  transform (DFT)  matrix  is  good  beamformer  for
beamspace methods, which can obtain good angle estima-
tion  performance  [10].  Additionally,  super-resolution
methods,  i.e.,  the  methods  that  break  through  the
Rayleigh  resolution  limit  [18],  such  as  subspace  algo-
rithms and maximum likelihood (ML) schemes,  are  cur-
rently the main elevation estimation methods in element-
space.  Therefore,  the  beamspace  super-resolution  meth-
ods  using  DFT  matrix  beamformer  are  good  candidates
for elevation estimation.

The subspace algorithms, such as multiple signal clas-
sification (MUSIC) [19]  and estimating signal  parmeters
via  rotationsl  invariance  techniques  (ESPRIT)  [20],  usu-
ally require more snapshots and losing a certain aperture
to  realize  signal  decoherent  processing  [21].  In  [22],  the
covariance  matrix  in  beamspace  was  reconstructed  into
the  covariance  matrix  in  element-space,  and  then  the
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angles  of  coherent  signals  are  estimated  using  spatial
smoothing  MUSIC  algorithm  in  element-space.  In  [23],
the  beamspace  U-ESPRIT  algorithm  performs  two
dimensional (2D) estimation of azimuth angle and eleva-
tion  angle  for  coherently  sources  in  multiple  input  mul-
tiple  output  (MIMO)  radar.  The  beamspace  unitary-
ESPRIT  (U-ESPRIT)  algorithm  choose  proper  and  few
beams  in  2D-beamspace  to  reduce  computational  com-
plexity. ML algorithm [24] can directly process coherent
signals  and  can  operate  utilizing  a  single  snapshot.  The
refined  ML  (RML)  algorithm  [3,25]  in  element-space
makes full use of the prior knowledge of geometric infor-
mation and surface reflection coefficient and uses a com-
posite guide vector, i.e., the refined signal model, instead
of a conventional guide vector. Thus, the RML algorithm
has high estimation accuracy and low computational bur-
den, but is sensitive to parameter errors due to the refined
signal model mismatch [26]. The three dimensional (3D)
beamspace ML (BML) algorithm [2] offers a closed-form
solution  for  elevation  estimation  by  the  feature  that  the
eigenvector  of  the  beamspace  correlation  matrix  associ-
ated with the smallest eigenvalue is orthogonal to the sub-
space spanned by the signals, so it has very low computa-
tional complexity. In addition, [2] also developed the 2D
BML  algorithm,  which  offers  a  closed-form  solution
without considering multipath. The 2D-BML algorithm is
suitable for the initial estimation of tracking or the scenes
without  multipath.  On  the  basis  of  the  3D-BML  algo-
rithm, the multipath scenario with interference or an extra
target was discussed [27]. In [28], the BML algorithm for
elevation  estimation  in  MIMO  radar  was  proposed  to
reduce the computational  burden.  In [29],  the angle esti-
mation  for  transmit  beamspace-based  in  bistatic  MIMO
radar  was  developed.  The  authors  design  the  transmit
beamspace  through  convex  optimization  to  focus  the
transmitted energy. However,  this method is not suitable
for conventional phased array radar.

To  the  best  of  our  knowledge,  the  beamspace  super-
resolution  methods  for  elevation  estimation  in  multipath
environment  have  not  been  found  to  consider  the  diffe-
rence beam yet. In order to improve the accuracy of BML
algorithm for elevation estimation,  this  paper applies the
difference  beam to  the  beamformer  and  discuss  two set-
tings  of  sum  and  difference  beams  that  can  meet  the
needs  of  most  elevation  estimation  scenarios.  The  con-
cept of sum and difference beams adopted in this paper is
more extensive than that of the traditional sum and diffe-
rence beams. The traditional sum and difference beams is
generally a pair of sum and difference beams, which is a
special  case  of  the  sum  and  difference  beams  in  this
paper. The number of sum and difference beams and the
beam direction in  this  paper  can be  flexibly  set.  Then,  a

beamspace  ML  algorithm  based  on  sum  and  difference
beams  (ML-SDB)  is  proposed.  The  ML-SDB  algorithm
does not need the surface reflection parameters, i.e.,  it  is
not  affected  by  the  corresponding  errors.  Taking  the
refined signal model [3,25] into account in the ML-SDB
algorithm, a beamspace refined ML-SDB (RML-SDB) is
developed.  Our  simulation  results  show  that  compared
with  the  ML-SDB  algorithm,  the  RML-SDB  algorithm
has  higher  estimation  accuracy  and  lower  computational
burden,  although  it  is  sensitive  to  antenna  height  and
reflection coefficient errors.

This paper is structured as follows. Section 2 provides
a multipath signal model. Section 3 reviews the 3D-BML
algorithm briefly, proposes the ML-SDB and RML-SDB
algorithms for elevation estimation, and gives the theore-
tical  elevation  angle  root  mean  square  error  (RMSE).
Section  4  analyses  the  computational  complexity  of  the
proposed algorithms. Finally, Section 5 evaluates the pro-
posed algorithms in various simulations and real data pro-
cessing results, while Section 6 concludes this work. 

2. Multipath signal model
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Consider  a  digital  array  radar  equipped  with  a  uniform
linear array. The geometry for a smooth earth model with
multipath  propagation  is  presented  in Fig.  1.  The  linear
array with the  elements receives the two paths of tar-
get  echoes  from  the  different  directions  of  arrival.  One
path returns directly from the target to the radar antenna,
whereas another path returns from the reflecting surface,
where  the  incident  angle  of  the  direct  and  reflected  sig-
nals  are  and ,  respectively.  The  height  of  the  array
radar  centre  is .  The  distance  between  two  adjacent
array  elements  is ,  which  is  half  the  wavelength.  The
height of the target is .  The distance from the target to
the array radar centre is .
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Fig. 1    Multipath geometry model of low-angle target
 

For  the  array  radar  system,  the  received  signal  in  ele-
ment-space can be written as

x (l) = [a (θ1) , a (θ2)]
[

α (l)
α (l)ρe−jφ(θ1)

]
+ n(l) =

Ac (l)+ n(l) , l = 1,2, · · · ,L (1)

L a (θ) ∈ CM×1where  is  the  number  of  snapshots,  and  is
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called the array steering vector defined as

a (θ) =
[
e−jπd(M−1)sinθ/λ,e−jπd(M−3)sinθ/λ, · · · , ejπd(M−1)sinθ/λ

]T
(2)

λ d = λ/2 α (l)

lth ρ
ρ

ρ = ΓDρs Γ
D ρs

φ (θ1) ≈
4πhrsinθ1/λ

n(l) ∈ CM×1

lth

n(l) σ2
nIM IM

M×M

where  is  the  working  wavelength, ,  the
complex amplitude related to target characteristics at  the

 snapshot, and  the surface reflection coefficient. The
surface  reflection  coefficient  is  generally  expressed as

,  where  denotes  the  smooth  surface  reflec-
tion  coefficient,  the  divergence  factor  and  the  sur-
face  roughness  factor  [25],  but  it  can  be  regarded  as  a
constant  for  the  scenario  in  this  paper  [30]. 

 is the phase-difference between the direct and
reflected  signals  due  to  time  delay.  is  the
Gaussian  white  noise  vector  with  zero  mean  at  the 
snapshot,  which is  not  correlated with  the  target  signals.
The  variance  matrix  of  is .  represents  an
identity matrix of size .

Consider a unitary matrix beamformer, as

T =
1
√

M

[
a
(
θ1

)
, a

(
θ2

)
, · · · , a

(
θQ

)]
(3)

T ∈ CM×Q THT = IQ Q

T x (l)

where , ,  and  is  the  number  of
beams, which is different when used in different methods.
Then,  using  to  convert  from  element-space  to
beamspace, the received data in beamspace is formed as

xB (l) = THx (l) = TH Ac (l)+THn(l) = Bc (l)+ nB (l) (4)

B = TH A nB (l) = THn(l)where  and  is  still  Gaussian
white noise vector. 

3. Beamspace  ML  algorithm  based  on  sum
and difference beams

This section reviews the 3D-BML algorithm briefly, and
presents  the  proposed  ML-SDB  and  RML-SDB  algo-
rithms for elevation estimation. 

3.1    Previous 3D-BML algorithm

M×3The  3D-BML  algorithm  [2]  considers  a  unitary
matrix beamformer

T3D =
1
√

M

[
a
(
− 2

M

)
, a (0) , a

(
2
M

)]
(5)

−2/M 2/M
θ1 θ2

including a reference beam pointing 0, and two auxiliary
beams  pointing  to  and .  Then,  the  3D-BML
estimations of  and  are the solution to the following
optimization problem:

Minimize
θ1 ,θ2 ,c(1),c(2),··· ,c(L)

L∑
l=1

∥xB (l)−Bc (l)∥22 (6)

∥ · ∥2 B = TH
3D A

cLS (l) =
[
BHB

]−1BHxB (l) l = 1,2, · · · ,L
cLS (l) c (l)

where  denotes  the  2-norm, .  Utilize  the
separability  to  obtain  the  respective  least  square  error
solution  ( ). Substi-
tute  for  in (6), we get

Minimize
θ1 ,θ2

L∑
l=1

xH
B (l) P⊥B (θ1, θ2) xB (l) (7)

P⊥B (θ1, θ2) = I3−B
[
BTB

]−1BTwhere .  The  solution  of  (7)
is given in [2]. 

3.2    ML-SDB algorithm

M = 2K K
Without  loss  of  generality,  suppose  the  number  of  array
elements is even, and , where  is an integer. We
define matrices as follows:

T1 =
1
√

M

[
a1

(
θ1

)
, a1

(
θ2

)
, · · · , a1

(
θQ

)]
, (8)

T2 =
1
√

M

[
a2

(
θ1

)
, a2

(
θ2

)
, · · · , a2

(
θQ

)]
, (9)

wherea1 (θq) =
[
e−jπd(M−1)sinθq/λ,e−jπd(M−3)sinθq/λ, · · · , e−jπd sinθq/λ

]T
a2 (θq) =

[
ejπd sinθq/λ,ej3πd sinθq/λ, · · · , ejπd(M−1)sinθq/λ

]T .

(10)

T = [T1, T2]T T1,T2 ∈ CK×Q

a2 (θq) = a1 (θq)ejπdM sinθq/λ

It  can  be  seen  that , ,  and
.  Then,  the  received  data  in

beamspace can be rewritten as

xB (l) = THx (l) = TH
1 x1 (l)+TH

2 x2 (l) = xBs (l) (11)

x (l) = [x1 (l), x2 (l)]T x1 (l) , x2 (l) ∈ CK×1

xBs

where  and .  It
can  be  seen  from (11)  that  the  array  is  divided  into  two
equal  subarrays,  and  is  the  sum  of  the  subarrays  in
beamspace. We can easily get the difference of the subar-
rays in beamspace, as

xBd (l) = TH
1 x1 (l)−TH

2 x2 (l) . (12)

Then, we get the sum and difference data in beamspace

xBsd (l) =
[

xBs (l)
xBd (l)

]
=

[
TH

1 x1 (l)+TH
2 x2 (l)

TH
1 x1 (l)−TH

2 x2 (l)

]
=[

T1 T1

T2 −T2

]H [
x1 (l)
x2 (l)

]
(13)

Define  the  sum  and  difference  matrix  beamformer  as
follows:

Tsd =

[
T1 T1

T2 −T2

]
. (14)

TsdThe  left  half  of  represents  sum  beamformer,  and
the right half represents difference beamformer.

Tsd

T3D

d = λ/2 T3D

−2/M 2/M Tsd

−2/M 2/M T3D Tsd

In what  follows,  we demonstrate  the advantage of 
over  the  by array patterns.  Consider  the linear  array
with the 30 elements, , the beams in  pointing
to ,  0,  and ,  and the  beams in  pointing to

 and .  The  array  patterns  of  and  are
depicted in Fig. 2 and Fig. 3, respectively. It is shown that
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Tsd

T3D

−4/M 4/M

Tsd

 with  only  two  directions  has  wider  spatial  coverage
and higher  effective  gain  than  with  three  directions.
The wider spatial coverage means that the elevation range
occupied  by  the  main  lobe  of  the  beamformer  is  larger,
and the higher effective gain means that the beamformer
has higher gain at a certain elevation. Wider spatial cov-
erage and higher effective gain can make the target have
higher SNR in beamspace, thus improving the estimation
accuracy of the proposed methods. In addition, the beam
settings  can  be  adjusted  according  to  actual  needs.  For
example, for the case where the spatial range of interest is
large, select the beams pointing to , 0, and  to
construct the sum and difference matrix beamformer. The
corresponding array patterns  are  depicted in Fig.  4.  This
figure  shows  that  the  spatial  coverage  is  wider  than  the
coverage in Fig. 3. The two beam pointing conditions of

 in Fig. 3 and Fig. 4 meet the needs of most low eleva-
tion  estimation  scenarios,  where  the  elevation  range  is
below  12°,  because  when  target  elevation  is  higher,  the
surface  reflection  coefficient  becomes  so  small  that  the
reflected signal does not need to be considered [5].
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Fig. 2     Array patterns for   with the beams pointing to  ,
0, and 
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In addition, any method of generating difference beams
can  be  used  to  obtain  the  sum  and  difference  matrix
beamformer.  Further,  the  sum  and  difference  data  in
beamspace can be rewritten as

xBsd (l) = TH
sdx (l) = TH

sd Ac (l)+TH
sdn(l) = Bsdc (l)+ nBsd (l)

(15)

Bsd = TH
sd A nBsd (l) = TH

sd n(l)

Tsd T
THT = TH

1 T1+TH
2 T2 = IQ

where  and . Next, in order to
make better use of ML algorithm, we analyze the proper-
ties  of .  Because  is  a  unitary  matrix,  we  have

. From (14), we have

TH
sdTsd =

[
TH

1 T1+TH
2 T2 TH

1 T1−TH
2 T2

TH
1 T1−TH

2 T2 TH
1 T1+TH

2 T2

]
=[

IQ TH
1 T1−TH

2 T2

TH
1 T1−TH

2 T2 IQ

]
(16)

where

TH
1 T1 =

1
M


aH

1

(
θ1) a1

(
θ1) aH

1

(
θ1) a1

(
θ2) · · · aH

1

(
θ1) a1

(
θQ)

aH
1

(
θ2) a1

(
θ1) aH

1

(
θ2) a1

(
θ2) · · · aH

1

(
θ2) a1

(
θQ)

...
...

. . .
...

aH
1

(
θQ) a1

(
θ1) aH

1

(
θQ) a1

(
θ2) · · · aH

1

(
θQ) a1

(
θQ)

.
(17)

u v TH
2 T2The element at the  row and  column of  is(

TH
2 T2

)
uv
=

1
M

aH
2 (θu) a2 (θv) =

1
M

aH
1 (θu)e−

jπdM sinθu

λ a1 (θv)e
jπdM sinθv

λ =
(
TH

1 T1

)
uv

(F)uv, (18)

(F)uv = exp(jπdM (sinθv− sinθu)/λ). (19)

−2/M
2/M

For  the  case  with  the  beams  pointing  to  and
, we have
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F =
[

1 ejπdM(sinθ2−sinθ1)/λ

ejπdM(sinθ1−sinθ2)/λ 1

]
=[

1 0
0 1

]
. (20)

−4/M
4/M

For the case with the beams pointing to , 0, and
, we have

F =


1 eζ(sinθ2−sinθ1) eζ(sinθ3−sinθ1)

eζ(sinθ1−sinθ2) 1 eζ(sinθ3−sinθ2)

eζ(sinθ1−sinθ3) eζ(sinθ2−sinθ3) 1

 = 1 0 0
0 1 0
0 0 1

 (21)

ζ = jπdM/λ d = λ/2

sinθ ≈ θ TH
2 T2 = TH

1 T1 Tsd

nBsd

Tsd T Bsd B

where .  For  (20)  and  (21),  we  use 
and  the  approximation  with  very  small  error,  i.e.,

. Thus, we have , so  is a unitary
matrix  and  is  still  Gaussian  white  noise  vector,
which is consistent with the basic assumption of ML esti-
mation [31].  Next,  substituting  for ,  and  for 
in (7), we get

Maximize
θ1 ,θ2

L∑
l=1

xH
Bsd (l) PBsd (θ1, θ2) xBsd (l) (22)

PBsd (θ1, θ2) = Bsd
[
BH

sd Bsd
]−1BH

sdwhere .
θ2In addition,  from the multipath geometry in Fig.  1, 

can  be  easily  obtained  [32]  by  the  approximation  with
negligible error

θ2 = f (θ1) ≈ −arcsin(sinθ1+2hr/Rd) , (23)

Bsd = TH
sd AI = TH

sd

[
a (θ1) a ( f (θ1))

]
θ1 θ2

and we have . Thus, we
only need to estimate the 1D parameter of , and  can
be obtained from (23). The ML function can be rewritten
as

Maximize
θ1

L∑
l=1

xH
Bsd (l) PBsd (θ1, f (θ1)) xBsd (l). (24)

With reference to [3,33], when the number of elements
or  SNR  is  large  enough,  the  theoretical  target  elevation
angle  RMSE of  the  ML-SDB algorithm can  be  deduced
to

ESDBDML(θ̂1) ≈
√

Mσ2
n

2
Re−1

{
SH

P DHP⊥Bsd DSP

}
(25)

Re{·} SP =

L∑
l=1

c (l) D =

TH
sd

∂

∂θ1
AI P⊥Bsd = I− PBsd (θ1, f (θ1))

where  denotes  the  real  part，  , 

, and .
According  to  the  idea  of  information  theory,  the  ML-

SDB  algorithm  has  higher  estimation  accuracy  than  the
3D-BML algorithm, because the beamformer of the ML-
SDB  algorithm  has  wider  spatial  coverage  and  higher

hr≪ Rd

effective gain and uses geometry information. In addition,
,  so  neither  antenna  height  error  nor  target  dis-

tance error will affect the estimation accuracy of the ML-
SDB algorithm. 

3.3    RML-SDB algorithm

Bsd

In this subsection, we take the refined signal model [3,25]
into  account  in  the  ML-SDB  algorithm.  Utilizing  the
prior  knowledge  of  surface  reflection  coefficient,  and
using a composite guide vector instead of a conventional
guide vector,  can be replaced by

bsd = Bsd

[
1

ρe−jφ(θ1)

]
=

TH
sd

[
a (θ1) a ( f (θ1))

] [ 1
ρe−jφ(θ1)

]
=

TH
sd

[
a (θ1)+ρe−jφ(θ1)a ( f (θ1))

]
. (26)

bsd BsdSubstituting  for  in (24), we get

Maximize
θ1

F (θ1)

where

F (θ1) =
L∑

l=1

xH
Bsd (l) Pbsd (θ1) xBsd (l) =

L∑
l=1

xH
Bsd (l) bsd

[
bH

sdbsd

]−1
bH

sdxBsd (l) =

L∑
l=1

xH
Bsd (l) bsdbH

sd xBsd (l)
bH

sd bsd
. (27)

The ML function can be simplified to

Maximize
θ1

L∑
l=1

∣∣∣∣∣∣∣ b
H
sd xBsd (l)√

bH
sdbsd

∣∣∣∣∣∣∣.
With reference to [3,33], when the number of elements

or  SNR  is  large  enough,  the  theoretical  target  elevation
angle RMSE of the RML-SDB algorithm can be deduced
to

ESDBDRML(θ̂1) =

√
Mσ2

n

2
∣∣∣S p1

∣∣∣2 (D1
HP⊥bsd D1)−1 (28)

S p1 =

L∑
l=1

α (l) P⊥bsd = I− Pbsd (θ1) D1 =

TH
sd

∂bsd

∂θ1

where , ,  and 

.
Because  the  RML-SDB  algorithm  uses  the  prior

knowledge  of  surface  reflection  coefficient  and  reduces
the signal dimension, the RML-SDB algorithm has higher
estimation  accuracy  and  lower  computational  burden.
However, the RML-SDB algorithm relies heavily on sur-
face  reflection  conditions,  i.e.,  its  estimation  perfor-
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mance  will  severely  reduce  due  to  signal  model  mis-
match  [26]  when  the  surface  reflection  parameters  are
unknown.  On the  contrary,  the  ML-SDB algorithm does
not  use  the  surface  reflection  parameters,  i.e.,  it  is  not
affected by the corresponding errors. 

4. Computational complexity analysis
In this section,  the computational complexity of the pro-
posed algorithms, the MUSIC based on covariance matrix
reconstructed (MUSIC-CMR) algorithm in  [22],  the  2D-
BML and 3D-BML algorithms in [2] are analyzed.

P

O(Q2L+Q3+QM+ (M−U)3+P(M−U)2) U

O(Q2L+
Q3+QM)

O(QM)

O(PQL) O(PQ2L+Q3)

Let the number of spatial search grid be . The compu-
tational  complexity  of  the  MUSIC-CMR  algorithm  is

,  where  is
the  number  of  subarrays.  The  computational  complexity
of  the  3D-BML  and  2D-BML  algorithms  is 

.  The  RML-SDB  and  ML-SDB  algorithms
mainly  considers  the  transformation  from  element-space
to beamspace and the computation of objective function.
The computational complexity of the transformation from
element-space  to  beamspace  is .  The  computa-
tional  complexity  of  the  objective  function  of  the  two
algorithms is  and .  The computa-
tional  complexity  of  these  algorithms  is  summarized  in
Table 1. The order of algorithms in Table 1 is from small
to large according to the computational complexity.
  

Table 1    Computational complexity

Algorithm Computational complexity

2D-BML O(Q2L+Q3 +QM)

3D-BML O(Q2L+Q3 +QM)

RML-SDB O(PQL+QM)

ML-SDB O(PQ2L+Q3 +QM)

MUSIC-CMR O(Q2L+Q3 +QM+ (M−U)3+P(M−U)2)
  

5. Simulation and real data
processing results

−2/M 2/M

In  this  section,  the  elevation  estimation  performance  of
the algorithms mentioned in Section 4 in multipath envi-
ronment  is  discussed  through  several  simulation  scena-
rios and real data. The beams pointing for proposed algo-
rithms are set to  and . In MUSIC-CMR algo-
rithm,  the  number  of  beams  and  subarrays  are  set  to  5
and 15. 

5.1    Simulations

d = 0.5 m
λ = 1 m hr = 8 m Rd = 20 km ρ = 0.9exp

(
jπ

)
Consider  a  digital  array  radar  equipped  with  a  uniform
linear array with 30 elements where the distance between
two  adjacent  array  elements  is .  We  set

, , ,  and .  For

all simulations, the number of Monte Carlo trials is set to
500.  These  experiments  are  all  performed  on  a  PC  with
an Intel i7-7700 at 3.60 GHz and 8 GB of RAM. Let the
SNR be defined as

SNR = |α|2
/
σ2

n (29)

Initially, we demonstrate the experimental and the the-
oretical  target  elevation  angle  RMSE  of  proposed  algo-
rithms against SNR. Assume that the radar receives only
a  single  snapshot,  and  the  target  elevation  angle  is  4.5°.
Fig. 5 illustrates the target elevation angle RMSE of pro-
posed algorithms against SNR. Fig. 5 shows that the esti-
mation  error  decreases  with  the  increase  of  SNR.  The
experimental error is consistent with the theoretical error
in high SNR, but the experimental error is higher than the
theoretical  error  in  low  SNR  because  of  approximation
error. The RML-SDB algorithm performs better than the
ML-SDB  algorithm  because  of  using  the  prior  know-
ledge of surface reflection coefficient.
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Fig.  5      Theoretical  and  experimental  RMSE  of  angle  estimation
against SNR
 

SNR = 10 dB

ρe−jφ(θ1)

ρ

π φ (θ1) ≈ 4πhr sinθ1/λ ≈ 2π ρe− jφ(θ1)

The  subsequent  trials  involve  target  elevation  angle
RMSE  comparison  of  the  algorithms  mentioned  in  Sec-
tion  4.  For ,  the  target  elevation  angle
RMSE of the five algorithms against angle are shown in
Fig. 6 and Fig. 7, for 64 snapshots and a single snapshot,
respectively.  These  figures  show  that  the  MUSIC-CMR
algorithm is greatly affected by the number of snapshots,
and  the  2D-BML  algorithm  is  not  suitable  for  elevation
estimation in multipath environment. The 3D-BML algo-
rithm  performs  better  than  the  previous  two  algorithms,
but  the  performance  is  poor  in  high  elevation  area
because  of  the  insufficient  spatial  coverage.  In  addition,
the  RMSE of  the  3D-BML algorithm is  larger  when  the
angle is 3.5°, which is caused by the phase of  [2].
According to the simulation parameters, the phase of  is

,  and ,  so the phase of 
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−π

2/M

is ,  which  results  in  the  failure  of  the  3D-BML algo-
rithm. The proposed algorithms perform better than other
three  algorithms,  especially  in  high  elevation  area,
because  the  beams  setting  of  the  proposed  algorithms
have  better  spatial  coverage,  which  is  consistent  with
Fig. 3. The RMSE of most algorithms is larger when the
angle is small. The reason of this phenomenon is that the
phase-difference  between  of  direct  and  reflected  signals
gets closer to 180º, resulting in the mutual cancellation of
the two signals. Fig. 8 illustrates the normalized power of
ideal  signal  in  element-space  in  multipath  environment
against  angle. Fig.  8 shows that  the  signal  power  in  low
elevation area is obviously lower. In Fig. 6 and Fig. 7, the
RMSE of the 2D-BML algorithm in low elevation area is
not larger than the RMSE in high elevation area. That is
because the beam directions of 2D-BML algorithm are 0
and , which has a much higher gain for the direct sig-
nal  than for  the reflected signal  and avoids  the cancella-
tion of the two signals.
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Fig. 6    RMSE of angle estimation against angle for 64 snapshots
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Fig. 7     RMSE of angle estimation against angle for a single snap-
shot
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Fig. 8    Normalized power of ideal signal in element-space in multi-
path environment against angle
 

SNR = 10 dB

Thirdly,  we show the  target  elevation  angle  RMSE of
the  ML-SDB  algorithm  with  different  beams  setting
against  angle.  For , Fig.  9 illustrates  the
RMSE  of  the  ML-SDB  algorithm  with  different  beams
setting  against  angle.  Specifically,  the  beam  directions
represented  by  the  four  lines  in Fig.  9 are  given  in
Table  2,  and  are  denoted  by  1D,  2D,  3D,  and  3D2,
respectively. Fig. 9 shows that the performance of the 1D
algorithm is poor because of its insufficient beam degree
of freedom and spatial coverage. The performance of the
2D  algorithm  and  3D  algorithm  is  basically  the  same,
which shows that simply increasing the number of beams
is  limited  to  improve  the  performance.  The  3D2  algo-
rithm performs better than other three algorithms in high
elevation area,  because the beams setting has wider  spa-
tial coverage, which is consistent with Fig. 4. In addition,
the performance of 3D2 algorithm in low elevation area is
not the best, because the beams setting is relatively scat-
tered, which leads to the decrease of the effective gain in
this area.
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Fig.  9      RMSE of  target  elevation  angle  with  different  beams  set-
ting against angle

CHEN Sheng et al.: Beamspace maximum likelihood algorithm based on sum and difference beams for elevation estimation 595



 

Table 2    Meaning of the four lines in Fig. 9

Line type Natation Beam direction

Solid 1D 0

Plus 2D −2/M 2/M, 

Dotted 3D −2/M 2/M, 0, 

Square 3D2 −4/M 4/M, 0, 
 

Finally,  we  analyze  the  influence  of  the  errors  of  key
parameters  on  the  performance  of  the  RML-SDB  algo-
rithm. Assuming that the SNR is 10 dB and the target ele-
vation angle is  4.5°,  the target  elevation angle RMSE of
the  RML-SDB  algorithm  against  the  errors  of  antenna
height,  the  amplitude  and  phase  of  reflection  coefficient
are  shown  in Fig.  10–Fig.  12,  respectively.  It  is  shown
that  the  errors  of  antenna  height  and  phase  of  reflection
coefficient  have  a  significant  influence  on  the  perfor-
mance  of  the  RML-SDB algorithm,  while  the  amplitude
error  of  reflection  coefficient  has  a  minor  effect  on  the
performance of the algorithm.
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Fig.  10      RMSE  of  target  elevation  angle  against  antenna  height
error
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Fig. 11    RMSE of target elevation angle against amplitude error of
reflection coefficient
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5.2    Real data

The real data is applied to further verify the performance
of the proposed algorithms. The radar works in the meter
wave band and receives  only  a  single  snapshot.  The ter-
rain scenario is hilly, and the target is an airplane. Fig. 13
and Fig. 14 show the processed results of the real data by
using  the  algorithms  mentioned  in  Section  4.  The  pro-
cessed results of the real data are displayed by height esti-
mation results, which is even more interested in the engi-
neering.  The formula  for  calculating  the  height  from the
elevation angle is

ht = hr+Rd sin(θ1)+R2
d/(2Re) (30)

Rewhere  is  the  effective  radius  of  the  Earth.  The  target
height varies from 6 km to 10 km. It can be seen that the
MUSIC-CMR  algorithm  is  not  suitable  for  this  scene.
The  estimations  of  the  2D-BML  and  3D-BML  algo-
rithms are less than the true elevation except for individ-
ual  frames,  because  the  spatial  coverage  of  these  two
algorithms is  insufficient in high elevation area.  In addi-
tion, there are some singularities in the estimations of the
3D-BML algorithm, which shows that the 3D-BML algo-
rithm  is  not  very  robust.  The  proposed  algorithms  per-
form  better  than  other  three  algorithms.  There  are  also
some  singularities  in  the  estimations  of  the  ML-SDB
algorithm,  but  the  overall  situation  is  good.  The  RML-
SDB  algorithm  obtains  the  optimal  estimation  without
singularity.
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Fig. 13    Estimation of target height against frames
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Fig. 14    Estimation error of target height against frames
  

6. Conclusions

Tsd

In this paper, the problem of beamspace elevation estima-
tion  in  multipath  environment  is  discussed.  Two
beamspace  ML  algorithms  based  on  sum  and  difference
beams are  proposed.  The ML-SDB algorithm has higher
estimation accuracy than the 3D-BML algorithm because
of using the difference beams and geometry information,
although  the  computational  burden  is  higher.  Compared
with  the  ML-SDB  algorithm,  the  RML-SDB  algorithm
has  higher  estimation  accuracy  and  lower  computational
burden  because  of  using  the  prior  knowledge  of  surface
reflection  coefficient  and  reducing  the  signal  dimension.
However, the RML-SDB algorithm relies heavily on sur-
face  reflection  conditions,  i.e.,  its  estimation  perfor-
mance  will  severely  reduce  when  the  surface  reflection
parameters are unknown. In addition, this paper analyzes
two beam settings for proposed algorithms, which can be
adjusted  according  to  actual  needs.  Generally  speaking,
the  two  beam  pointing  conditions  of  in Fig.  3 and
Fig.  4 meet  the  needs  of  most  low  elevation  estimation
scenarios, where the elevation range is below 12°.

Additionally,  multiple  targets  can  generally  be  sepa-
rated in the range, Doppler, and angle dimensions by sig-
nal  processing.  If  there  are  multiple  targets  in  the  same
range unit, Doppler channel, and beam direction, the pro-
posed method will fall due to signal model mismatch.
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