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Abstract: This  study  presents  a  kinematic  calibration  method
for  exoskeletal  inertial  motion  capture  (EI-MoCap)  system  with
considering the random colored noise such as gyroscopic drift.
In  this  method,  the  geometric  parameters  are  calibrated  by  the
traditional calibration method at first.  Then, in order to calibrate
the  parameters  affected  by  the  random  colored  noise,  the
expectation maximization (EM) algorithm is introduced. Through
the use of geometric parameters calibrated by the traditional ca-
libration  method,  the  iterations  under  the  EM  framework  are
decreased  and  the  efficiency  of  the  proposed  method  on
embedded  system  is  improved.  The  performance  of  the  pro-
posed  kinematic  calibration  method  is  compared  to  the  tradi-
tional calibration method. Furthermore, the feasibility of the pro-
posed method is verified on the EI-MoCap system. The simula-
tion and experiment demonstrate that the motion capture preci-
sion is significantly improved by 16.79% and 7.16% respectively
in comparison to the traditional calibration method.
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1. Introduction
Motion  capture  (MoCap)  technology  is  widely  used  in
many  applications  including,  but  not  limited  to,
telemedicine [1,2],  virtual  reality  [3],  and physical  train-
ing  [4,5].  It  is  a  technology  which  mainly  uses  camera
[6–8]  (e.g.,  infrared,  or  optical  camera),  mechanical
device [9], and inertial sensor [10,11] to obtain the posi-
tion and orientation of the whole human body or its parts
(e.g.,  an arm). In the above methods, the inertial MoCap
(I-MoCap)  technology  is  applied  widely  for  its  advan-
tages  such  as  portability,  low  cost,  and  insensitivity
toward  ambient  light  conditions  [12–14].  However,  the
drawbacks of the I-MoCap [15] (e.g., gyroscopic drift and

not easy to place correctly) greatly promote the develop-
ment  of  the  exoskeletal  I-MoCap  (EI-MoCap)  techno-
logy.

In  order  to  improve  the  MoCap  precision,  kinematic
calibration  is  necessary  [16].  However,  during  the  pro-
cess  of  data  acquisition,  the  measurement  noise  is
affected  by  many  reasons  such  as  the  gyroscopic  drift
[17]. Hence, the traditional calibration method such as the
least  square  (LS)  method,  which  is  extensively  used  in
industrial  arm, will  be a biased estimate [18].  Therefore,
kinematic  parameters  for  EI-MoCap  system  pose  a  con-
siderable  challenge  to  calibrate  as  it  introduces  the  ran-
dom colored noise.

In  order  to  meet  this  challenge,  the  maximum  likeli-
hood (ML) method is adopted. However,  kinematic cali-
bration  by  the  ML  method  is  difficult  as  it  introduces  a
hybrid calibration problem since the uncalibrated parame-
ters’ influences are independently. For solving this prob-
lem,  the  expectation  maximization  (EM)  algorithm  was
used  by  Jin  et  al.  to  calibrate  the  kinematic  parameters
which  improves  the  calibration  precision  [19].  Based  on
the  research  of  [19],  Zhao  et  al.  applied  the  variational
Bayesian  (VB)  algorithm to  estimate  the  model  parame-
ters  [20].  Compared  with  the  EM  algorithm,  the  advan-
tage  of  the  VB  algorithm  is  that  the  uncertainty  can  be
decreased  by  providing  the  full  probabilities  of  parame-
ters.  Sun  et  al.  presented  a  calibration  method  based  on
the ML method for inertial navigation system. Compared
with the LS method, the parameters calibrated by the ML
method  are  more  accurate  and  stable  [21].  Moreover,
Zhang  et  al.  adapted  the  EM  algorithm  to  the  extended
Kalman  filter  (EKF)  to  multiple  global  navigation  satel-
lite  system  (GNSS)  precise  point  positioning  (PPP)
and  they  also  compared  the  EM  algorithm  with  other
methods  such  as  the  LS  method  to  demonstrate  their
advantages  [22].  As  discussed  above,  the  EM  algorithm
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could effectively find the ML estimates of parameters in
an  iterative  way  when  solving  the  hybrid  calibration
problem.

In this study, the ML method is adopted to calibrate the
kinematic  parameters  with  considering  the  random
colored  noise  such  as  gyroscopic  drift.  For  solving
the  hybrid  calibration  problem  introduced  by  the  ML
problem,  the  EM  algorithm  is  used.  The  initial  value  of
the  EM  algorithm  is  calculated  by  the  traditional
calibration  method.  By  iterating  the  hidden  variable  and
the  posteriori  distribution,  and  maximizing  the  objective
estimation function, the ML problem can be solved. The
key  contributions  of  this  paper  can  be  summarized  as
follows:

(i)  Unlike the LS method used in [18]  to  calibrate  the
kinematic parameters, this study proposes an ML method
that considers the random colored noise produced by the
gyroscopic drift.

(ii)  For  solving  the  hybrid  calibration  problem  intro-
duced  by  the  ML problem,  the  EM algorithm is  used  to
maximize the objective estimation function.

(iii)  The  effects  of  the  EM  algorithm  are  verified  by
comparing  with  the  traditional  calibration  method  in  the
hypothetical  object  simulation  and  semi-physical  experi-
ment.

The  remainder  of  this  paper  is  organized  as  follows.
Section 2 describes the system model and gives the prob-
lem  formulation.  The  geometric  error  calibration  model
and  the  formulation  under  the  EM  framework  are  pre-
sented in Section 3. Section 4 demonstrates the effects of
the  EM  algorithm  by  simulation.  The  feasibility  of  the
proposed method is verified on the embedded system we
design  in  Section  5.  Finally,  Section  6  presents  the  con-
clusions of this paper. 

2. Problem formulation
 

2.1    EI-MoCap system

In  order  to  achieve  the  goal  of  improving MoCap preci-
sion, some EI-MoCap systems have been developed. The
design  principles  of  the  EI-MoCap  system  are  portable,
easy  to  wear  and  high  precision.  Hence,  the  structure  of
the  system  is  mainly  based  on  the  configuration  of  the
human upper limb. In this paper, an EI-MoCap system is
designed, which is defined as a 7 degrees of freedom (7-
DoFs) serial model by referring to a 7-DoFs human upper
limb  kinematic  model  [23],  as  shown  in Fig.  1(a).  The
similar structures can be seen in [24] and [25]. Then, the
link frames of  the EI-MoCap system are established and
their assignments are displayed in Fig. 1(b).
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Fig.  1      3D model  of  7-DoFs  EI-MoCap system and its  coordinate
system
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The  kinematic  parameters  in Fig.  1(b)  are  notated  as
follows [26,27].  represents the distance between the 
axis and  axis, which is measured along the  axis.

 denotes the rotation about the  axis, which is needed
to  rotate  the  axis  to  the  axis.  denotes  the  dis-
tance between the  axis and the  axis, which is mea-
sured  along  the  axis.  represents  the  rotation  about
the  axis, which is needed to rotate the  axis to the 
axis.  denotes  the  label  of  joint  coordinate  system.  The
kinematic  parameters  of  EI-MoCap  system  are  defined
based  on  the  Denavit-Hartenberg  (D-H)  convention  as
shown in Table 1.
 
 

Table 1    Standard D-H parameters of EI-MoCap system

Rod ai/m αi/ (◦) di/m θi/ (◦) Offset/ (◦)

1 0.04 270 0 θ1 (k) 0

2 0.04 90 0 θ2 (k) 90

3 0.431 90 0 θ3 (k) 0

4 0.244 −90 0 θ4 (k) 0

5 0 90 0 θ5 (k) 0

6 0 90 0 θ6 (k) 90

7 0 90 0 θ7 (k) 0
 

(i−1) th ith
(αi)

According  to  the  D-H  convention,  the  homogeneous
transformation  from  the  joint  to  the  joint
could be calculated by a rotation around x-axis ,  fol-

770 Journal of Systems Engineering and Electronics Vol. 35, No. 3, June 2024



(ai,di)
(θi)

lowed by two translations along the x- and z-axes 
and a rotation around the z-axis . The specific content
is given by

Ti
i−1 = Rotz (θi)Tranz (di)Tranx (ai)Rotx (αi) =

cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1

 . (1)

Then,  based  on  the  direct  kinematics  equation,  the
homogeneous  transformation  of  the  end-effector  with
respect to the base coordinate system is given by

T7
0 = T1

0T2
1T3

2 · · ·T7
6 =

Q1 Q2 sin βy sin βx px

Q3 Q4 −sin βy cos βx py

sin βy sin βz sin βy cos βz cos βy pz

0 0 0 1


(2)

where

Q1 = cos βz cos βx− cos βy sin βx sin βz,

Q2 = −sin βz cos βx− cos βy sin βx cos βz,

Q3 = cos βz sin βx+ cos βy cos βx sin βz,

Q4 = −sin βz sin βx+ cos βy sin βx cos βz,[
px, py, pz,βx,βy,βz

]T
and  denotes  the  position  and  orien-
tation of the end-effector in the Cartesian space.

The  calibration  experiment  is  set  up  based  on  the
designed EI-MoCap system. The actual position and ori-
entation are obtained, which is called the lever effect, by
successively  measuring  palstance  and  acceleration  of
inertial  measurement  unit  (IMU)  mounted  on  the  end-
effector.  Then,  the  kinematic  calibration  method  under
the EM framework for EI-MoCap system is proposed and
the corresponding flow chart is shown in Fig. 2. The idea
is  to  search  for  geometric  errors  ∆ζ and random colored
noise ∆θ that make the Act and Nom as close as possible,
ideally the same value.
  

Initial value
Forward

kinematics

Lever effect

Δζ, Δθ

θ

ΔT

Nom

Act

EM

framework

Geometric error

calibration model

Fig. 2    Flow chart of the kinematic calibration method 

2.2    Forward and differential kinematics

Considering  the  7-DoFs  EI-MoCap  system,  the  position

and  orientation  of  the  end-effector  can  be  analytically
described as a nonlinear mapping:

Nom = f (ζ,θ) (3)
Nom =

[
px, py, pz,βx,βy,βz

]Twhere  is called nominal sys-
tem.

Nom(·)
θ = [θ1, θ2, · · · , θ7]T

ζ ∈ R21×1 a α ∈ R7×1

The mapping  provides the connection between
the joint angle , the geometric parame-
ter  including , d and  in  the  joint
space and the position and orientation of the end-effector
in the Cartesian space. Then, the differential on both sides
of (3) can be written as follows:

dNom = ∂
f (ζ,θ)
∂ζ

dζ +
∂ f (ζ,θ)
∂θ

dθ =

J1 (ζ,θ)dζ + J2 (ζ,θ)dθ (4)
J1 (ζ,θ) ∈ R6×21 J2 (ζ,θ) ∈ R6×7

J1 J2

where  and  represent  the
Jacobian matrix and usually are abbreviated as  and . 

2.3    Geometric error modeling

∆ζ ∆θ

Geometric  errors  are  the  deviations  between  the  actual
and nominal kinematic parameters. The actual system can
be  defined  as  the  nominal  system  with  geometric  errors

 and random colored noise , which can be given by

Act = f (ζ +∆ζ,θ+∆θ) (5)
∆ζ ∈ R21×1 ∆a ∆d

∆α ∈ R7×1 ∆a ∆d ∆α ∆θ
where  geometric  errors  include ,  and

. Specifically, , ,  and  are defined
as

∆a = [∆a1,∆a2, · · · ,∆a7]T ∈ R7×1,

∆d = [∆d1,∆d2, · · · ,∆d7]T ∈ R7×1,

∆α = [∆α1,∆α2, · · · ,∆α7]T ∈ R7×1,

∆θ = [∆θ1,∆θ2, · · · ,∆θ7]T ∈ R7×1.

Then,  the  positional  and  orientational  accuracy  of  the
EI-MoCap  system,  namely  the  end-effector  errors,  is
defined as follows:

∆T = ∥Act−Nom∥2 = ∥ f (ζ +∆ζ,θ+∆θ)− f (ζ,θ)∥2 (6)
∆T =

[
lx, ly, lz, δx, δy, δz

]Twhere .
 

2.4    Gyroscopic drift modeling

Gyroscopic  drift  is  usually  defined  as  a  random  colored
noise and without loss of generality, we define the gyro-
scopic  drift  as  a  first-order  Gauss-Markov  process  for
approximation in this paper, which is given by

yk+1 = e−∆tk+1/τyk +γk (7)

yk = [∆ω1k,∆ω2k, · · · ,∆ω7k]T

k ∆tk+1

k k+1 τ
γk

where  denotes  the  palstance
error state at the time .  represents the time interval
between  the  time  and .  denotes  the  correlation
time.  is  a  discrete  white  noise,  and  the  variance
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Qk = σ
2 (1− e−∆tk+1/τ

)
γk ∼ N(0,Qk, I) (i.e., ).

τ σ τ

σ

σ

According  to  (7),  the  first-order  Gauss-Markov  pro-
cess needs two parameters (i.e.,  and ) to describe.  is
the  length  of  a  past  period  that  affects  the  present
moment, which reflects the memory degree for past infor-
mation,  affects the rangeability of the first-order Gauss-
Markov  process  (i.e.,  the  more  is,  the  more  deviation
rangeability of the first-order Gauss-Markov process is).

Then,  integrating  both  sides  of  (7)  and  the  following
expression can be obtained:

xk+1 = e−∆tk+1/τxk +ρk (8)

xk = [∆θ1k,∆θ2k, · · · ,∆θ7k]T

ρk ∼ N
(
0,∆t2

k+1 ·Qk, I
)where  denotes  the  joint  angle

error  parameters  (kinematic  parameters  to  be  calibrated)
at  the  time k.  is  a  discrete  white
noise.

∆θ
According to (8), one can see that the random colored

noise  (joint  angle error parameters)  follows the first-
order Gauss-Markov process. 

2.5    Nonlinear inequality constraints

θ
a d

α

Clearly,  the  EI-MoCap  system  is  fixed  on  the  human
upper limb and the kinematic parameters of it should sa-
tisfy  some  fundamental  biological  characteristics.  It  is
worth noting that those biological characteristics could be
converted to some nonlinear inequality constraints for the
EI-MoCap system.  Specifically,  should be constrained
by  the  reasonable  joint  rotation  angle.  Furthemore, , 
and  should be constrained by the anatomical scale.

According  to  the  SAE  J833  standard,  we  obtain  the
geometric  parameter  ranges  as Table  2 shows.  Then,  by
analyzing the rotation ranges of human upper limb based
on the anatomical principles, we obtain the joint rotation
angle ranges as shown in Table 3.
  

Table 2    Geometric parameter range of each joint m

Parameter Min Max
a1 0.02 0.06

a2 0.02 0.06

a3 0.377 0.485
a4 0.211 0.267

 
  

Table 3    Rotation range of each joint (°)

Parameter Initial Final

θ1 −90 90

θ2 −120 30

θ3 −10 100

θ4 0 150

θ5 30 −20

θ6 40 −30

θ7 −90 90

According to Table 2 and Table 3, one can see that the
nonlinear inequality constraints are given byζimin ⩽ ζi ⩽ ζimax

θimin ⩽ θi ⩽ θimax
(9)

i = 1,2, · · · ,7where . 

2.6    Calibration problem formulation

∆ζ ∆θ

∆θ

∆ζ ∆θ

The  main  purpose  of  this  study  is  to  improve  the  EI-
MoCap precision. In order to finish this purpose, the geo-
metric  errors  and the random colored noise  need
to be calibrated. As discussed in Subsection 2.4, the ran-
dom colored  noise  is  defined  as  a  first-order  Gauss-
Markov  process.  Hence,  it  will  be  a  biased  estimate  for

 and  when  the  traditional  LS  method  is  used  for
calibration.  Based  on  this,  we  calibrate  those  kinematic
parameters  under  the  EM  framework  for  filtering.  In
order  to  reduce  the  iteration  steps  of  the  EM  algorithm,
the  LS  method  can  be  used  for  giving  an  initial  value.
The object function of the optimization is given by

min
∆ζ,∆θ

y =
K∑

k=1

∥Actk −Nomk∥2, k = 1,2, · · · ,K

s.t. (9) (10)

K
k

where  represents  the  total  number  of  data  pairs
(indexed by ).

ζ′ = ζ +∆ζ ζ θ′ = θ+∆θ

θ ∆T

∆θi

∆θi ∼ N (µi, δi)

By  using  to  replace  and  to
replace  in (3),  will be decreased. Then, the distribu-
tion  of  is  defined  as  a  Gauss  distribution,  i.e.,

,  and  calculated  based  on  the  ML  estima-
tion. The likelihood function is given as follows:

ln p (z) =
K∑

k=1

ln
7∑

i=1

πiN
(
zk |µk,iκk,i,Σk,i

)
(11)

πi

0 ⩽ πi ⩽ 1 zk k th
∆T µk,i ∆θi κk,i

J2 Σk,i

∆θi

where  denotes  mixing  coefficient,  and  it  must  satisfy
.  represents the 1st row of the  end-effec-

tor  error .  denotes  the  expectation  of . 
denotes  the ith  column  element  of .  denotes  the
variance of .

According to  (11),  one can see that  it  no longer  has  a
closed-form analytical solution, due to the presence of the
summation  over i inside  the  logarithm.  Hence,  the  para-
meters cannot be estimated by taking the derivative of the
likelihood function. Alternatively, we can employ the EM
algorithm  to  obtain  a  numerical  solution.  The  optimiza-
tion problem given in (10) and the ML problem given in
(11)  will  be  solved by the LS method and the EM algo-
rithm in Section 3. 

3. Kinematic calibration based on LS method
and EM algorithm

In  this  section,  we  establish  the  geometric  error  calibra-
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∆ζ ∆θ

∆θ

tion  model  at  first.  Then,  we  calibrate  the  geometric
errors  and  the  random  colored  noise  by  the  LS
method.  Furthermore,  we  give  the  derivation  process  of

 under the EM framework. 

3.1    Geometric error calibration model

∆T

∆θ ∆ζ
∆θ ∆ζ

∆ζ
∆θ

The  relationship  of  the  end-effector  errors ,  the  ran-
dom  colored  noise ,  and  the  geometric  errors  is
presented in (6).  For calculating  and ,  the geome-
tric  error  calibration  model  is  established  from the  kine-
matics part and the differential part of this equation. The
kinematics part reflects the relationship between the devi-
ation of  each joint  and the  deviation of  the  end-effector.
In  addition,  the  differential  part  reflects  the  relationship
between  the  geometric  errors ,  the  random  colored
noise , and the deviation of each joint. The derivation
process is given by the following two parts.

(i) The kinematics part
The first-order differential  approximation of the trans-

formation matrix is given by

dTi
i−1 = TiA

i−1−TiN
i−1 = TiN

i−1 ·δTi
i−1 (12)

TiA
i−1 TiN

i−1

δTi
i−1

where  denotes the actual transformation matrix, 
denotes the nominal transformation matrix, and  rep-
resents the motion error matrix.

δTi
i−1According to (12),  is given by

δTi
i−1 =
(
TiN

i−1

)−1
·
(
TiA

i−1−TiN
i−1

)
=

0 −δzi δyi lxi

δzi 0 −δxi lyi

−δyi δxi 0 lzi

0 0 0 0

 (13)

[
δxi, δyi, δzi

]T[
lxi, lyi, lzi

]Twhere  is  the  orientation  error  vector,  and
is the position error vector.

T7A
0

For  the  EI-MoCap  system,  the  MoCap  precision  is
affected  by  the  kinematic  parameters  of  each  joint.
Hence,  the  homogeneous  matrix  in  the  Cartesian
coordinate system can be expressed as

T7A
0 = T7N

0 +dT7
0 =

7∏
i=1

(
TiN

i−1+dTi
i−1

)
=

T7N
0 +

7∑
i=1

(
T1

0 ·T2
1 · · ·Ti−1

i−2 ·dTi
i−1 ·Ti+1

i · · ·T7
6

)
. (14)

According to (12), (14) can be converted as follows:

T7A
0 = T7N

0 +

7∑
i=1

(
T1

0 ·T2
1 · · ·Ti−1

i−2 ·dTi
i−1 ·Ti+1

i · · ·T7
6

)
=

T7N
0 +

7∑
i=1

(
T7N

0 ·
(
Ti+1

i · · ·T7
6

)−1
·δTi

i−1 ·Ti+1
i · · ·T7

6

)
. (15)

From (14) and (15), one can see that

dT7
0 = T7N

0

7∑
i=1

(
U−1

i+1 ·δTi
i−1 ·Ui+1

)
(16)

Ui = Ti
i−1Ti+1

i · · ·T7
6 =

[
fi oi ci pi

0 0 0 1

]
U8 = I4

where ,  and
 [28].

δT7
0By combining  (12)  and  (16),  can  be  described  as

follows:

δT7
0 =

7∑
i=1

(
U−1

i+1 ·δTi
i−1 ·Ui+1

)
=


0 −δz δy lx

δz 0 −δx ly

−δy δx 0 lz

0 0 0 0

 .
(17)

∆T

Then,  the  end-effector  position  and  orientation  error
vector  can be written as

∆T =



lx

ly

lz

δx

δy

δz


=

7∑
i=1





f T
i+1 FT

1

oT
i+1 FT

2

cT
i+1 FT

3

0(1×3) FT
4

0(1×3) FT
5

0(1×3) FT
6


·
[

li

δi

]


(18)

li =
[
lxi, lyi, lzi

]T
δi =
[
δxi, δyi, δzi

]T F1 = pi+1× fi+1

F2 = pi+1× oi+1 F3 = pi+1× ci+1 F4 = oi+1× ci+1 F5 = ci+1×
fi+1 F6 = fi+1× oi+1

where , , ,
, , , 

, .
(ii) The differential part
We construct the first-order differential approximation

of the transformation matrix from the differential  part  as
follows:

dTi
i−1 =

∂Ti
i−1

∂ai
∆ai+

∂Ti
i−1

∂di
∆di+

∂Ti
i−1

∂αi
∆αi+

∂Ti
i−1

∂θi
∆θi.

(19)
∂Ti

i−1

∂ai
= TiN

i−1 ·Cai
∂Ti

i−1

∂di
= TiN

i−1 ·Cdi
∂Ti

i−1

∂αi
= TiN

i−1·

Cαi
∂Ti

i−1

∂θi
= TiN

i−1 ·Cθi
Cai Cdi Cαi Cθi

Let , , 

, ,  then by combining them with (1),
, , , and  can be expressed as

Cai =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


Cdi =


0 0 0 0
0 0 0 sinαi

0 0 0 cosαi

0 0 0 0


Cθi =


0 −cosαi sinαi 0

cosαi 0 0 ai cosαi

−sinαi 0 0 −ai sinαi

0 0 0 0


Cαi =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



. (20)

dTi
i−1By  substituting  (20)  into  (19),  can  be  reconsti-
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tuted as
dTi

i−1 = TiN
i−1 (Cai∆ai+Cdi∆di+Cαi∆αi+Cθi∆θi) . (21)

According to (12), one can see that
δTi

i−1 = Cai∆ai+Cdi∆di+Cαi∆αi+Cθi∆θi. (22)
δTi

i−1By combining (20) and (22),  is given by

δTi
i−1 =


0 −cosαi∆θi sinαi∆θi ∆ai

cosαi∆θi 0 −∆αi M1

−sinαi∆θi ∆αi 0 M2

0 0 0 0


(23)

M1 = sinαi∆di+ai cosαi∆θi M2 = cosαi∆di−
ai sinαi∆θi

where  and  
.

li δi i
i+1

According to (23), one can see that the position errors
 and the orientation errors  between the  joint and the

 joint are given by

li =

 ∆ai

sinαi∆di+ai cosαi∆θi

cosαi∆di−ai sinαi∆θi

 = 1
0
0

∆ai+

 0
sinαi

cosαi

∆di+

 0
ai cosαi

−ai sinαi

∆θi, (24)

δi =

 ∆αi

sinαi∆θi

cosαi∆θi

 =
 1

0
0

∆αi+

 0
sinαi

cosαi

∆θi. (25)

ki,1 = [1,0,0]T ki,2 = [0,sinαi,cosαi]T ki,3 = [0,
ai cosαi,−ai sinαi]T ki,4 = [1,0,0]T ki,5 = [0,sinαi,

cosαi]T

Let , , 
, ,  

, and (24) and (25) can be simplified as follows:li = ki,1∆ai+ ki,2∆di+ ki,3∆θi

δi = ki,4∆αi+ ki,5∆θi
. (26)

By submitting (26) into (18), we can obtain

∆T =

7∑
i=1





f T
i+1 ki,1 f T

i+1 ki,2 FT
1 ki,4 f T

i+1 ki,3+FT
1 ki,5

oT
i+1 ki,1 oT

i+1 ki,2 FT
2 ki,4 oT

i+1 ki,3+FT
2 ki,5

cT
i+1 ki,1 cT

i+1 ki,2 FT
3 ki,4 cT

i+1 ki,3+FT
3 ki,5

0 0 FT
4 ki,4 FT

4 ki,5

0 0 FT
5 ki,4 FT

5 ki,5

0 0 FT
6 ki,4 FT

6 ki,5


·


∆ai

∆di

∆αi

∆θi




=

[
A1 A2 A3 A4

0(3×7) 0(3×7) A5 A6

]
·


∆a
∆d
∆α
∆θ

 .

(27)

∆ζ
∆θ

Then, the geometric errors  and the random colored
noise  can be obtained by the LS method, according to
(27). The results are given by[

∆ζT,∆θT
]T
=
(
ΦTΦ
)−1
ΦT∆T (28)

Φ =

[
A1 A2 A3 A4

0(3×7) 0(3×7) A5 A6

]
where .
 

3.2    Formulation under EM framework
 

3.2.1    EM method revisited

Z
M p (Z,M|Θ)

Θ

The  EM  algorithm  is  a  general  method  for  finding  ML
solutions for probabilistic models having latent variables.
Consider  a  probabilistic  model  in  which  we  collectively
denote  all  of  the  observed  variables  by  and  all  of  the
hidden variables  by .  The joint  distribution 
is  governed  by  a  set  of  parameters  denoted  by .  The
goal is to maximize the ML function that is given by

p (Z|Θ) =
∑

M

p (Z,M|Θ). (29)

p (Z|Θ)

p (Z,M|Θ)
q (M)

q (M)

We shall suppose that direct optimization of  is
difficult,  but  that  optimization  of  the  ML  function

 is  significantly  easier.  Then  we  introduce  a
distribution  defined  over  the  latent  variables,  and
we  observe  that,  for  any  choice  of ,  the  following
decomposition holds:

ln p (Z|Θ) = L (M,Θ)+KL(q||p) (30)
where

L (M,Θ) =
∑

M

q (M) ln
{

p (Z,M|Θ)
q (M)

}
, (31)

KL(q||p) = −
∑

M

q (M) ln
{

p (M|Z,Θ)
q (M)

}
. (32)

L (M,Θ)
q (M) Θ KL(q||p)

q (M)
p (M|Z,Θ)

Note  that  is  a  functional  of  the  distribution
 and parameter . From (32), we see that 

is  the  Kullback-Leibler  divergence  between  and
posterior distribution .

The  EM  algorithm  is  a  two-stage  iterative  optimiza-
tion  method  for  finding  ML  solutions.  The  decomposi-
tion (30) can be used to define the EM algorithm and to
demonstrate  that  it  does  indeed  maximize  the  log  likeli-
hood.

Θold

L (M,Θ)
q (M) Θold

q (M)
L (M,Θ)

Θ Θnew

E M

Suppose  that  denotes  the  current  value  of  the
parameter vector. In the E-step, the lower bound 
is  maximized  with  respect  to  while  holding 
fixed. In the subsequent M-step, the distribution  is
held  fixed  and  the  lower  bound  is  maximized
with  respect  to  for  giving  some  new  value .  We
have  seen  that  both  the  and  the  steps  of  the  EM
algorithm  are  increasing  the  value  of  the  log  likelihood
function.  The EM algorithm will  converge  when the  log
likelihood  function  is  already  at  a  maximum  or  the
parameters remain unchanged. 

3.2.2    Kinematic calibration under EM framework

∆θi ∼ N (µi, δi)
∆θi

The  EM  algorithm  introduces  free  joint  distribution
,  also  named  as  prior  distribution,  as  an

approximation of the distribution of the parameter  to
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calculate the log likelihood function as shown in (11). We
first choose some initial values for the means, variances,
and  mixing  coefficients  based  on  the  results  of  the  LS
problem.  Then  we  alternate  between  the  following  two
updates  that  should  be  called  the E-step  and  the M-step,
to increase the log likelihood function.

(i) EM E-step
In  the  expectation  step,  or E-step,  we  use  the  current

values for the parameters to evaluate the posterior proba-
bilities, or responsibilities, which can be given by

γ
(
mk,i
)
=

πiN
(
zk |µk,iκk,i,Σk,i

)
7∑

j=1

π jN
(
zk |µk,iκk,i,Σk,i

) . (33)

(ii) EM M-step
Then we use these responsibilities in the maximization

step,  or M-step,  to  reestimate  the  means,  variances,  and
mixing coefficients using the current responsibilities:

µnew
i =

1
Ni

K∑
k=1

γ
(
mk,i
)

zk/κk,i, (34)

Σnew
i =

1
Ni

K∑
k=1

γ
(
mk,i
)

EET, (35)

πnew
i =

Ni

K
, (36)

E =
(
zk −µnew

i κk,i
)

Ni =

K∑
k=1

γ
(
mk,i
)

where  and .

In  practice,  the  EM algorithm is  deemed to  have con-
verged when the change in the log likelihood function, or
alternatively  in  the  parameters,  falls  below some  thresh-
old. 

4. Simulation study
In  this  section,  the  kinematic  calibration  simulation  is
conducted  based  on  the  LS  method  and  the  EM  algo-
rithm  respectively.  Consider  the  following  kinematic
parameters.

∆θ (k)

∆tk+1 = 0.01 s
τ = 1 s σ = 1

In Table  4,  follows  the  first-order  Gauss-
Markov  process  as  discussed  in  Subsection  2.4.  The
parameters  in  the  process  are  defined  as ,

,  and .  We can see  that  there  are  some geo-
metric  errors  between Table  1 and Table  4.  Then,  the
hypothetical  system  is  defined  as  the  actual  system  and
the standard system is defined as the nominal system, the
geometric  errors  are  calibrated  based  on  the  LS  method
and the EM algorithm respectively in the following Sub-
section 4.1 and Subsection 4.2.

 

Table 4    Hypothetical D-H parameters of the EI-MoCap system

Rod ai/m αi/(◦) di/m θi +∆θi/ (◦) Offset/ (◦)

1 0.03 270 0.03 θ1 (k)+∆θ1 (k) 0

2 0.05 93 0.02 θ2 (k)+∆θ2 (k) 90

3 0.401 90 0 θ3 (k)+∆θ3 (k) 0

4 0.264 −95 0 θ4 (k)+∆θ4 (k) 0

5 0.02 90 0.01 θ5 (k)+∆θ5 (k) 0

6 0.01 92 0 θ6 (k)+∆θ6 (k) 90

7 0 90 0 θ7 (k)+∆θ7 (k) 0

  

4.1    Calibration under single LS method

∆T

By  following  a  random  trajectory,  considering  the  end-
effector errors ,  we get the calibration result based on
(28) as shown in Table 5.
 
 

Table 5    Calibration result under the single LS method

Rod ∆ai/m ∆αi/rad ∆di/m ∆θi/rad

1 −0.010 2 0.000 5 0.030 2 0.000 4

2 0.008 0 0.051 4 0.018 3 0.001 0

3 −0.028 0 0.000 2 −0.000 3 −0.001 0

4 0.018 0 −0.085 6 −0.002 1 −0.001 3

5 0.020 3 0.001 0 0.010 4 −0.000 5

6 0.010 0 0.033 6 −0.001 0 0.000 4

7 0.000 8 −0.000 1 −0.001 4 −0.001 6

 
In  addition,  the  calibration  effect  by  drawing  the

motion  trajectory  of  the  actual  system,  the  nominal  sys-
tem,  and  the  nominal  system with  calibration  results  are
demonstrated in Fig. 3.
 
 

0−0.01
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Y/m

0.3
0.4

Z
/m

: Actual trajectory;

: LS method calibration result.
: Initial trajectory;

Fig. 3    Effect of the single LS method
 

y

In Fig. 3, it can be seen that the trajectory after calibra-
tion is closer to the actual trajectory. The objective value

 between the  actual  and initial  trajectory is 7.815 3 and
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between  the  actual  and  calibrated  trajectory  is 0.621 1.
The  objective  value  is  reduced  by  92.05% when  the  LS
method is applied. Hence, the geometric error calibration
model  as  shown  in  (27)  can  effectively  apply  in  the  EI-
MoCap system and improve the MoCap precision. 

4.2    Calibration under EM framework

∆ζ

Table  5 displays  the  parameter  estimation  result  and
Fig.  3 displays the calibration effect  under the single LS
method. By inserting the calibration result  into (3) for

compensating, the end-effector errors can be converted as
follows:

∆T = ∥ f (ζ +∆ζ,θ+∆θ)− f (ζ +∆ζ,θ)∥ . (37)

∆T

∆θ

∆θ

Compared with (6), one can see that  is decreased in
(37). Then, in this subsection, we will calibrate  under
the EM framework. Let  calibrated by the LS method
be the initial expectation of the prior distribution. We get
the calibration result  under the EM framework as shown
in Table 6.

 
 

Table 6    Calibration result under the EM framework

Parameter ∆θ1 ∆θ2 ∆θ3 ∆θ4 ∆θ5 ∆θ6 ∆θ7

Mean value −0.087 7 −0.021 9 −0.864 4 0.571 9 −0.164 4 −0.136 9 −0.215 5

Variance 0.000 4 0.000 5 0.026 1 0.011 4 0.000 1 0.001 5 0.000 6

Responsibility 0.032 1 0.013 4 0.000 0 0.000 0 0.536 6 0.000 1 0.417 9

 

Table 6 displays the parameter estimation result. As the
simulation  results  suggest,  the  EM  algorithm  has  better
parameter estimation accuracy than the single LS method
for  giving  the  confidence  interval  of  the  parameters.
Then,  let  the  expectation  of  the  posteriori  distribution
times  the  corresponding  responsibility  as  the  estimation
value, the calibration effect is demonstrated by giving the
motion trajectory in Fig. 4.
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: Actual trajectory;

: EM algorithm calibration result.
: LS method calibration result;

Fig. 4    Effect of the EM algorithm
 

In Fig. 4, one can see that the EM algorithm can signi-
ficantly improve the motion capture accuracy. The objec-
tive  value y between  the  actual  and  calibrated  trajectory
under  the  LS  method  is 0.621 1 and  between  the  actual
and  calibrated  trajectory  under  the  EM  algorithm  is
0.516 8. One can see that the EM algorithm is better than
the  LS  method.  The  capture  precision  significantly
improves  by  16.79% in  comparison  to  the  single  LS
method.  In  order  to  verify  the  convergence  of  the  ML
problem shown in (11) under the EM framework, we cal-
culate the value of the likelihood function in the solution
process, as shown in Fig. 5.
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Fig. 5    EM algorithm convergence verification
 

It can be seen from Fig. 5 that as the generation of the
EM  algorithm  increases,  the  likelihood  function  value
gradually  increases  and  converges  to  a  fixed  value.
Therefore, it can be verified that using the EM algorithm
to solve the ML problem is convergent. In Section 5, the
feasibility  of  the  proposed  method  is  verified  on  the
designed EI-MoCap system. 

5. Experimental evaluation

The kinematic calibration experiment is conducted under
the  EM  framework  on  the  designed  EI-MoCap  system
(see Fig.  6)  in  this  section.  The  EI-MoCap  system
includes  three  9-DoFs  IMU  (with  three  axis  digital
accelerometers,  three  gyroscopes,  and  three  magnetome-
ters).  The  dynamic  accuracy  of  the  IMU  is  2°  and  the
static  accuracy is  up to  0.7°.  The central  processing unit
(CPU) consists of a K60DN512 with an ARM Cortex-M4
kernel and the frequency of the CPU is 100 MHz.
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Fig. 6    EI-MoCap system
 

The specific calibration procedures are as follows.
Step 1　Wearing the EI-MoCap system to complete a

series of random actions.
θ̇Step 2　 Calculating  the  joint  angular  velocity 

according to the gyroscope output.
θStep 3　Obtaining the joint  angle ,  according to  the

combination  of  gyroscopes,  accelerometers  and  magne-
tometers.

θ

T7N
0

Step 4　Submitting  joint  angle  into  the  initial  D-H
parameters  (see Table  1)  and  obtaining  the  terminal  no-
minal transformation matrix  combined with (2).

T7A
0

Step  5　 According  to  the  lever  effect,  the  terminal
actual transformation matrix  can be obtained.

∆T T7N
0 T7A

0

Step 6　Calculating the end-effector position and ori-
entation error vector  according to  and .

∆T ∆ζ ∆θStep 7　submitting  into (28) to obtain  and .

∆θ

Step 8　 Introducing  the  EM  algorithm  as  Sub-
section 3.2.2 shows to calibrate the random colored noise

.
According  to  the  above  process,  the  results  of  the

experiments  are  shown  in Table  7, Table  8, Fig.  7,  and
Fig. 8.
 
 

Table 7    Calibration result under the LS method

Rod ∆ai/m ∆αi/rad ∆di/m ∆θi/rad

1 −0.009 9 −0.000 4 0.030 0 −0.000 2
2 0.010 6 0.051 8 0.019 9 0.000 4
3 −0.030 4 0.000 6 0.000 1 −0.000 6
4 0.018 3 −0.086 2 −0.000 8 0.000 1
5 0.020 3 0.000 3 0.009 3 0.000 5
6 0.009 1 0.035 1 −0.000 2 −0.000 5
7 −0.000 4 0.000 1 0.010 1 0.000 5

 
 

Table 8    Kinematic parameters calibrated by the EM algorithm

Parameter Mean value Variance Responsibility

∆θ1 0.039 6 0.000 1 0.340 9

∆θ2 0.275 2 0.000 2 0.000 1

∆θ3 −1.163 5  0.044 4 0.000 0

∆θ4 −0.235 6  0.009 3 0.000 0

∆θ5 0.331 7 0.015 9 0.000 0

∆θ6 0.078 7 0.001 6 0.625 8

∆θ7 −0.330 3  0.000 2 0.033 2
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Fig. 7    Effect of calibration under the EM framework
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Fig. 8    Convergence verification under the EM framework
 

Let the standard kinematic parameters (see Table 1) be
the  initial  value,  we  implement  kinematic  calibration
based  on  the  proposed  method.  By  following  a  random
trajectory, the EI-MoCap system calibrates the kinematic
parameters  and  outputs  the  accurate  trajectory.  The
results are shown in Table 7,Table 8, and Fig. 7.

Let  the  calibration  result  of  the  LS  method  which  is
displayed in Table 7 be the initial values of the EM algo-
rithm at first. Then we can get the calibration result under
the EM framework as shown in Table 8.

Then  we  demonstrate  the  calibration  effect  by  giving
the motion trajectory as shown in Fig. 7.

In Fig.  7,  one  can  see  that  the  kinematic  calibration
under  the  EM  framework  can  calibrate  the  kinematic
parameters effectively. The objective value y between the
actual  and  calibrated  trajectory  under  the  LS  method  is
0.350 7 and  between  the  actual  and  calibrated  trajectory
under the EM algorithm is 0.325 6.

One can see that the EM algorithm is better than the LS
method.  The  capture  precision  is  significantly  improved
by 7.16% in comparison to the LS method. Then we cal-
culate the value of the likelihood function in the solution
process (see Fig. 8). Therefore, it can be verified that the
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solution  is  convergent  on  the  semi-physical  experiment.
Hence,  the  proposed  method  can  be  better  used  in  the
embedded system than the LS method. 

6. Conclusions
This  paper  proposes  a  kinematic  calibration  method  for
EI-MoCap system based on the  EM algorithm.  The pro-
posed  method  mainly  includes  two  parts.  First,  the  LS
method  is  used  to  calculate  an  initial  calibration  result
which  is  used  to  reduce  the  iterations  of  the  EM  algo-
rithm. Second, the EM algorithm is proposed to calibrate
the  parameters  influenced  by  the  random  colored  noise.
In comparison to the single LS method, the kinematic cal-
ibration effects are improved. The LS method is a biased
estimation  under  the  condition  of  the  random  colored
noise.  The  simulation  and  experiment  demonstrate  the
motion  capture  precision  significantly  improved  by
16.79% and 7.16% respectively in comparison to the LS
method. In future studies, the proposed kinematic calibra-
tion method could be generalized to the industrial arm.
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