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Abstract: Angles-only relative orbit determination for space non-
cooperative targets based on passive sensor is subject to
weakly observable problem of the relative state between two
spacecraft. Previously, the evidence for angles-only observabi-
lity was found by using cylindrical dynamics, however, the solu-
tion of orbit determination is still not provided. This study deve-
lops a relative orbit determination algorithm with the cylindrical
dynamics based on differential evolution. Firstly, the relative
motion dynamics and line-of-sight measurement model for near-
circular orbit are established in cylindrical coordinate system.
Secondly, the observability is qualitatively analyzed by using the
dynamics and measurement model where the unobservable
geometry is found. Then, the angles-only relative orbit determi-
nation problem is modeled into an optimal searching frame and
an improved differential evolution algorithm is introduced to
solve the problem. Finally, the proposed algorithm is verified and
tested by a set of numerical simulations in the context of high-
Earth and low-Earth cases. The results show that initial relative
orbit determination (IROD) solution with an appropriate accu-
racy in a relative short span is achieved, which can be used to
initialize the navigation filter.
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1. Introduction

Currently, the near Earth orbital environment becomes
quite complicated as the development of space techno-
logy and the significant increasing of space launching
activities. The safety threat from huge number of non-
cooperative space targets such as space debris, failed
satellites, and malfunction satellites increases rapidly. For
example, China’s Yunhai-1-02 satellite was hit by
unknown space targets and then disintegrated in March
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2021. At least 21 pieces of debris larger than 10 cm from
this collision were detected by US space force. Thus, in
order to guarantee the safety of the orbit space, it is cru-
cial to develop space situational awareness technology to
conduct detection, orbit determination, cataloging, track-
ing and other operations for the space non-cooperative
targets. However, the deployment of global ground-based
tracking platforms for space situational awareness is not
cost-efficient. Therefore, it is a realistic requirement to
develop space-based situational awareness systems.

Generally, satellite-based sensors can be used for rela-
tive measurement of space non-cooperative targets
include microwave radar, light detection and ranging
(LIDAR), and optical camera. Among them, microwave
radar is almost impossible to be equipped on micro and
small-sized satellites because of the complex systems,
high cost, high-energy consumption, and other disadvan-
tages. LIDAR does not have the disadvantages of large
volume and high power consumption, but its coverage
spans only kilometers. In contrary, the passive optical
camera has advantages of small size, light weight, low
power consumption, full autonomy, and the invisibility of
passive measurement, so it has become one of the main
recommended sensors for space-based detection [1].
“ARGON” [2] and “AVANTI” [3] projects performed
some on-orbit experiments with angles-only relative navi-
gation, and “DEOS” [4], and “Phoenix” [5] have planned
to perform angles-only relative navigation tests.

However, the passive optical cameras can only mea-
sure the line-of-sight (LOS) information of the target
without range information, which leads to the well-
known observability problem of angles-only orbit deter-
mination [1,6]. In order to solve this problem, many
researches have been done from different perspectives in
the past decades. Generally speaking, the solutions to the
angles-only problem can be divided into four types:
(1) multi-LOS scheme; (ii) orbit maneuver scheme; (iii) sen-
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sor offset scheme; (iv) complicated dynamics scheme.

The multi-LOS scheme, including the multi-spacecraft
cooperative mode and multi-sensor on one spacecraft
cooperation mode has been researched to solve the
observability problem. Chen et al. examined the double-
LOS-based algorithm of the angles-only problem for
autonomous rendezvous, where the feasibility of intro-
ducing a baseline to the problem was analyzed [7]. Hip-
pelheuser et al. [8,9] and Tasif et al. [10] presented a new
angles-only measurement model by utilizing a constella-
tion of observing nodes. LeGrand et al. investigated an
angles-only relative orbit determination algorithm based
on binocular stereoscopic vision [11]. Wang et al. ana-
lyzed the two-sensor scheme for the angles-only problem
during space pursuit-evasion game [12]. Andrews et al.
analyzed the hybrid scheme using both space-based and
ground-based sensors for geosynchronous orbit catalog
maintenance [13].

The orbit maneuver scheme uses the maneuver to
change the status of coasting flight to provide the observ-
ability for angles-only measurement. Chari [6] proposed
the idea of orbit maneuvers to improve observability.
Woffinden et al. investigated the angles-only observable
criterion from the geometric viewpoint for autonomous
rendezvous and developed explicit solutions to calculate
the maneuvers with optimal observability for simple sets
of initial conditions [14,15]. Alternatively, Grzymisch et
al. mathematically derived a set of optimal observability
criterion for maneuver scheme and proposed an optimal
rendezvous guidance algorithm with enhanced observ-
ability for angles-only relative navigation [16—18].
Anjaly et al. [19] proposed the idea of using orbit maneu-
ver information to estimate the distance, and studied the
maneuver method with optimal observability. The angles-
only relative navigation problem is also studied from the
view of orbit maneuvers scheme [20—24].

Sensor offset scheme was first demonstrated by Klein
et al. [25] that the lever arm effect of the optical sensor
offset from the center of mass of the vehicle provides the
angles-only observability. Geller et al. [26] derived the
relative orbit determination solution when the angles-only
sensor offset provides observability. Gong et al. analyti-
cally analyzed the performance of Perez’s solution by
using covariance analysis techniques and developed an
improved algorithm for the problem with augmented state
[27,28]. Gong et al. [29] also analytically analyzed the
observability criterion for this scheme. Christensen et al.
[30] confirmed the improvement of spin-assisted effec-
tiveness to the angles-only observability when the sensor
offset is considered. The sensor offset approach is limi-
ted by the fact that the offset from the center-of-mass
cannot be long enough to provide sufficient observability
when the separation between two spacecraft are not very
close.

The multi-LOS scheme and orbit maneuver scheme for
angles-only problem have “hard” cost including extra fuel
consumption or extra sensor/satellite while the sensor off-
set scheme is generally applicable for close range cases.
Alternatively, other works try to solve observability prob-
lem from the perspective of complicated dynamics with
the “soft” cost of calculating. Some researchers use non-
linear Cartesian dynamics to provide observability
[31-36]. Gong et al. developed a fast orbit determination
algorithm by exploiting a deep neural network based on
nonlinear Cartesian dynamics with J2 and three-body per-
turbations [37]. Some researchers studied the problem by
using the relative orbit elements dynamics [38—44] where
the weakly and strongly observable components of the
relative orbit state were decoupled. Some other works
studied the problem by using curvilinear dynamics. For
example, Grzymisch et al. examined the angles-only rela-
tive navigation when the relative dynamics in rotating
spherical frame centered at the target [45]. Geller et al.
studied the problem based on the relative dynamics in
Earth-centered spherical coordinates [46] and subse-
quently Perez et al. developed a non-iterative orbit deter-
mination solution with J2 perturbations, where two orbits
could be obtained from LOS measurements [47].
Recently, Geller et al. examined angles-only observa-
bility in an Earth-centered cylindrical coordinate system
that the full state was demonstrated to be observable
using numerical simulations [48—50]. Gong et al. pre-
sented an angles-only relative navigation scheme based
on the cylindrical dynamics for long-endurance applica-
tions [51].

In summary, each solution has its own advantages and
limitations. As to the long-range missions for space-based
situational awareness, the angles-only scheme based on
complicated dynamics is a good choice. However, the
classical nonlinear relative orbit dynamics modeled in
Cartesian coordinates are not sensitive enough to capture
the orbit curvature from the noised measurements. The
utilization of curvilinear dynamics for angles-only prob-
lem is a quite promising solution. Thus, the angles-only
initial relative orbit determination using cylindrical rela-
tive dynamics, which has strong capability of orbital cur-
vature capture, is studied in this paper. The angles-only
problem is modeled into an optimal problem and an
improved differential evolution algorithm is introduced to
solve it. This solution can be used to initialize the filter
for real-time navigation and tracking.

The rest of this paper is organized as follows. The rela-
tive motion dynamics model and LOS measurement
model in cylindrical coordinate system are established in
Section 1 and Section 2, and then the observability analy-
sis of relative orbit state is conducted in Section 3. After
that, the angles-only initial relative orbit determination
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frame is modeled in Section 4 and the improved differen-
tial evolution algorithm used to solve the problem is pre-
sented in Section 5. Next, numerical simulations and
analysis are presented in Section 6. The conclusions are
given in Section 7.

2. Relative motion dynamics model

As shown in Fig. 1, the cylindrical coordinates are
defined as follows. Firstly, a fixed reference plane coin-
cides with the initial orbit plane of the chief satellite
(Chief) can be established, where the normal vector to
this plane can be denoted by the unit vectors i,. The com-
ponents on the reference plane will be represented by unit
vectors of two polar coordinates i, and i,. Then, the
Chief’s motion space can be described by a set of cylin-
drical coordinates p., 6., and z.. The position of the Chief
includes in-plane and out-of-plane parts as follows:

Ie = Pely, + 2k, (D
y
i,
(X 7’
Deputy e
i
l.,)d (/£ l/)L
0, Chief
pe
PPt Prel 0.
0.
X
\ ! )

Fig.1 Cylindrical coordinates in x-y plane [48]

The first and second derivatives of the position with
respect to time are governed by
vc = pcipC +Pc0ci(9c +Zciz

, . ) . 2
a. = (pe = pell)iy, +(pebe + 200, )iy, + % @

Meanwhile, the orbital motion of the spacecraft in two-

body environment without considering other perturba-
tions can be given as follows:

a. = __3rc~ (3)

Then, the orbit dynamics for the Chief in cylindrical
coordinates are obtained by equating the components of
(3) to (1). Similarly, the motion of the deputy satellite
(Deputy) also can be modeled in cylindrical coordinates.
After that, the parameterized relative motion states under
cylindrical system can be defined as

Prel = Pd —Pe
Grel = ed - 9(: (4)
Zrel = 2d — Zc

where the subscript d stands for Deputy.

Then, under the assumptions that the relative range is
much smaller than the orbital radius of the satellite and
relative orbit rate is far smaller than the orbit rate, a Clo-
hessy-Wiltshire look like model can be obtained in cylin-
drical coordinates by the expansion to first-order in Tay-

lor series [50] as follows:
ﬁrel ~ 3n2prel + 2}enérel
2n
== 5
R prel ( )

s 2
Zrel X —N Zrel

erel ~

where 7 is the orbital rate of the chief satellite, and R is
the orbital radius of the chief satellite.

Let the relative orbital motion state in cylindrical coor-
dinates be the “position” and “velocity” as

. T
X=[pu O za Pu ba za|. (6

Then, the relative motion dynamics model in cylindri-
cal coordinates can be solved analytically and the follow-
ing state transition form can be obtained

X () =®(1)X, (7

where @ (7) is the state transition matrix and X, denotes
the initial relative state. The expression for @ (?) is as fol-
lows:

4 —3cos(nt) 0 0
6[sin(nt) — nt] | 0
R
¢([) — 0 0 COS(nt)
3nsin(nt) 0 0
6n[cos(nt) —1] 0 0
R
0 0 —nsin(nt)

sin(n) Ry _cosn] 0
n n
2[cos(nt)—1]  4sin(nt) —3nt 0
nR n
sin(nt)
0 0 " (®)
cos(nt) 2R sin(nt) 0
7
%(’”) 4cos(nt) -3 0
0 0 cos(nt) |
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Each row from top to bottom in the state transition
matrix shown in (8) can be represented by the corre-
sponding partitions @,(1), @y(1), P (1), P,(1), Py(t), and
@.(1), respectively, which is the state transition matrix
corresponding to each component of the relative state.

3. Measurement equation

The LOS measurement geometry in cylindrical coordi-
nates is shown in Fig. 2.
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il
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e Pd p
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!
| 0,
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Fig.2 Geometry in cylindrical coordinates

Combining Fig. 1 and Fig. 2, the relationship between
two LOS angles and the relative states is modeled as

. + Ore) SIN O
tana = (Pc + Prer) L

(pc +prel) Cos ere] _pc

sin Qrel
X 9
[cos O — b
Pe +prel

Zrel

tanp = —
A d

where d is the distance projected by the chief satellite and
the deputy satellite on the orbital plane of the chief satel-
lite, which can be calculated as

d= \pi+pi=2p.picost. (10)

(D, ()Xo + pc) cos (Po(1) Xo) = pe) i), + (P (DX + ) sin (Py(1) Xo) b, + P(D Xk,

Under the assumption that the LOS angles measure-
ments are disturbed by zero mean Gaussian white noises,
the measurement is governed by

Sin 6,
arctan| ——— |+,

coS 6, — Pe
pc +prel

Zrel
arctan 7 + Wy

a+Vvy
ﬂ+W9

(11)

where v, and w, are the noises.
4. Observability analysis

The observability problem is to check whether or not the
initial relative orbit can be uniquely determined from
LOS measurements. Then, the observability analysis can
be conducted as follows.

According to the definition, the relative position vec-
tor in the inertial coordinates is as follows:

Fq— I = Paly, + Zaly, — (Oclp, + 212 (12)
Because the angle between the vectors i,, and i, is 6,
i,, can be calculated from i, and i, :

iy, = COS O, + SIN Oy, (13)

Substituting (13) and the equation i, =i, into (12)
produces

rg—r.= (Pd COSgrel _pt:)ipE + P sin ereliﬂc + ZrelizC . (14)

Substituting (4) into (14) and unitizing yields the LOS

vector:
rq—r.

il = =
" g =l

((prel +pc) cos grel _pc) ipC + (prel +pc) Sin grelié‘c + Zrelizc
\/pfel + 2:03 + Zi] + 2pcprel - 2,0c (prel +pc) cos grel -
(15)
Then, the LOS measurement profile observed for any
initial relative state X, = [prel()’ereIO’Zrel(),prel()’érel()’z.rel()]—r can
be obtained by substituting (7) into (15) as follows:

ilos(t) =

(16)

\/ (B,(DXo) + 207 + (DD Xo)” + 2B, ()Xo = 2p. (B, (1) Xo +pe) 05 (@y() Xo)

Next, the observed LOS profile of scaled initial rela-

(kD (DX, + p.) cos (kDPy(1)Xo) — pc) iy, + (kD (1) X + p.) sin (kDPy(H) Xp) iy, + kD, (1) Xy,

tive state kX, by any factor k > 0 can be govern as follows:

ilos(t) =

(17)

VK, (DX0) + 202 + (kBDX, )’ + 2k, B,(1) X — 2. (K, (1)Ko + p.) 0 (keby(1)Xo)

Obviously, the model for LOS vector in cylindrical
coordinates is strongly nonlinear which contains trigono-
metric function. It can be seem that the scale factor & in

the numerator and denominator cannot be eliminated
without conditions. As we know, if the scale factor can be
eliminated, different relative orbits share the same LOS
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vector profile, which means unobservable. When the rela-
tive phase angle 6, = @,X, =0, (17) is reduced to the
following form:

D, Xi,, + D, (1) X0,

Lios =
V@)X +(@.(0)X,)
k®,(t)Xoi,, + kD (1)Xi,,

J,0X,) + k.0,

Apparently, the state is unobservable in this case
because the LOS profiles are not unique to a given set of
initial relative states. However, the phase angle would not
be zero all the time during the flight except the case of co-
orbit with different phases. Thus, the angles-only system
established in cylindrical coordinates is generally observ-
able. Anyway, there may be other unobservable cases, but
because of the strong nonlinearity of the measurement
model, the number of the unobservable cases would be
very limited.

(18)

5. Initial relative orbit determination frame

Initial relative orbit determination (IROD) is a process
that the LOS angles during a set of orbital arc are mea-
sured and processed to fit a six dimensional solution for
the initial relative orbit. This process is a data regression
problem, which can be realized by establishing an objec-
tive function and finding the optimal solution to mini-
mize (or maximize) the value of the objective function.

Pe

(cos[@;(ﬂXo]  pe+ D, (HX,

)tana/ —sin[@y(1)X,] =0

For linear systems, the least square method can be used
for data regression, whilst intelligent optimization algo-
rithms are commonly required for regression problems of
nonlinear systems. The relative orbit dynamics model and
LOS angle measurement model in cylindrical system
adopted in this paper have strong nonlinearity, so the
regression fitting is very difficult. The ordinary optimiza-
tion algorithm is very easy to fall into the local optimal
solution. However, differential evolution (DE) is a rela-
tively new optimization method, which is simple, fast,
and robust, and has great advantages in solving nonlinear
problems [52]. Therefore, this paper designs an angles-
only relative orbit determination algorithm based on dif-
ferential evolution algorithm in cylindrical system. Now,
the problem is to construct the angles-only IROD frame
by using the DE algorithm, which is presented in the fol-
lowing.

Firstly, the measurement model shown in (9) can be
transformed into the following form:

(cos Orel — Pe
pc +pre1

)tana/ —sinf, =0

O+ ) 2= 29.lp. + Prr) 08 B tanf — 21 = 0
(19)
Then, the state components py, 6., and z, in (19) can
be given in the form of state transition of the initial rela-
tive orbital state X,, namely @,(1)X,, P4(t)X,, P.(1)X,,
and a nonlinear system of equations with unknown vari-
able X, can be obtained after substitution.

(20)

oo+ BL(OX0) + 02 = 2pu(pe + B,(1X0) cosIB, ()Xo | tanf— B ()X, = 0

Equation (20) contains two scalar equations, but
the corresponding quantity X, is six-dimensional.
Obviously, in the case of only one set of LOS angle
measurements, no unique solution can be obtained.

¢;}(II)XO

(cos[asg(rl)Xo] APy

Obviously, it requires at least three sets of LOS
angle measurements to obtain six equations to solve
the problem. When n=3 sets of LOS angles are avail-
able,

)tanal - Sin[¢9(t1)X0] =0

¢p(t2)X0

(cos[qba(tz)Xo] e oK,

\/(pc + ¢p(f1)Xo)2 +p2=2p.(p. + P, (t,)Xo) cos[DPy(t;) X, tan B, — @, ()X, =0

)tan a, —sin[Dy(1,)X,] =0

¢p(l‘n)AXv(J

D,(t)Xo] -1+ ———
(cos[ o(1,)Xo] P+ D,(t,)X,

Vo + BL)X0) + 02 = 20 (pc + B, (1) Xo) cOsI By ()Xol tanf, ~ B(1)Xy = 0

21)

)tan a, —sin[Dy(1,)X,] =0

\/(pc + djp(tn)XO)z +P§ - 2pc(pc + ¢p(tn)XO) COS[¢€(tn)XO] tanﬁn - djz(tn)XO = 0



798 Journal of Systems Engineering and Electronics Vol. 35, No. 3, June 2024

Equation (21) is a nonlinear system of equations with
unknown quantity X, so it is difficult to find an analyti-
cal solution directly that an optimal solution can be
obtained through fitting to make it closer to the physical
solution. In this paper, DE optimization is introduced to
solve the above nonlinear equations.

(cos[qbg(tl))“(o] -1+

?,(t)X,
pe+D,(1)X,

The first thing to do is to construct the optimal index.
Assuming that the fitting solution is X,, the result
obtained by substituting X, into the left-hand side of
the equation set shown in (21) should be as close to 0
as possible. Therefore, the parameter L is defined as fol-
lows:

_ )tanal — sin[@y(1))X,]

(cos[@,(tz)ffo] -1+

\/(pc + @, (1)R0) + 02~ 2p.(p. + B, (1) Ro) cos[ (1)) Ko ] tan B, — b.(1) K,

@, ()X,
Pe + ¢/}(IZ)XA'O

(cos[dig(tn)f(o] -1+

) - N N
\/(Pc + D,(1,)Xo) +p2=2p.(p. + DP,(1,)Xo) cos[DPy(t,)Xo] tan B, — D.(1,) X,

q)p(tn)XvO
pc + ¢p(tn)Xv()

The closer the vector L approaches the zero vector, the
closer X, approaches the physical solution. Considering
that the modulus length index is very suitable for measur-
ing whether a vector is approaching zero, here we define
a functionf = L"L (i.e., the square of the modulus length
of the vector L), so that X, with the minimum value of
f is the optimal solution. Therefore, the optimization
function is defined as

minf = L"L. (23)

6. Improved DE algorithm

DE algorithm is a random optimization method based on
population [52,53]. Different from the genetic algorithm,
the mutation operator of DE algorithm is obtained by the
difference between multiple pairs of vectors arbitrarily
selected in the population, which could perform better on
nonlinear problems than genetic algorithms. In recent
years, DE algorithm has been applied successfully in
many fields [54,55]. Generally, DE algorithms are mainly
divided into four steps: population initialization, muta-
tion, crossover, and selection. Steps for the proposed
improved DE algorithm are presented in detail as follows.

6.1 Initialization

The population size (the total number of individuals in
each generation) is initialized as Np, the solution space
dimension of the target is D, the initial population is X°,
and the population that has evolved to the sth generation
is X’. The ith individual in the initial population is x?,

A 2 A A A
L \/(pc + ¢p(tn)X0) +p§ - 2p€(pc + djp(tn)XO) Cos[¢0(t)1)X0] tanﬁn - ¢z(tn)X0 J

)tan @, —sin[@Dy(1,) X, ]
(22)
_ )tanan — sin[@,(1,) Xo]
and the jth component of the ith individual is x; ;.
X' = [x?,xg,m ,xg,p], (24)
X' =[x, 2,0, ], (25)
) =[x, el (26)
x,"j = x/"min + rand (xj"max - -xj,min) . (27)

where x;..x is the upper bound of the jth component of
the feasible solution space of the target being searched,
X;min 1S the lower bound of the jth component of the feasi-
ble solution space, and rand(+) is a random function used
to generate a random number between 0 and 1.

6.2 Mutation

For the ith individual x; in the #th generation population,
the mutation vector V*'generated by DE can be com-
posed of D components v

t+1.
P

Vel =t i (28)

vffjl =X+ F('xtbest,_j - x,’.yj) + F(x;h_/. - xiw.) , (29)

where i=1,2,--- ,Np, j=1,2,---,D, x|, is the optimal
individual in the population of the t#th generation, and
x, ,x. respectively are the two individuals randomly
selected in the population of the 7th generation after
excluding the ith individual x; and the optimal individual
X,... The optimal individual x_, of each generation will
not conduct mutation, crossover and other operations, and
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will be completely retained to the next generation. F' is
the scaling factor (0<F'<2), which is used to control the
influence of difference quantity x, ;—x, . on the muta-
tion quantity. When F is large, it is efficient and fast in
global search, which is suitable for optimization in the
early stage; however, in the later stage of optimization, a
large scaling factor will not be conducive to the local
search of the algorithm [55]. Therefore, the scaling factor
designed in this paper is in decreasing form:
t
Ny

where F' is the rth generation scaling factor, with F' =0.9.

F'=F'-(F'-0.5) (30)

6.3 Crossover

The ith individual x! in the #th generation population is
randomly recombined with each component of its muta-
tion vector V/*', and the new vector obtained after recom-
bination is u!*!, i.e., the crossover vector:

i
ur+l_ +1 1+1 1+1 (31)
i = Mg o Winstt s Uip |

1

u (32)

+1 .
" _{v,’_/ b<crorj=r
ij =

t . 4
X b>cporj#r

where i=1,2,--- ,Np, j=1,2,---,D, and b is a random
number between 0 and 1. ¢ is a crossover factor, which
is a real number between 0 and 1. r is called the
crossover probability, which is an integer randomly
selected from 0 to D. When ¢ is small, the local search
efficiency of the algorithm is high, which is suitable for
the early optimization stage. In the later stage of opti-
mization, a larger ¢z can prevent the algorithm from
falling into local optimization, so the crossover factor

adopted in this paper is also dynamic:
t
ci=cp+(0.6—c) N (33)
P
where ¢}, is the crossover factor of the 7th generation, and

¢, =0.3.
6.4 Selection

As shown in (14), the ith individual in the (¢#+1)th genera-
tion population generated by the optimization function is
x*!' and the jth component of the ith individual is x

The specific selection process is as follows:
1 1
o et ) < £ ()
i - t t+1 t
Xijs f(”;; ) > f(xi,j)
where f(-) denotes the optimization function as shown in
(23).

t+1
ij -

(34

7. Numerical simulation and analysis

In this section, two different types of application are con-

sidered to demonstrate the validity of the proposed algo-
rithm, i.e., geosynchronous Earth orbit (GEO) and low
Earth orbit (LEO). The orbit parameters for the simula-
tion cases will be presented in the following subsections.
The population size for DE algorithm is chosen to be 100
while the total genetic generation is limited to 500. The
number of the pair of LOS angles is set to be 30 and the
medium level of the camera accuracy is assumed to be
available onboard that the standard deviation of angle
measurement noise is set to be 0.005°.

The IROD performance index for evaluating the algo-
rithm will be introduced first in the rest of this section
while the simulation results with analysis will be pre-
sented next.

7.1 Performance index

Since the observability of relative orbit states without dis-
tance measurements is the most important problem to be
solved in angles-only orbit determination, the most direct
and essential index of relative orbit determination perfor-
mance is the estimation error of relative distance. At the
same time, because the performance of the angles-only
orbit determination has a certain relationship with the dis-
tance between the two spacecraft to some extent, the ratio
of relative distance estimation error and real distance will
be used as the orbit determination performance index in
the subsequent simulation analysis.

However, it is difficult to convert relative orbit states
into relative distance information directly under cylindri-
cal system, so the near-focus coordinate system can be
introduced for transfer. The cylindrical system coordi-
nates of the chief and the deputy satellites can be con-
verted to the near-focus coordinate system:

X = p.C0s 6,
Ye = pcsiné, (35)
Ze = Z¢

Xg = g €08 04 = (0 + Pre1) COS(O + Orer)
Va = pasinby = (0 + Pret) SIN(O, + 6) . (36)
4 = Z¢ + Zrel

Then the actual distance / between the Chief and
Deputy satellites is calculated as follows:

1= Joumx) +Guy + -2 (7)
When the estimation errors are considered, (36)
becomes the following form:
X, = p,co86,; = (0. + Pret + 0p) cOS(O. + Ol + 66)
¥, = p,sing, = (0 + pre + 0p) Sin(f, + O + 66) (38)

2 =Ze + Za + 02
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where dp, 66, and Oz represent the estimate errors in
cylindrical coordinate system.

In order to better characterize error characteristics, the
percentage error is defined as the ratio of distance estima-
tion error e to relative distance, i.e.,

VO = 50 + 05—y + 2 - 207
D VE ) ey @2

The subsequent simulation analysis will be carried out
based on this error parameter.

e

x100%.  (39)

7.2 GEO cases

It is assumed that the Chief is orbiting in GEO area while
the Deputy’s orbit is 100—200 km higher than that of the
Chief and with a small eccentricity and inclination with
respect to Chief. Orbit parameters are shown in Table 1.
The relative distance at the initial epoch is about 1000—
2000 km. Moreover, the total measurement span is set to
be 14400 s. It should be noted that the Chief and Deputy
are almost orbiting in co-planar circular orbits, thus it is
quite different to capture the nonlinearity for angles-only
problem. As a result, a relative long measurement span is
required. In addition, the guess for the feasible solution
search space is shown in Table 2, where « is one of the
angle information measured by the camera at the initial
moment.

108

106 F-

104 L

10

10*2 +

Optimal value for each generation
S

10
0 100 200 300 400 500

Genetic generation

—— : Case 1; : Case 2; : Case 3.

Fig.3 Convergence curves of optimization function

The simulation results are shown in Table 3 to Table 5,
where the optimal IROD solution and percentage errors
from four runs of the simulation are with same parame-
ters.

Table 3 Optimization results for Case 1

State Run #1 Run #2 Run #3 Run #4
Sel best  0.000482 0.003928 0.001034 0.000814
Prel/m 99342.4 183869.0 175715.5 130469.7
Orer/rad 0.023193 0.040047 0.038522 0.029747
Zrel/m 0.007945 0.007754 —0.059337  —0.016427
Prel/(m/s) —0.530838  —1.018791 -0.876775  —0.525139

Orel /(rad/s) —2.483 7 ¢=07 —4.605 3 =07 —4.391 6 e-07 —3.285 6 e—07
Zrel/(m/s) —3.7430e-06 4.1480e-06 1.5470e-05 5.170 7 e-06

Table 1 Parameters setting of Chief and Deputy Error/% 1.6019 701985 63.6927 26.2843
. . Deputy
Orbital element Chief
Case 1 Case 2 Case 3 Table 4 Optimization results for Case 2
Semimajor axis’km ~ 42164.17 42264.17 42264.17 42364.17 State Run #1 Run #2 Run #3 Run #4
Eccentricity 0 0.0001  0.0001  0.0001 Sel best  0.000297 0.000 149 0.000193 0.000132
Inclination/(°) 0 0.00002  0.00002  0.00002 pr/m  129523.9 108 668.7 128224.8 120088.4
Right ascension of 0 0 0 0 Oe/rad 0055997  0.049735  0.055685  0.053446
ascending node/() Ze/m 0041245  0.008858  —0.022159  0.006543
Argument of perigee/(") 0 0 0 0 frel/(m/s) —0.109385 0368671  -0230537 0241181
True anomaly/(®) 3227645 3241151 32546 324093 Oret/(rads) —3-455 5 07 ~2.744 5 ¢=07 ~3.313 3 ¢=07 ~3.302 6 &~07
Zrel/(m/s) 5.887 4e—06 —1.634 8 e—05 1.297 9 e—05 —1.354 8 e—05
Table 2 Setting of feasible solution space guess Error/% 19.094 6 5.7362 18.4289 13.6489
State Minimum Maximum
Prel/m 100000 3000000 Table 5 Optimization results for Case 3
Orel /rad 0 0. la State Run #1 Run #2 Run #3 Run #4
Zret/m —2000 2000 Sel best  0.000154  0.000251 0.000062  0.000290
Prel /(m/s) -2 2 Prel/m 238250.4 187168.5 200431.8 212928.5
brel /(rad/s) —0.00001e 0.00001a Oei/rad  0.021730  0.020696  0.023536  0.024695
Zrel /(m/5) 20 20 Ze/m  0.004079  0.020357  —0.012792  —0.022222
Prel/(m/s) —0.816903  —0.321888  —0.570304  0.201456

The convergence curves of the optimization function
for the three cases are shown in Fig. 3. Sel best in the
table during optimization is the optimization function
value corresponding to the optimal individual.

Orel /(rad/s) —6.953 6 e=07 —4.822 3 ¢~07 =5.037 8 07 —5.603 5 =07
Zrel/(m/s) —1.5579 e=06 —1.325 0 =06 —4.368 8 =06 —1.963 6 e-06
Error/% 4.1185 5.8605 1.4823 6.5278
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Among them, in the four results of Case 1, the mini-
mum error is about 1.6%, the maximum is 70.2%, and the
average error is about 40%. For Case 2, the minimum is
about 5.7%, the maximum is about 19.1%, and the aver-
age is about 14%. For Case 3, the minimum is about
1.5%, the maximum is about 6.5%, and the average is
about 4.5%.

Each optimization search will select an individual with
the minimum value of the optimization function as the
optimal solution. Under the same conditions, each simu-
lation result will be different, which is caused by the high
randomness of the DE algorithm and the random genera-
tion of initial populations and mutation vectors under the
condition of satisfying the search range. However, under
different simulation conditions, the differences of simula-
tion results themselves are different, which is determined
by the degree of nonlinearity under different relative orbit
conditions. Generally, the further the relative distance is,
the greater the orbital altitude difference is. Then a higher
degree of nonlinearity can be provided, and the better
observability is achieved. The initial relative distance of
Case 2 is farther than that of Case 1, and the orbital alti-
tude difference of Case 3 is greater than that of Case 1,
the corresponding optimization results are better than that
of Case 1.

7.3 LEO cases

It is assumed that the Chief is orbiting like the space sta-
tion in LEO zone while the Deputy fly by the Chief that
both of the vehicle are co-plane with different altitudes
and phases. The orbit parameters are shown in Table 6.
The relative distance at the initial epoch is less than 100 km.
Cases with different measurement spans are tested in
this subsection: 600 s, 1200 s, 1800 s, 2400 s, 3000 s,
and 3600 s. Ten simulation runs with same parame-
ters are conducted for each case. In addition, the guess
for the feasible solution search space is as shown in
Table 7.
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Table 6 Parameters setting of Chief and Deputy
Orbital element Chief Deputy
Semi major axis/m 6731140 6771140
Eccentricity 0.000212 0.000212
Inclination/(°) 41.471 41.471
Right ascension of ascending node/(°) 281.9962 281.9962
Argument of perigee/(°) 349.1571 349.1571
True anomaly/(°) 269.3134 2773134

Table 7 Setting of feasible solution space guess

Relative state Minimum Maximum
Prel/m 10000 180000
Ore1/rad —0. la 0. la
Zrel/m —2000 2000
Prel /(m/s) -20 20
Bre1 [(rad/s) —0.00001« 0.00001
Zrel /(m/s) —20 20

The simulation results are shown in Table 8 where 10
runs are conducted for each case. It can be seen that the
IROD solutions with different percentage errors of all
cases are obtained. For Case 1, the minimum error is less
than 0.4% while the maximum is 18.5%; for Case 2, the
corresponding data are 7.6% and 19.6% while 0.3% and
22.1%, 0.4% and 36.9%, 1% and 34.6%, 1.1% and 30.6%
respectively for Case 3 to Case 6. The statistics for all
these data is presented in Fig. 4. As depicted in Fig. 4, a
more accurate IROD solution is generally achieved when
the measurement span is only 600 s, which is the least of
all the cases. This means 30 measurements in 600 s could
provide enough information for the LEO IROD in cylin-
drical coordinates. Moreover, the reason for the larger
span worse performance is in the accuracy of the relative
dynamics. As shown in Section 4, the state transition
matrix is used in the IROD model. However, the state
transition matrix is linear solution for the relative dynam-
ics that high-order terms have been ignored, which leads
to that the accuracy of the dynamics would be degraded
when the span is larger.

Table 8 Percentage error of IROD solutions %
Case Run #1 Run #2 Run #3 Run #4 Run #5 Run #6 Run #7 Run #8 Run #9 Run #10
1 10.5 18.5 11.4 12.1 14.3 16.7 1.7 2.9 0.4 0.9
2 13.0 14.0 14.5 16.9 7.6 8.4 16.4 9.0 20.8 19.6
3 33 42 22.1 11.9 14.3 19.9 0.3 8.8 3.8 28.5
4 1.2 2.7 4.0 12.8 0.4 12.9 333 7.3 30.1 36.9
5 1.0 35 10.3 13.4 133 14.5 23 34.6 12.1 12.0
6 21.3 253 1.1 30.6 5.8 6.4 22.1 5.5 5.6 29.5
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Fig. 4 Statistics for LEO simulation cases

These results are quite inspiring that the using of the
cylindrical dynamics does provide the angles-only
observability and the IROD solution with an appropriate
accuracy can be achieved to initialize the navigation fil-
ter in a relative short span. Anyway, the problem of how
short the measurement span can still lead to acceptable
IROD solution should be studied further in the future.

8. Conclusions

In this paper, an angles-only initial relative orbit determi-
nation algorithm based on DE is developed for passive
detection task of space non-cooperative targets. By intro-
ducing the relative dynamics in cylindrical coordinates,
the state observability for the angles-only problem is con-
firmed by mathematically proven. The IROD frame for
the case that Chief orbits circular trajectory, is con-
structed and solved by using the improved DE algorithm.
The theoretical results are validated by numerical simula-
tion where two different altitude orbits are included, i.e.,
GEO and LEO. The simulation results show the IORD
solution could be obtained for both orbit types. For GEO
cases, a larger measurement span is required for captur-
ing orbital curvature to provide observability, while the
span within 600 s is satisfied.

In the future, different perturbations will be considered
and modeled in cylindrical dynamics, which may
improve the angles-only observability. The sensitivity of
the factors such as sensor accuracy and formation geome-
try to the IROD solution will be checked further.
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