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Abstract: Linear minimum mean square error (MMSE) detection
has been shown to achieve near-optimal performance for mas-
sive multiple-input multiple-output (MIMO) systems but
inevitably involves complicated matrix inversion, which entails
high complexity. To avoid the exact matrix inversion, a consider-
able number of implicit and explicit approximate matrix inver-
sion based detection methods is proposed. By combining the
advantages of both the explicit and the implicit matrix inversion,
this paper introduces a new low-complexity signal detection
algorithm. Firstly, the relationship between implicit and explicit
techniques is analyzed. Then, an enhanced Newton iteration
method is introduced to realize an approximate MMSE detec-
tion for massive MIMO uplink systems. The proposed improved
Newton iteration significantly reduces the complexity of conven-
tional Newton iteration. However, its complexity is still high for
higher iterations. Thus, it is applied only for first two iterations.
For subsequent iterations, we propose a novel trace iterative
method (TIM) based low-complexity algorithm, which has signifi-
cantly lower complexity than higher Newton iterations. Conver-
gence guarantees of the proposed detector are also provided.
Numerical simulations verify that the proposed detector exhibits
significant performance enhancement over recently reported
iterative detectors and achieves close-to-MMSE performance
while retaining the low-complexity advantage for systems with
hundreds of antennas.
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1. Introduction

Massive multiple-input multiple-output (MIMO) techno-
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logy serves as a cornerstone for modern wireless commu-
nication systems, enabling the maximization of through-
put, coverage, and spectral efficiency within the available
radio spectrum [ 1—3]. Unfortunately, the benefits are achi-
eved at the expense of increased computational comple-
xity due to a multitude of antennas at the base station (BS)
and user terminals. In particular, the complexity of signal
detection is a critical challenge for realizing a practical
massive MIMO receiver. The multiple bit streams trans-
mitted by users experience multipath propagation, where
undesired copies of the signal arriving from various
directions and with different delays interfere with the
direct signal at the BS [4,5]. This interference corrupts
the received data. Consequently, a MIMO receiver often
employs a data detector to separate these streams and miti-
gate the effects of interference The optimal non-linear
maximum likelihood detection suffers from high compu-
tational cost which scales exponentially with the number
of users and order of modulation, which hinders its
implementation in practice for systems with a large num-
ber of antennas. Linear minimum mean square error
(MMSE) achieves good performance for the systems with
massive antenna arrays [6] at low-complexity. However,
it involves matrix inversion operation, whose computa-
tions increase cubically with the number of users. This
motivates the design of detection algorithms capable of
obtaining a good balance between performance and com-
plexity in massive MIMO systems.

Iterative detection algorithms have recently attracted
considerable attention for massive MIMO systems. Itera-
tive detectors entail a significantly lower computational
complexity than the exact matrix inversion method while
delivering almost the same performance. One of the earli-
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est detectors that approximate the inverse of a matrix by
converting it to a series of matrix-vector multiplications
is Neumann series approximation (NSA) [7]. The NSA
only achieves a marginal reduction in complexity. Thus,
to obtain a reasonable balance of complexity and perfor-
mance, several methods such as Newton iteration [8,9],
Richardson method [10,11], Jacobi [12], recursive conju-
gate-gradient (RCG) [13] iterative sequential detection
[14], Gauss-Seidel [15,16], and successive over relax-
ation (SOR) [17] have been introduced. The existing
detection techniques need more number of iterations to
attain near-MMSE performance that unfortunately
increases complexity, or computations are difficult to par-
allelize when estimating each symbol from users due to
high correlations. Thus, it is still a challenging open issue
to design low-complexity detectors with good detection
performance.

To mitigate the problem of high detection complexity
at the BS in massive MIMO, this paper presents a low-
complexity linear detector. We exploit the combination of
explicit (requires to compute inverse of a matrix) and
implicit (directly computes the solution vector) methods
to enable high performance detection for systems with
hundreds of antennas. The relationship between these
schemes is analyzed first and then based on that analysis
we develop an improved Newton iteration detector. Since
complexity of the Newton iteration is high for higher-
order iterations, it is only utilized for first two iterations.
For subsequent iterations, we propose a detection algo-
rithm designed based on the trace iterative method (TIM).
It has significantly lower computational complexity than
higher Newton iterations and reduces an order of magni-
tude overall complexity of linear MMSE virtually at no
loss in detection performance. The proposed algorithm is
mathematically demonstrated to be convergent and its
computational complexity is analyzed in detail. The abi-
lity of the proposed detector to efficiently solve the prob-
lem of matrix inverse iteratively for attaining the desired
detection results is demonstrated in the numerical results.
Analysis illustrate that the proposed algorithm achieves
near-MMSE error rate performance with substantially
low-complexity.

The remainder of the paper is structured as follows:
Section 2 provides a review of the uplink massive MIMO
system and the classical linear MMSE exact matrix inver-
sion detection approach. The proposed algorithm is pre-
sented and analyzed in Section 3. The numerical results
are provided in Section 4. Finally, this paper is con-
cluded in Section 5.

2. System model

Consider a Bx U massive (or large) MIMO system in
which U user terminals simultancously transmit data
symbols to a BS with B> U. Let s represents the trans-
mitted symbol vector with each symbol being drawn
independently from a given constellation set such as
quadrature amplitude modulation (QAM). Then, the
received symbol vector y at the BS [18] can be expressed
as

y=Hs+n €]

where entries of the additive noise vector n are drawn
from the complex-valued circularly-symmetric Gaussian
distribution and H is the channel matrix. The each entry
h;; in H is independent and identically distributed with
variance o and mean zero.

The objective of the MIMO detector is to determine the
optimal symbol vector s from the received data y. Linear
MMSE is one of the most attractive detectors that
achieves near-optimal performance. The estimated sym-
bol vector § using MMSE [19] is given by

§=(H'H+oL,) H'y=W"3 )

where W = H'H + 0?1, and § = H"y represent MMSE
filtering matrix and the matched-filter output, respec-
tively. The major challenge for linear MMSE is to com-
pute the high-dimensional matrix inversion W',

3. Proposed detector for massive
MIMO systems

First, this section discusses the relationship between the
approximate matrix inversion methods and the iterative
methods. Next, based on that discussion, we improve the
Newton iteration, which approximate the matrix inver-
sion with low-complexity, and then exploit it to detect the
signal for first two iterations. We then propose a novel
iterative method based on the TIM to efficiently solve the
detection problem for subsequent iterations. Finally, con-
vergence proof and complexity analysis of the proposed
algorithm are presented.

3.1 Relationship between explicit and
implicit methods

Various explicit methods such as Newton iteration that
needs to compute the matrix inversion, and iterative
methods that directly computes the estimates of the sig-
nals emitted by different users without the need for com-
puting the matrix inversion such as Richardson iteration
have been recently reported for massive MIMO systems.
To compute the linear MMSE estimation with (2) is
equivalent to finding the solution § to
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Ws=3 )

where UxU MMSE filtering matrix W is symmetric
positive definite for massive MIMO systems. Direct com-
putation of (3) involves matrix inversion which is very
costly in case of large multi antenna systems. Therefore,
we exploit combination of the explicit method and the
implicit method to solve (3). For any splitting
W =M-N, where M is the iteration matrix, the itera-
tion scheme to solve the linear system of (3) is given by

Ms™ = Ns"y 4
where i = 1,2,---, N;,. This iterative routine converges to
the unique solution of a system in (3) for appropriately
chosen initial vector if and only if p(M~'N)<1 [20],
where p denotes the spectral radius of matrix W. Equiva-
lently, the iteration in (4) can be represented as

s =Bs" + k (5)
where s© is initial solution and iteration matrix B and
vector k are given by

{B =M'N=I-M"'W

k=M"j ©

If the initial matrix s© is §© = M~'§, then the esti-
mated solution after ith iteration in the iteration process is
equal to the ith order (i + 1 terms) expansion in NSA [9],
which is a well-known approximate matrix inversion
method. Moreover, the result of 2/ —1 iterations in the
implicit scheme is equivalent to i iterations in Newton
iteration.

Different combinations of M and N in (4) will lead to
different methods. For example, M= and N=11-W
gives Richardson method (where w is relaxation parame-
ter), and M = D' and N = D™' —W leads to Jacobi itera-
tion (where D denotes the diagonal entries of W). The
Richardson iteration method’s optimal relaxation parame-

ter [21] can be expressed as
2
W= (N
/lmin+/lmax
where A, and A, are the minimum and maximum
eigenvalue of matrix W, respectively. In general,
Richardson iteration converges faster as compared to

Jacobi iteration [22].
3.2 Improved newton iteration

In [8], Newton iteration method has been applied to find
the approximation of the matrix inverse involved in
MMSE detection. If M;' is the original estimation of the
matrix M~", then the ith estimate of Newton iteration [6]
is given as

M;' =M\ (21-WM;) ®)

which converges if
|T-wn,'|| <1. )

It is pointed out in [8] that, compared to the NSA, the
Newton iteration converges faster. In this subsection, we
improve the existing Newton iteration and then apply it to
approximate the matrix inversion.

Since MMSE filtering matrix W is a diagonally domi-
nant for massive MIMO systems, the matrix M can be set
as D. As discussed above there is a positive correlation
between the iterative methods and the approximate matrix
inversion method. Moreover, it has also been mentioned

that the Jacobi iteration with M = D converges slowly

Amin+/lmax
than Richardson iteration method with M = Tl .

Correspondingly, the convergence of Newton iteration
Wlth M = Amin+ max
M=D.

As initial estimation determines the number of itera-
tions needed for the iteration process to converge, the ini-
tial matrix inversion solution M," should be chosen prop-
erly. Therefore, we improve the Newton iteration by
replacing the existing initialization M;' = D™ with novel
/lmin+ﬂmax
—=—""1. Then, s© of the

proposed algorithm can be formulated as

5O = M;'5. (10)

I should be faster as compared with

initialization matrix M =

Next we compute approximate matrix inversions M’
and M;' first, and then we obtain the estimated signals
s and s®. The matrix M;" of the designed detector utili-
zing (8) is given by

M;' = M (21 -WM;') = My' +(-M,'N) M (11)
where N = M,—W. Then, M;'N is given by

M;'N=1-M,'W. (12)

Similarly, the second iteration M,' using (8) can be
computed as

M;' =M (2I-WM;). (13)
Since M;' has already been computed in (11), by sim-
ply substituting the value of M;" in (13), we get

M;' = (M;' - My'NM;") (21 - W (M,' - M;' NMS')).
(14)

By putting W = M — N and after some calculation, we
obtain M;' [9] as

M;' = M+ (M;'N) M;. (15)

Consequently, the detected signals s and s® can be
obtained as
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sV =M"9=s0+T-M,"W)s”. (16)
By putting the MMSE filtering matrix W and
M;' = ﬁ into (16), we get the estimation of s
as follows:
sV =57+ (1— 2z W)s“”. (17)
Apmin + Amax

Similarly, s can be obtained as

sP = My'9 = sV + T - M;'W)'s". (18)

By substituting the values of W and M;' into (18), and
after some calculations, we get

2 ’ 2
§? = S(l) [(ATW) - Z(ﬁW) +I} sV,

Note that the proposed s and s® depends on A, and
Amax. Determining eigenvalues in practice proves chal-
lenging. Nonetheless, given that the elements of H are
independent and identically distributed complex Gaus-
sian random variables, H"H is a complex central Wishart
matrix. Thus, as B increases, the smallest and the largest
eigenvalue of W converges to a deterministic value [6] as
follows:

L (20)
Aoax = B{ 14 4/ =
U

From (20), it can be noted that the A,;, and A« now
can be computed approximately using system parameters.
Since the higher Newton iterations are computationally
expensive, we propose a novel detection algorithm
for subsequent (i.e., i > 3) iterations that has low-com-
plexity.

3.3 TIM detector

According to statistical matrix theory, as the size of ran-
dom channel matrix H grows, the distribution of singu-
lar values will become independent of the statistical dis-
tribution of its elements and will only depend on the ratio
U/B. This phenomenon is called channel hardening. The
characteristics of a small-scale fading can be canceled by
exploiting this phenomenon and it becomes more domi-
nant if the BS-to-user antenna ratio gets larger. Intui-
tively, as the dimensions of massive MIMO system gets
larger, the diagonal entries of H"H will become larger
compared to off-diagonal entries, i.c., H'H becomes
Hermitian positive definite. Hence, in massive MIMO
systems, iterative techniques can attain near-optimal

detection performance within a few numbers of itera-
tions [23]. Inspired by this, we can exploit TIM iteration
for low-complexity signal detection in the proposed algo-
rithm for i> 3. Unlike MMSE that directly computes
W', TIM employs an iterative procedure to achieve the
estimates of the transmitted symbols.

The generalized stationary iteration method based on (4)
can be written as

Mx? = —(Ax""+b). 1)
Tr(A
If the nonsingular matrix M = — r/(3 )I , we have the
TIM iteration defined [24] as follows:
Tr(A) © :
rd), = (- Ax") 22)
B

where 8> 0 is relaxation parameter. Since H is asymp-
totically orthogonal in large MIMO systems, we can take
the benefit of iterative structure of TIM and exploit it for
estimating the transmitted symbols without computing
the matrix inversion as

s = (I— B
Tr(W)

i-1) ﬁ A~
W)s + —Tr(W)y' (23)

The optimum value of relaxation parameter S will be
defined in Section 4. Equation (21) iteratively refines the
initial solution and this procedure is carried out until a
specific iteration stopping criterion is met. The most
appropriate stopping criterion is the maximum iteration
numbers. We achieve the approximated MMSE solution
without computing the matrix inverse after the conver-
gence of the iteration. In the proposed algorithm, we
employ TIM for i > 3.

This detection algorithm attains significantly faster
convergence to the final solution compared to conven-
tional iterative methods. This enhancement has been vali-
dated through numerical simulations detailed in Section 4.
Summarizes the proposed detector as shown in Algo-
rithm 1.

Algorithm 1  Proposed algorithm

Input H,y, Ny, B, 0
Output Detected signal §
1 Preprocessing and initialization

2 2
2/lmin:Bl_ E ;/lmaszl-i- E
YU VU

2
/lmin+/lmax
/lmin+/lmax
4 M =wl = =

5W=H"H+0I,

3w=

1
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69 =H"
750 = M;'
2
850 =5 +([- ——W|s©
* * /lmin+/lmax *
2
9 5 = 5|2 W] —2[—2—w]|+1|sv
/lmin + /]-max /lmin + /lmax

10 Iteration
11 Fori=3,4,---, Nier

; B - B .
12 s@ =|I- Wls@ D4 ——
s ( w5 Wy
13 end

3.4 Convergence

The convergence guarantees for the proposed detection
algorithm has been provided in this subsection. Since
TIM is applied for higher iterations, convergence of the
proposed detector completely depends on it. Thus, only
convergence of the TIM iteration is discussed below.
Theorem 1  The proposed TIM-based massive
2 )Tr(W)

max

with any initial solution if all eigenvalues A, are real-va-
lued and satisfy

MIMO data detector converges for 0 < < (

0</lmin</lk</lmax, k:1527'”,n' (24)

Proof Ensuring the convergence of the iterative
scheme requires that the spectral radius be less than unity.

Let lim s” = § and § = R§ +d for any initial solution s,

i—00

where d = %5) and R=1- %W is iteration

matrix of the TIM iteration whose eigenvalues are

B
Tr (W)’
1—%/1““". The matrix W is positive definite and
symmetric since entries of the channel matrix H are iden-
tically distributed complex Gaussian random variables.
Ay
’ /lmux

i = and satisfy 1- %ﬂmax <y <

Therefore <1 and we know that

Z A =Tr(W). 25)

k=1
Moreover,
=P <
Tr(W)
ﬂ b
Amax > —1
Tr (W)

1
(26)

then |, < 1| for all k and the method is convergent. Con-
sequently, for all 8> 0 the first condition is satisfied
since Ay, >0, and the second condition is true if

’8<(/12 )Tr(W). O

max

3.5 Complexity

We first discuss the approximate computations in terms
of the number of complex-valued multiplications
involved in various steps of the proposed algorithm and
then compare it with recently developed methods. Since
all detectors require to compute W and ¥, we focus on
the complexity of iterative cycles. It is easy to see that
s@=M;'y of the proposed algorithm requires U +7
multiplications. For the first iteration of the proposed
Newton method, we first compute H'Hs® and o?s©,
and then we calculate M,'(H"Hs© —c?s®), where
(HPHs — 05%) is a vector. Note that the proposed ini-
tialization matrix M," is already obtained for s. Thus,
2U° +2U total multiplications are needed to obtain s.
We follow the similar procedure for s to obtain approx-
imate computational complexity. It can be observed from
(19) that, it requires 6U°+7U multiplications to com-
pute second iteration s® of the improved Newton itera-
tion.

Next we analyze the computational complexity of the
designed TIM detector. Iteration routine of the TIM in
(23) can also be expressed as follows:

0 = gl-D 4 B 5 _ WsD). 27
s s Tr W) (y s ) 27)
Based on (27), the computation of s involves the

multiplication of U XU matrix W and a vector s“" of

size Ux1, multiplication of with a vector

Tr (W)
(9 —WsD) and one division to obtain Te (W) - Hence,
(25) requires U?+ U + 1 multiplications to compute s,
The computational complexity of the proposed algorithm
is summarized in Table 1. The complexity comparison of
various methods is provided in Section 4.

Table 1
posed algorithm

Number of multiplications for different steps of the pro-

Step Complexity
Initialization matrix U+17
Improved Newton (i =2) 20%+2U
Improved Newton (i = 3) 6U%+7U

TIM iteration U2+U+1

4. Numerical results

In Section 4, numerical results of the proposed detector
are presented and compared with existing iterative meth-
ods such as Chebyshev iteration [12], non-stationary
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Richardson (NSR) method [10], Newton iteration (NI) [8]
and recursive-conjugate-gradient (RCG) [13]. Linear
MMSE with exact matrix inversion is also compared.
Numerical results are provided for different massive
MIMO antenna configurations and the transmitted sym-
bols of each user are randomly selected from the same
given constellation, for example, 16-QAM or 64-QAM.
Channel matrices are generated using flat rayleigh fading
channel model for all simulations. We also compare the
complexity of the developed algorithm with recently
developed iterative algorithms.

We first present the computational complexity compari-
son of the designed detection algorithm with other
recently introduced iterative detectors. We also present
the complexity of the linear MMSE detection with exact
matrix inversion serving as the benchmark. Fig. 1 demon-
strates the number of complex-valued multiplications
against number of users. The following observations can
be found.

x10*
6 T

Number of complex multiplications

0 5 10 15 20 25 30 35
Number of users

—o— : MMSE; —*- : Chebyshev, i=2; —e- : Chebyshev, i=3;

—=— : Chebysheyv, i=4; :NSR, i=2; :NSR, i=3;
:NSR, i=4; — : Newton, i=2; —e— : Newton, i=3;

== : Newton, i=4; — :RCG, i=2; —o- :RCG3, i=3;
:RCG, i=4; — : Proposed, i=2; —e- : Proposed, i=3;

—=— : Proposed, i=4.

Fig. 1
tion methods

Computational complexity comparison for various detec-

(1) It can be seen that, compared to all methods, the
proposed algorithm has lowest computational complexity
fori=3 and i =4.

(i1) For i=2, the proposed technique shows higher
complexity than the proposed TIM detector. This com-
plexity further increase if we apply proposed improved
Newton method for higher iterations. Thus, we intro-
duced the novel method for higher iterations, which sig-
nificantly reduce the multiplications as can be seen from
Fig. 1.

(iii) It can be observed that the proposed improved
Newton iteration greatly reduces the complexity of the
conventional Newton detector for i =2. The proposed

new initialization matrix is the main reason of this com-
plexity reduction.

(iv) Fig. 2 demonstrates that the RCG exhibits lower
complexity than conventional Newton and Chebyshev
methods. In addition, the complexity of the conventional
Newton iteration is very high (even higher than linear
MMSE exact matrix inverse scheme for i =4) followed
by Chebyshev detector. The results are presented for vari-
ous signal to noise ratio (SNR) values with i = 4.

10°

10 12 14 16 18 20 22 24
Relaxation parameter S
:SNR=14; —<— : SNR=16; -+ : SNR=18.

6 8

Fig. 2 SER performance of the TIM detector against 8 for
B xU =128x16 massive MIMO system with 64-QAM modulation
technique.

In summary, Fig. 1 shows that the designed detector
has lower complexity than all aforementioned iterative
detectors. In addition, it significantly reduces the compu-
tations of linear MMSE at virtually same error rate per-
formance which has been verified in next subsections.

We now study symbol error ratio (SER) versus diffe-
rent values of relaxation parameter to find optimal S in
Fig. 2. For BX U =128 x 16 antenna configuration with
64-QAM modulation technique, Fig. 2 illustrates that the
SER performance improves at first and reaches the mini-
mum when S = 17 and then starts to degrade as 8 further
increases. We can conclude that the proposed detector
obtains the best performance with 8= 17. Thus, optimal
relaxation parameter S =17 is chosen for the proposed
TIM to achieve best results with less number of itera-
tions.

In Fig. 3, the performance of the proposed algorithm
with linear MMSE detection is compared. The
Bx U =128x32 massive MIMO system and 16-QAM
modulation is considered for this simulation. It can be
seen from figure that the performance of the proposed
detector improves with the increasing number of itera-
tions. It achieves almost similar performance to that of
the linear MMSE with exact matrix inversion for i = 6.
The performance gap between the proposed method and
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linear MMSE s just 0.12 dB at 107 for i = 6. Note that
the complexity of the proposed detector is still very low
for i = 6 as compared to MMSE exact inversion method.

10°

10

4 6 8 10 12 14
SNR/dB

—— : MMSE; — : Proposed method, i=2;

—e— : Proposed method, i=4; —=- : Proposed method, i=6.

Fig.3 Comparison of the proposed algorithm with linear MMSE

Next, SER of the proposed algorithm is compared with
other recently developed iterative detectors. Fig. 4 shows
the SER performance against SNR for Chebyshev itera-
tion, NSR method, conventional Newton iteration, RCG
and the proposed method for BXU =128x16 large
MIMO system. Fig. 4 shows that the Chebyshev iteration
exhibits slow convergence for i=2 and i=3, but it
shows better performance for i = 4. We see that the con-
ventional Newton detector and RCG have almost similar
performance for i =3 and i = 4. Further we note that the
proposed method outperforms than aforementioned itera-
tive methods, and only four iterations are sufficient for it
to realize the performance of the linear MMSE.

10°

2 4 6 8 10 12
SNR/dB
—— : MMSE; — : Chebyshev, i=2; —e— : Chebyshev, i=3;
—=— : Chebyshev, i=4; :NSR, i=2; :NSR, i=3;
:NSR, i=4; — : Newton, i=2; —o- : Newton, i=3;
—=— : Newton, i=4; :RCG, i=2; : RCG, i=3;
—— : Proposed method, i=2; —e— : Proposed method, i=3;

: RCG, i=4;

Fig. 4 SER of various massive MIMO detectors for a system with
BxU= 128%16 antennas

In Fig. 5, we reduce the BS-to-user antenna ratio by
increasing the number of antennas. In this case, the
BxU =144x24 antenna system (BS-to-user antenna
ratio = 6) is considered to compare the SER performance
against SNR. It can be noted that the proposed algorithm
outperforms Chebyshev and conventional Newton detec-
tor by a significant margin. These methods exhibit insuf-
ficient convergence with noticeable performance loss in
this scenario due to BS-to-user antenna ratio is relatively
larger than that of the Fig. 4. The RCG shows perfor-
mance improvement over Chebyshev and Newton based
detectors. However, the proposed detector exhibits supe-
rior performance than other iterative approaches. It can be
further noted that only the proposed algorithm can
approach the MMSE performance with four iterations
whereas other iterative methods require a higher number
of iterations to achieve the same performance.

10°

107"

102L

SER
S

4 6 8 10 12 14
SNR/dB

—— : MMSE; — : Chebyshev, i=2; —e- : Chebyshev, i=3;

—=— : Chebyshev, i=4; :NSR, i=2; :NSR, i=3;
:NSR, i=4; — : Newton, i=2; —e— : Newton, i=3;

—=— : Newton, i=4; : RCG, i=2; : RCG, i=3;
:RCG, i=4; —* : Proposed method, i=2;

—eo— : Proposed method, i=3; —=— : Proposed method, i=4.

Fig. 5 Comparison of the performance of the proposed algorithm
with recently reported detection algorithms for BxU= 144x24 mas-
sive MIMO system

Fig. 6 illustrates the simulation results depicting the
SER performance as a function of the number of itera-
tions. Specifically, the proposed technique is contrasted
with other state-of-the-art methods in a scenario featur-
ing 128 antennas at the BS and 32 users utilizing 16-
QAM modulation, with the SNR set at 12 dB. It can be
observed from Fig. 6 that the NSR based detector shows
the slow convergence compared to other detectors. The
main reason is its sensitively to relaxation parameter. It
can further be seen that the performance of RCG is better
at the start up to three iterations compared to Chebyshev,
NSR and Newton based detectors. However, for i> 3,
RCG and Newton method have almost similar perfor-
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mance. Moreover, the proposed algorithm demonstrates
the quickest convergence among all mentioned iterative
methods, achieving satisfactory results within just a few
iterations. This observation suggests that the proposed
detector outperforms all compared iterative detectors in
terms of both convergence speed and error performance.
In summary, we can say that the proposed algorithm can
realize linear MMSE detection within only a few num-
bers of iterations under different antenna scenarios. Addi-
tionally, owing to the high convergence rate, it can also
maintain detection performance as users increase.

10°

10|

102

SER

107

1 2 3 4 5 6 7 8 9 10
Iterations

—=— : Chebyshev; :NSR; —=— : Newton;

—=— :RCG; —=— : Proposed.

Fig. 6 SER Performance against number of iterations of various
detection algorithms for BxU=128x32 massive MIMO system at
12 dB SNR employing 16-QAM modulation

5. Conclusions

We have proposed a novel data detection algorithm tai-
lored for massive MIMO systems, which is based on the
combination of explicit and implicit methods. We have
first analyzed the relationship between explicit and
implicit methods and then based on that analysis an
improved Newton detector is developed. It has been
shown that the improved Newton detector greatly reduces
the complexity of the conventional Newton detector and
simultaneously provides improved error rate perfor-
mance. Since the complexity of Newton iteration is high
for higher iterations, we have proposed TIM for subse-
quent iterations, which is a novel low-complexity signal
detection algorithm designed specifically for massive
MIMO systems. Analysis illustrates that the proposed
TIM is convergent for any initialization when relaxation
parameter is properly chosen. It has been shown through
numerical simulations that the combined explicit and
implicit methods based detection algorithm achieves
much better performance than conventional iterative
methods and approaches the performance of linear

MMSE detection with significantly reduced complexity.
Thus, the proposed algorithm is an attractive solution for
massive MIMO receiver implementation.

References

[1] NGO H Q, LARSSON E G, MARZETTA T L. Energy and
spectral efficiency of very large multiuser MIMO systems.
IEEE Trans. on Communications, 2013, 61(4): 1436—1449.

[2] SONG W, WANG W Z. Compressive sensing based mul-
tiuser detector for massive MBM MIMO uplink. Journal of
Systems Engineering and Electronics, 2020, 31(1): 19-27.

[31] LIYM,DULP,CHENY Y. A pilot allocation method for
multi-cell multi-user massive MIMO system. Journal of Sys-
tems Engineering and Electronics, 2021, 32(2): 399-407.

[4] ZHANG X F, XU L Y, XU L, et al. Direction of departure
(DOD) and direction of arrival (DOA) estimation in MIMO
radar with reduced-dimension MUSIC. IEEE Communica-
tions Letters, 2010, 14(12): 1161-1163.

[S] ZHANG X F, XU D. Angle estimation in bi static MIMO
radar using improved reduced dimension Capon algorithm.
Journal of Systems Engineering and Electronics, 2013, 24(1):
84-89.

[6] RUSEKF, PERSSON D, LAU B K, et al. Scaling up MIMO:
opportunities and challenges with very large arrays. IEEE
Signal Processing Magazine, 2013, 30(1): 40—60.

[71T WUM, YIN B, WANG G H, et al. Large-scale MIMO detec-
tion for 3GPP LTE: algorithms and FPGA implementations.
IEEE Journal of Selected Topics in Signal Processing, 2014,
8(5): 916-929.

[8] TANG C, LIU C, YUAN L C, et al. High precision low com-
plexity matrix inversion based on Newton iteration for data
detection in the massive MIMO. IEEE Communications Let-
ters, 2016, 20(3): 490-493.

[91 JIN F L, LIU Q F, LIU H, et al. A low complexity signal
detection scheme based on improved Newton iteration for
massive MIMO Systems. IEEE Communications Letters,
2019, 23(4): 748-751.

[10] KHOSOTI A, ZHANG X, DAI X, et al. Joint steepest descent
and non-stationary Richardson method for low-complexity
detection in massive MIMO systems. Transactions on
Emerging Telecommunications Technologies, 2022, 56(9):
467-469.

[11] KHOSOTI A, ZHANG X F, SHAIKH A H. Low-complexity
signal detection for large-scale MIMO systems with second-
order Richardson method. Electronics Letters, 2020, 56(9):
467-469.

[12] PENG G Q, LIU L B, ZHANG P, et al. Low-computing-load,
high-parallelism detection method based on Chebyshev itera-
tion for massive MIMO systems with VLSI architecture.
IEEE Trans. on Signal Processing, 2017, 65(14): 3775-3788.

[13] LIUL B, PENG G Q, WANG P, et al. Energy- and area-effi-
cient recursive-conjugate-gradient based MMSE detector for
massive MIMO systems. IEEE Trans. on Signal Processing,
2020, 68: 573-588.

[14] MANDLOI M, BHATIA V. Low-complexity near-optimal
iterative sequential detection for uplink massive MIMO sys-
tems. IEEE Communications Letters, 2017, 21(3): 568-571.

[15] DAILL, GAO XY, SU X, et al. Low-complexity soft-out-
put signal detection based on Gauss-Seidel method for uplink
multiuser large-scale MIMO systems. IEEE Trans. on Vehicu-
lar Technology, 2015, 64(10): 4839-4845.

[16] DAI X M, YAN T T, DONG Y Y, et al. Low-complexity
joint weighted neumann series and Gauss—Seidel soft-output
detection for massive MIMO systems. Wireless Personal
Communications, 2021, 120: 2801-2811.

[17] YU AL,JING S S, TAN X S, et al. Efficient successive over
relaxation detectors for massive MIMO. IEEE Trans. on Cir-



IMRAN A. Khoso et al.: Low-complexity signal detection for massive MIMO systems via trace iterative method 557

cuits and Systems I:
2128-2139.

[18] GESBERT D, SHAFI M, SHIU D, et al. From theory to prac-
tice: an overview of MIMO space-time coded wireless sys-
tems. IEEE Journal of Selected Areas in Communications,
2003, 21(3): 281-302.

[19] ZHANG M X, KIM S. Evaluation of MMSE-based iterative
soft detection schemes for coded massive MIMO system.
IEEE Access, 2018, 7: 10166-10175.

[20] CHARLES H. Numerical computation of internal and exter-
nal flows: the fundamentals of computational fluid dynamics.
Oxford: Elsevier, 2007.

[21] KHOSOTI A, JAVED T B, TU S S, et al. A fast-convergent
detector based on joint Jacobi and Richardson method for
uplink massive MIMO systems. Proc. of the 28th wireless
and Optical Communications Conference, 2019: 1-5.

[22] SAAD Y. Iterative methods for sparse linear systems. Siam:
Society for Industrial and Applied Mathematics, 2003.

[23] ALBREEM M A, ALSHARIF M H, KIM S, et al. A low
complexity near-optimal iterative linear detector for massive
MIMO in realistic radio channels of 5G communication sys-
tems. Entropy, 2020, 22(4): 388.

[24] SHARIFFAR F SHEIKHANI A H R, NAJAFI H S. An effi-
cient Shebyshev semi-iterative method for the solution of
large systems. University Politehnica of Bucharest Scientific
Bulletion-Series A, 2018, 80(4): 239-252.

Regular Papers, 2020, 67(6):

Biographies

IMRAN A. Khoso was born in 1991. He received
his M.S. degree in information and communica-
tion engineering from the University of Science
and Technology Beijing, China, and Ph.D. degree
in communication and information systems from
Nanjing University of Aeronautics and Astronau-
tics, Nanjing, China in 2019. He is currently with
the School of Electrical Engineering, Korea Uni-

versity, Seoul, Korea. His research interests include random matrix the-
ory, signal processing, and wireless communications.
E-mail: imrankhoso2@gmail.com

ZHANG Xiaofei was born in 1977. He received
his M.S degree from Wuhan University, Wuhan,
China, in 2001, and Ph.D. degree in communica-
tion and information systems from Nanjing Uni-
versity of Aeronautics and Astronautics in 2005.
He is a full professor with the Electronic Engi-
neering Department, Nanjing University of Aero-
nautics and Astronautics, Nanjing, China. His

research interest include array signal processing and communication
signal processing.
E-mail: zhangxiaofei@nuaa.edu.cn

ABDUL Hayee Shaikh was born in 1989. He
received his M.E. degree in computer and infor-
mation Engineering from Mehran University in
2016. He is currently working toward his Ph.D.
degree in communication and information sys-
tems at Nanjing University of Aeronautics and
Astronautics. His research interests include array
signal processing and wireless communications
technology.

E-mail: shaikhhayee@yahoo.com

IHSAN A. Khoso was born in 1990. He received
his B.S. degree in mathematics, the Institute of
Mathematics and Computer Science, the Univer-
sity of Sindh, Sindh, Pakistan, in 2012, and M.S.
degree in mathematics with the South China Uni-
versity of Technology, Guangzhou, China in 2016.
His research interests include nonlinear partial
differential equations and random matrix theory.
E-mail: ihsankhoso@gmail.com

ZAHEER Ahmed Dayo was born in 1989. He
received his M.E. degree in telecommunication
engineering and management from the Mehran
University of Engineering and Technology,
Jamshoro, Pakistan, in 2014, and Ph.D. degree in
communication and information systems from
Nanjing University of Aeronautics and Astronau-
‘ tics, Nanjing, China, in 2021. He is currently an
associate professor with the Department of Computer Science, Huang-
gang Normal University, Hubei, China. His research interests include
multiple-input multiple-output techniques, designing and manufactur-
ing of compact, broadband, high-gain antennas, array topology and opti-
mization schemes, active and passive frequency selective surfaces, multi-
band and slot antennas, and reconfigurable and meta-material inspired
antennas.
E-mail: hjxnd88@126.com



