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Abstract: In this study, the problem of measuring noise pollu-
tion distribution by the intertial-based integrated navigation sys-
tem is effectively suppressed. Based on nonlinear inertial naviga-
tion error modeling, a nested dual Kalman filter framework struc-
ture is developed. It consists of unscented Kalman filter (UKF)
master filter and Kalman filter slave filter. This method uses non-
linear UKF for integrated navigation state estimation. At the
same time, the exact noise measurement covariance is esti-
mated by the Kalman filter dependency filter. The algorithm
based on dual adaptive UKF (Dual-AUKF) has high accuracy and
robustness, especially in the case of measurement information
interference. Finally, vehicle-mounted and ship-mounted inte-
grated navigation tests are conducted. Compared with tradi-
tional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this
method has comparable filtering accuracy and better filtering
stability. The effectiveness of the proposed algorithm is verified.
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1. Introduction

The integrated navigation system uses information fusion
technology to combine various navigation systems.
Higher navigation accuracy than any single system can be
achieved [1,2]. Attitude, speed, and position are the keys
to vehicle navigation information, which determine the
vehicle precise arrival at the predetermined location [3,4].
Strapdown inertial navigation system (SINS)/global posi-
tioning system (GPS) or SINS/Doppler velocity log (DVL)
can be assembled to provide definitive guidance informa-
tion [5]. The two have complementary advantages and
combination of both is an effective means to achieve high-
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precision and high-reliability navigation.

It is well known that Kalman filter is an effective
means of integrated navigation information fusion when
the system is linear. Unfortunately, navigation systems in
real applications are not always nonlinear. Some nonli-
near filters such as extended Kalman filter (EKF) and
unscented Kalman filter (UKF) have been developed
[6,7]. And if there are severe nonlinearities for the navi-
gation system, EKF is very difficult to tune and always
give inaccurate and unreliable state estimates [8]. Conse-
quently, the interference of time-varying noise on the sys-
tem was reduced through innovative statistical adaptive
adjustment of system noise and measurement noise in [9].
However, systems that use Taylor’s formula expansion
approximation will introduce some errors and degrade the
accuracy. Nevertheless, UKF has a more significant per-
formance over EKF. The UKF with unsecond transforma-
tion (UT) propagation can accurately capture the mean
and covariance of system [10-12]. As a result, this paper
will investigate the problem based on UKF.

As we all know, the integrated navigation system
achieves optimal state estimation by determining some
prior information [13]. The SINS is a highly autonomous
device. Therefore, the process noise covariance matrix Q;
is relatively stable. However, because the external envi-
ronment is complex, the measurement error caused is dif-
ficult to estimate [14,15]. As a result, the initial measure-
ment noise matrix R, is inconsistent with the changing
reality, and errors are accumulated or even the filtering
divergence [16]. To address the non-Gaussian phe-
nomenon of noise R, the following typical methods are
proposed. In 2018, Xu et al. researched the applications
of SINS/ultra short baseline (USBL) integrated naviga-
tion system based adaptive Kalman filter (AKF) [17]. In
2021, Hou et al. proposed an improved AKF for
SINS/DVL integrated navigation [18]. There are four cate-
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gories of AKF which are Bayesian, maximum likelihood,
correlation and covariance matching. The Sage-Husa
AKF (SH-AKF) as a covariance matching estimation
strategy is proposed and has been widely utilized. In
recent years, Meng et al. proposed a Sage-Husa adaptive
UKF (SH-AUKF) for the direct filtering in SINS/global
navigation satellite system (GNSS) integration naviga-
tion [19]. In a word, AKF can effectively overcome the
shortcomings of inconsistent real-world variable noise.
The robustness and accuracy of integrated navigation sys-
tems can be improved.

However, there are also many shortcomings and its
limitations in practical application for the AKF. As is
known, the classical SH-AKF is a recursive algorithm in
essence, which estimates the noise matrix of the next
moment according to the noise matrix of the previous
moment. Therefore, the errors will inevitably accumulate
in the process of recursion, which will eventually have a
negative influence on the accuracy and stability of sys-
tem. In addition, when the measurement information is
poor or almost missing, the estimation of the noise matrix
at the next moment is greatly affected. And it is likely to
cause a large error of the noise matrix which even leads
to the filtering divergence. Furthermore, the performance
of AKF is greatly dependent on the initial measurement
noise matrix, which is also difficult to be determined.

Therefore, this paper mainly refers to the advantages of
dual Kalman filters to solve the above problems. Astroza
et al. and Song et al. studied dual adaptive Kalman filters
for nonlinear finite element model updating [20,21]. In
2019, Guo et al. used double Kalman to estimate the state
of charge and parameters of lithium-ion batteries [22]. Li
et al. studied a regularization-based dual AKF for identi-
fying sudden structural damage [23]. Obviously, the
structural design of double Kalman filter has significant
advantages in system stability.

Based on the above analysis, a combined navigation
algorithm based on dual adaptive UKF is proposed in this
paper. This method improves the accuracy and robust-
ness of the integrated navigation system. Dual adaptive
filters employ correlation filters to update the measure-
ment noise matrix. Two real sensor data from SINS/GPS
and SINS/DVL are used to estimate the navigation per-
formance using dual adaptive UKF (Dual-AUKF), UKF
and SH-AUKEF. This paper introduces dual AKFs into the
field of integrated navigation for the first time, which is a
research worthy of wide application. The work of dual
AKFs will broaden the research horizons of inertial inte-
grated navigation and is verified in this paper.

This paper is organized as follows. Section 2 covers

the construction of the SINS nonlinear error model. Sec-
tion 3 presents the derivation of the improved filtering
algorithm. Section 4 discusses field testing and analysis.
Finally, concluding remarks are given in Section 5.

2. SINS nonlinear error model construction

The error differential equation of strapdown inertial navi-
gation is derived from the basic strapdown inertial navi-
gation equation. The error differential error equation con-
sists of attitude error part, velocity error part, and posi-
tion error part.

Denote the misalignment angle error as @ = [a,, a,,
@.]", which are pitch error, roll error and yaw error
respectively. Denote velocity error as &v" =" —v" with
dv' = [ov, 5,8V, |" defined in the East-North-Up frame.
dp=1[8L, 84, dh]™ is denoted as position error, which
are latitude error, longitude error and height error, respec-
tively. With (1)—(5), the nonlinear error model based on
Euler angles are given by
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the symbol ¢ represents the cosine function and s repre-
sents the sine function. §f}, is approximately equal to the
accelerometer device error V. I, is the 3x3 unit matrix.
@/, is the earth rotation rate in navigation frame and @,
is a function of velocity and position with @, = @', + &, .

dw!, and dw!, are the calculation parameter errors, which
are respectively given by
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3. Improved filtering algorithm derivation

In this paper, the state space model of the stochastic sys-
tem could be decomposed likewise

{xk = f () + iy

Ye=h(x)+r,

®)

where x; € R" is the n-dimensional state vector at time k,
which is necessary to estimate. y, € R is the m-dimen-
sional measurement vector which can be measured
toward period example. f(:) is the dynamic model and
h(-) is the measurement model. w;_; is the process noise
with zero mean and covariance Q;_,. r; is the measure-
ment noise with zero mean and covariance R,.

3.1 SH-AKF based UKF

In this subsection, we will firstly review UKF, which is
proposed to overcome the aforementioned challenges in
using EKF for estimation of nonlinear state-space mo-
dels [24]. UKF is based on the UT, which is a statistical
linearization method which uses deterministic Sigma
points. The basic UKF process of calculation is shown as
follows.

Algorithm 1 UKF

Time propagation:

Xikjk=1 = S (in1)

2n

i = ZWimXi,k/k—la i=0,1,---,2n

i=0
2n
A A T
Pxx,k/k—l = Z Wf (Xi,k/k—l —xk/k—l)(/\’i,k/k—l _xk/k—l) + 0
i=0
where Y1 is the sigma point and W", W are the

weights.
Update:

Xz/k,l = [Ripmts Xigir + VO + D) P
Ko = VO A D Py ]

Nikjk-1 = h (XZk/k—])

2n
Pyy.k/k—l = Z W,-C (Tli,k/k—l _j’k/k—l) (ni,k/k—l —ﬁk/k—l)T +R,

i=0

2n
T o o T
ny,k/k—] = Z W,-L (X;,k/k_| —Xk/k-1 ) (Tli,k/k—l _xk/k—l)

i=0

Ki=P . P,

yy.k/k=1
X = X + K 0 = Fipet)

T
Pk = Pxx,k/k—l - KkRvy,k/k—lKk

As we know, the aim of the adaptive filter is to esti-
mate the joint posterior distribution of the states and noise
covariance. The classical Kalman filter or nonlinear fil-
ters can work if the noise covariance matrix R; is known.
However, if the matrix R, is unknow or time-varying dis-
tributed by complex external environment, the classical
filter is difficult to have an accurate performance. Hence,
the adaptive filter is necessary to study, which is obtained
as follows.

Algorithm 2 SH-AUKF

Time propagation:
Xk = f (Xiaor)

2n
Kot = Z WX k-1, i=0,1,--+,2n

i=0

2n
. o o T
Pxx,k/k—l = Z W; (Xi,k/k—l - xk/k—l)(/\/i,k/k—l —xk/k—l) + 0

i=0

Update:

Xiier = [Rret: Xippor + O+ D) Py,
Xipe1 = NI+ D Py ]

Mg = h (X Zk/k—l)

Vi =Yi— Hk-fk/k—l
Ry = (1-d) R +dy (v} — Hy P HY)

dkz(l—b)/(l—b“‘)

where b is the forgetting factor and b€ (0.95 ~0.99).
Then P -1, Pyip-1, Ki, X and P, are obtained as
UKF.
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3.2 Dual-AKEF based integrated navigation

In Subsection 3.1, we derive UKF and SH-AUKF, which
can solve linear or nonlinear integrated navigation sys-
tem problems with time-varying measurement noise
covariance. However, there are some defects for the SH-
AUKF which is difficult to obtain the accurate measure-
ment noise covariance matrix.

Firstly, the classical SH-AUKF is essentially a recur-
sive algorithm. The measurement noise covariance matrix
of the next period is obtained based on the measurement
noise covariance matrix of the previous period. However,
the errors generated by the recursion gradually accumu-
late, and the accuracy and stability of the integrated navi-
gation system are negatively affected. Secondly, the esti-

mation accuracy of the next period measurement noise
matrix greatly depends on the accuracy of the previous
measurement noise matrix. Therefore, both sudden
changes in measurement information and time-varying
non-Gaussian distribution of measurement noise will
cause inaccurate estimation of the next measurement
noise matrix. In addition, the SH-AUKEF algorithm is very
dependent on the initial measurement noise matrix.
Unfortunately, accurate initial values are very difficult to
obtain. In summary, especially in the case of poor mea-
surements, the performance of SH-AUKF will be greatly
limited. Therefore, a combined navigation based on dual
adaptive unscented Kalman filters is proposed to over-
come the above shortcomings, as shown in Fig. 1.

k—1—k
SINS solves navigation parameters
B 1on parameters | o
SINS ‘ 1 Mastgr filter: UKF T
~ I
. | x=f (), o,~h(0,0) X
Carrier . [
! yh (x)tr, e~ (0, Ry Navigation
| GPS/DVL — information !
GPS/DVL navigation parameters Vi ] best estimate [

VI
gi=diag(E[e,&/])

2n

d=diag ( LW (19 = P )0~ P

R=diag(ry)
)1 )7 " Slave filter: Kalman filter |

[
\ _
1= Wy, w~(0,7) rg ‘
\
\

=ritdtv,, v, ~0,0) !

Fig.1 Flow chart of Dual-AUKF

The Dual-AUKF algorithm structure consists of UKF
master filter and Kalman filter slave filter. This method
applies the UKF algorithm to SINS/GPS or SINS/DVL
integrated navigation. A built-in nested Kalman filter
estimation structure is designed to accurately estimate
observation noise R, in this method. For the main filter,
UKEF is used to obtain the optimal estimate of the nonli-
near error model. For dependent filters, the diagonal
terms of R, is treated as unknown parameters. This
parameter is considered as the state of the slave filter to
be accurately estimated.

In the part of time propagation for master filter,
z« = diag(E[vv,"]) is obtained as the measurement of
Kalman filter, which is gained from the innovation ;.
And 7z, | = P +diag(l,) is obtained as one-step state
prediction of slave filter in the part of time propagation
for slave filter. Then the posterior estimate of the mean
and the posterior estimate of the covariance matrix of R,

is obtained in the part of update for slave filter. In addi-
tion, in this part, the accurate measurement noise covari-
ance matrix embedded in master filter is also estimated
by R, = diag(#,). Finally, in the part of update for master
filter, the posterior mean and the posterior covariance
matrix are updated for the master filter of UKF with the
accurately estimated R, obtained by the slave filter of
Kalman filter. It is noted that the process noise covari-
ance matrix T and measurement noise covariance matrix
U for the slave filter of Kalman filter are time-invariant
matrix, which have an important impact on the perfor-
mance of slave filter. Therefore, it is extremely necessary
to have an approximate determination for T and U. The
Dual-AUKF algorithm is described and overviewed in
Algorithm 3.

Algorithm 3 Dual-AUKF

Time propagation for master filter:
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Xiklk-1 = f (Xi,k—l)

2n
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i=0
2n
N o T
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Xjiot — V(” + AP ii1]

Mg = h (X ;k/k—l)

z; = diag(E[viv ')

Time propagation for slave filter:
Fij—1 = Ti—1

Py = Pryr +T

z;/k_l = f‘k/k—l +d1ag(lk)

2n
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Update for slave filter:
P =P, +U
P rek/k=1 = P rrk/k=1
P =Py + K, (ZZ - Zz/k-l)
P.i=P i — KPP i (K))'
R, = diag(#)

Update for master filter:

2n
Py = Z Wi (Migeet = Iipeet) Wit _yk/k—l)T + ﬁk

i=0
2n
* A A T
Py = Z Wy (X ik/k=1 " xk/k—l)('lz,k/k-l —®icr)

i=0
-1
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T
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4. Field test and analysis

In this section, the vehicle-mounted SINS/GPS and ship-
mounted SINS/DVL integrated navigation systems are
tested. Based on dual adaptive filters, Sage-Husa adap-
tive filter, classical Kalman filter performance is evalua-
ted in this paper. They are denoted as Dual-AUKF, SH-
AUKF and UKF respectively. Then the state vectors are
expressed as follows:

x=[a", @) 5p" (). V] ©

where &” denotes the gyroscope drift and V’denotes the
accelerometer drift bias. Velocity and position errors are
defined as SINS/GPS observations. Velocity is defined as
the observed value of SINS/DVL. Two observation
matrices are given by

_ 03x3 I3><3 03)(3 03x6
HSinS/gps_[ 03><3 03><3 I3><3 03><6 ’ (10)

Hg, a0 =[ (V)X Ing 033 056 ] (11)

4.1 Car-mounted experiment

In this section, the superior performance of the algorithm
is illustrated in on-vehicle experiments. Low-precision
SINS (STIM300) and GPS antennas are installed in the
experimental vehicle. In addition, a high-precision opti-
cal fiber SINS is installed on the experimental vehicle
and serves as a reference system. The test trajectory is
shown in Fig. 2. The experiment lasts about 3 000 s and is
conducted on an open road with good GPS signals.

Fig.2 Trajectory of the car

In the experiments, the attitude and position accuracy
are compared. The SH-AUKF algorithm and the Dual-
AUKF algorithm are two adaptive Kalman algorithms
used to deal with parameter estimation problems when
the noise statistics are unknown or time-varying. To com-
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pare the performance of these methods, the velocity and
position provided by GPS are added with 1 m/s and 10 m
errors respectively, while the noise is zero-mean white
noise. In addition, the initial attitude error is set: the hori-
zontal error is 1° and the yaw error is 3°. The specifica-
tions of STIM300S are shown in Table 1.

Table 1 Specifications of STIM300

Quantity Gyro Accelerometer
Dynamic range +400°/s +10g
Bias <0.5°/h <0.05 mg
Update rate 125 Hz 125 Hz

Three methods of UKF, SH-AUKF and Dual-AUKF
are used to realize SINS/GPS integrated navigation. The
estimate error results of attitude and position errors are
shown in Fig. 3.

10" g7
¥ A
Y|
10" &Mt Lawil o s
> [
% | Aw
510! !
4 |
= |
1072 F ‘,
1073 . - - -
0 500 1000 1500 2000 2500
Time/s
—— : Dual-AUKF; —— : UKF; —— : SH-AUKF.

Fig.3 Yaw estimate errors

We know that the difference between pitch error and
roll error is negligible, and their convergence speed and
filtering accuracy are quite equal. The main reason is
that the car-mounted experiment is carried out on a rela-
tive flat field. However, as shown in Fig. 3, the perfor-
mance of three methods is distinguished from the yaw
error. Dual-AUKF has a better performance than SH-
AUKEF and UKEF, especially after 1000 s. In addition, SH-
AUKF and UKF have a tendency to diverge after
2000 s and the yaw error of UKF is more than 1° from
2200 s to 2400 s.

The position error is shown in Fig. 4 and Fig. 5. It can
be seen that the latitude and longitude position errors of
Dual-AUKF are more stable and smaller than those of SH-
AUKF and UKF. At the same time, the corresponding
speed error is also reduced accordingly.

100
80 |
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40

Latitude error/m
=)
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Time/s

—— :Dual-AUKF; —— : UKF; —— : AUKF.

0 500 2500

Fig. 4 Latitude estimate errors
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Fig. 5 Longitude estimate errors

In addition, the average error value of the three
SINS/GPS methods are shown in Table 2. Compared
with SH-AUKEF, the attitude of this new Dual-AUKF is
reduced by 3.2%, 5.1%, and 11.1% respectively. For
vehicle integrated navigation, the Dual-AUKF algorithm
has smaller heading angle error and position error. Dual-
AUKEF is more robust and stable than SH-AUKF and
UKF. It is concluded that Dual-AUKF outperforms SH-
AUKF and UKF in both navigation accuracy and stabi-
lity in the integrated navigation of SINS/GPS.

Table 2 Mean of state errors

Average estimation error UKF SH-AUKF  Dual-AUKF
Pitch error/(°) 0.2835 0.2682 0.2596
Roll error/(°) 0.3940 0.3965 0.3762
Yaw error/(°) 1.2798 1.2079 1.0744
East velocity error/(m's ') 0.0207 0.0312 0.0034
North velocity error/(m~s71) 0.0323 0.0078 -0.022 1
Latitude error/m 33.0567  —5.6838 —35.8853
Latigude error/m 37.8510  42.4647 -5.3834
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4.2 Shipboard test

In order to further assess the benefits and drawbacks of
the proposed method, a ship-mounted experiment is car-
ried out with the same experiment scheme. The ship-
borne test platform is composed of SINS, DVL and GPS
receiver. The specifications of SINS and DVL are listed
in Table 3 and Table 4. The update interval is 0.005 s and
the total test time is 10000 s. The integrated SINS/GPS
provides the reference of high accuracy for SINS/DVL.
The test trajectory is shown in Fig. 6.

Table 3 Specifications of SINS

Quantity Gyro Accelerometer
Dynamic range +400°/s +10g
Bias <0.003°/h <5mg
Update rate 200 Hz 200 Hz

Table 4 Specifications of DVL

Quantity DVL
Speed range/kn -10to 10
Bias/(cm/s) 0.3%+0.3
Update rate/Hz 1
Depth of the botton track/m 80

Fig. 6 Trajectory of shipboard test

For the attitude estimation errors shown in Fig. 7—
Fig. 9, it is obvious that the estimation performance of
Dual-AUKF outperforms that of SH-AUKF and UKEF.
The pitch error and roll error of Dual-AUKF are obvi-
ously less than SH-AUKF and UKF. The attitude changes
of ships are different from those of vehicles, and the
movement attitude of ships is relatively obvious. For the
yaw estimation error shown in Fig. 9, Dual-AUKEF is not
always smaller than SH-AUKF and UKEF, but it is the
most stable of the three methods, always smaller than
0.03° after 4000 s.
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Time/s
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Fig. 7 Pitch estimate errors
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Fig. 8 Roll estimate errors
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Fig. 9 Yaw estimate errors

The accuracy of the position obtained by three meth-
ods are also examined in Fig. 10 and Fig. 11. The aver-
age of position errors of three methods are (113.7333 m,
136.1974 m), (39.7448 m, 22.5742 m), (29.5259 m,
24.5627 m), respectively. Compared with SH-AUKF, the
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latitude error and longitude error decline by 25.7% and
8.8%, respectively. Obviously, Dual-AUKF has strong
robustness and stability.
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Fig. 10 Latitude estimate errors
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Fig. 11 Longitude estimate errors

5. Conclusions

An integrated navigation method based on Dual-AKFs is
proposed in this paper. The measurement noise matrix is
obtained by estimating the diagonal terms of the covari-
ance matrix of the measurement noise error vector. It is
found that this method has better performance than the
SH-AKF when the noise covariance is unknown or non-
Gaussian in integrated navigation. The performance of
Dual-AUKF has been significantly improved, and the
adaptability of the method has been enhanced. It is tested
in vehicle-mounted and ship-mounted integrated naviga-
tion systems, and the superiority of this method in navi-
gation accuracy and consistency is effectively verified.
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