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Real-time tracking of fast-moving object in occlusion scene
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Abstract: Tracking the fast-moving object in occlusion situa-
tions is an important research topic in computer vision. Despite
numerous notable contributions have been made in this field,
few of them simultaneously incorporate both object’s extrinsic
features and intrinsic motion patterns into their methodologies,
thereby restricting the potential for tracking accuracy improve-
ment. In this paper, on the basis of efficient convolution opera-
tors (ECO) model, a speed-accuracy-balanced model is put for-
ward. This model uses the simple correlation filter to track the
object in real-time, and adopts the sophisticated deep-learning
neural network to extract high-level features to train a more
complex filter correcting the tracking mistakes, when the trac-
king state is judged to be poor. Furthermore, in the context of
scenarios involving regular fast-moving, a motion model based
on Kalman filter is designed which greatly promotes the tracking
stability, because this motion model could predict the object’s
future location from its previous movement pattern. Additionally,
instead of periodically updating our tracking model and training
samples, a constrained condition for updating is proposed,
which effectively mitigates contamination to the tracker from the
background and undesirable samples avoiding model degrada-
tion when occlusion happens. From comprehensive experi-
ments, our tracking model obtains better performance than ECO
on object tracking benchmark 2015 (OTB100), and improves the
area under curve (AUC) by about 8% and 32% compared with
ECO, in the scenarios of fast-moving and occlusion on our own
collected dataset.

Keywords: speed-accuracy balanced, motion modeling, con-
strained updater.

DOI: 10.23919/JSEE.2024.000058

1. Introduction

Object tracking is a hot topic in current computer vision
research field. A lot of tracking methods have been put
forward since the 1970s. They were widely applied in
various categories, like target tracking, surveillance, and
localization. This research topic still has plenty of diffi-
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culties waiting to be solved, like the demand of real-time,
high precision, stability, and resistance to interference.

Early typical models based on probability theory are
particle filter, mean shift [1] and Kalman filter [2].
Kalman filter builds a motion model for the system, then
adopts the main color of the object in hue-saturation-
intensity (HSI) color space as its detection feature and
takes it as observation input to achieve robust tracking in
real world. These kinds of models are mature and com-
plete, but in complex circumstances, their tracking result
is not stable and as time goes by degradation would occur
in these trackers [3,4]. As for the correlation filter [5,6],
the most famous model is kernelized correlation filters
(KCF) [7] which on the basis of minimum output sum of
squared error (MOSSE) filter [8] introduces cyclic
matrix, kernel ridge regression thus could process almost
90 frames per second and has high accuracy. Based on
KCEF, later scientists proposed sum of template and pixel-
wise learners (staple) [9], long-term correlation tracking
(LCT) [10], spatially regularized discriminative correla-
tion filters (SRDCF) [11] and efficient convolution opera-
tors (ECO) [12]. LCT decomposes the task of tracking
into translation and scale estimation, and trains a fern
classifier to relocate the missing object. SRDCF further
refrains the boundary effect by expanding the padding,
but the time cost for this approach is too high and not
suitable for real-time application. Among these methods,
ECO demonstrates superiority in terms of both speed and
accuracy, attributed to its implementation of mixtrue of
Gaussians (MOG) model for training samples compress-
ing and principal component analysis (PCA) for features
dimension reduction effectively preserving critical infor-
mation [13,14].

The rapid advancement of deep learning has led to the
widespread adoption of convolutional neural networks
(CNNs) across diverse research areas, including object
tracking [15]. The first outstanding tracking model
applied CNN is fully-convolutional siamese network
(SiamFC) [16] which is trained end-to-end on the dataset
and conducts stochastic gradient descent online to adapt
the weights, owing high tracking accuracy in short-term.
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Then, some models based on region-based convolutional
neural network (RCNN) is proposed, such as Siam
RCNN [17], SiamRPN++ [18]. Later, inspired by the na-
tural language processing (NLP) model, scientists started
to adopt transformers [19] to analyze video frame
sequences and track objects. Some of those representa-
tive models are like accurate tracking by overlap maxi-
mization (ATOM) [20] and learning discriminative model
prediction (DiMP-50) [21]. these models now gain the
best performance on most mainstream public datasets,
such as object tracking benchmark (OTB) [22,23], visual
object tracking (VOT) [24], and unmanned aerial vehicle
123 (UAV123) [25]. Though having so many advantages,
these models have much higher hardware requirements
for running in real-time, and need extensive training
datasets which makes them poor in portability and daily
application. There are hardly any papers that discuss the
combination of correlation filters and CNNs to comple-
ment each other.

Those approaches mentioned above mainly focus on
feature extraction and observation. Nevertheless, when
tracking, the search area is also a crucial factor to deter-
mine both the tracking speed and accuracy, especially in
fast-moving scenarios. A small and precise search area
could not only greatly reduce the computation cost, but
also boost the tracking accuracy for blocking out the
background and irrelevant interference. Additionally
when missing the target, for example in occlusion scene,
a reasonable search area strategy would help relocate. In
[26], Jiang put forward a fixed-scale sliding window
search in short-term missing and a probability multi-scale
search in long-term missing strategy to relocate the lost
object. While in [27], Ma et al. claimed that the perfor-
mance of the tracker is sensitive to the padding size of the
target’s neighboring context, such as the scaling factor
and aspect ratio. Yang et al. [28] came up with an idea of
optimizing the search strategy by respectively calculating
the mean value and standard deviation of the surrounding
image patch and discarding most patches with adaptive
threshold to tremendously reduce the computation cost.
However, none of these papers discussed how to find the
best search area in general cases, and this is a crucial
issue for object tracking.

Additionally, most tracking methods update their track-
ers at every frame like learning continuous convolution
operators for visual tracking (C-COT) [29], or at fixed N
frames periodically like ECO [12], regardless of the
tracking state. In this way, when the trackers are in very
bad situations, the tracker would be polluted by those
poor samples and their function will be degraded. For
example, when the tracked object is missing or occluded,
if the tracker still updates, the background or occluded
stuff would be mistakenly taken as the sample of tracked
object. Li et al. [30] designed a check mechanism to ana-

lyze the correlate response distribution and decide
whether to renew the samples or not. Later, Jiang et al.
[26] gave a more complicated confidence score to judge
the reliability of tracking output. Though multiple crite-
ria to determine the tracking state are given, the evalua-
tion standard still could be advanced to become more
efficient.

In our paper, a lightweight tracking model integrating
the advantages of those approaches introduced above is
proposed. Firstly, a speed-accuracy-balanced feature
extraction model is put forward which could take advan-
tage of both the high computation speed of correlation fil-
ter and high accuracy of high-level features obtained by
CNNs. Then, the proposed tracking model adds Kalman
filter based motion model to predict the fast-moving
object’s location in the future, therefore, providing a
more precise search area for the tracker. Additionally, a
constrained updater is designed which ensures that the
tracker and training samples would not be contaminated
in those terrible situations. Compared with advanced
tracking models, our tracking model achieves a favorable
compromise between accuracy and speed, and effec-
tively solves the fast-moving and occlusion challenges.

Our main contributions are as follows:

(i) A speed-accuracy-balanced model is proposed. This
model not requiring high-level hardware equipment can
run on Intel CPU at 21 FPS and outperforms traditional
correlation filter trackers in terms of accuracy.

(i1) A kinematic model based on Kalman filter is spe-
cially designed. This model provides a precise predicted
search area for the tracker, making the computation speed
accelerated and the tracking accuracy improved.

(iii) An updating constraint is added. This constraint
prevents model degradation in occlusion scene.

The rest of the paper is organized as follows. In Sec-
tion 2, preliminaries are introduced. Then in Section 3,
four models: observation state judgment model, speed-
accuracy-balanced feature extraction model, Kalman fil-
ter based motion model and constrained model updater
that help improve the tracking speed and accuracy are put
forward respectively. Experiments demonstrating the
effectiveness of our model are in Section 4. Finally, we
conclude in Section 5.

2. Preliminaries

Among numerous correlation filter models, ECO is the
one possessing the best performance. And the proposed
tracking model is set up by adding motion model, speed-
accuracy-balanced feature extraction model and con-
strained updater on ECO.

ECO is mainly composed by two parts: correlation fil-
ter and effective convolution. The input of correlation fil-
ter is feature extracted from image which first initializes
the filter, then the filter would search the area that best
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matches the input samples taking it as the tracking result,
and insert new samples gained from current image to
update the filter. The computation procedure is as follows:

g§=/f®h ()

where ® means Fourier convolution. By doing Fourier
transform the expression can be derived as

F@)=F(foh)=F(NHoF (), 2

G=FoH", 3)

where © means dot product.

For every sample image f; and filter &, there is corre-
soponding g;, transform (3) into (4) as the correlation fil-
ter update formula.
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Finally by doing inverse Fourier transform, we gain fil-
ter accomplish updating.

As for the effective convolution, ECO on the basis of
C-COT introduces a factorized convolution approach
which greatly reduces computation complexity. For input
image f;, ECO extracts D kinds of feature as
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1, f* . fP. The feature map corresponding to these D

kinds of features has N types of resolution. Using
d € (0,D] and n € (0, N] to notate one of the features and
resolution, the feature function could be written as f“[n],
and for every feature d, operator J, could be taken to
integrate feature map of different resolution into continu-
ous spatial domain, as follows:

N
T
IrN0 = 3 fniba (1= gn). ™
Thus, the correlation response of filter 4 on feature d is
g*=h?-J,{f*}(®). For all D features extracted from sam-
ple f;, their continuous respond function is

D
GAfh= D Tl f. ®)
d=1
ECO considers that all D features actually have differ-
ent contributions to object tracking. Assuming C (C < D)
features in sample play the decisive role, a matrix Ppyc
could reduce the dimension of feature map by
JAfY=P"JAf"). As a result, the features are greatly
integrated and effectively used, accomplishing high pro-
cessing speed.

3. Real-time tracking method for fast-mov-
ing object in occlusion scene

According to [31], a tracking method consists of the fol-
lowing five parts: observation model, feature extractor,
model updater, motion model, and ensemble post-proces-
sor. Under this guideline, our tracking method, making
use of the correlation filter, effective convolution, and
feature dimension reduction strategy in ECO, sets up our
model in four parts: observation state judgment model,
speed-accuracy-balanced feature extraction model,
motion model, and updater. The overall process of the
proposed tracking method is shown in Fig. 1.
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Fig. 1 Overall process of our tracking method
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As shown in Fig. 1, our proposed tracking method is
composed by track status judgment model, accuracy-
speed-balanced model, and Kalman filter based occlu-
sion handle motion model. The accuracy-speed-balanced
feature extraction model in the red dashed box is com-
posed of a HOG feature trained correlation filter and a
deep feature trained correlation filter, additionally with an
observation state judgment model within the green
dashed box. The Kalman filter based motion model is in
the blue dashed box. In the following sections, every part
of the tracking models will be discussed in detail.

3.1 Observation state judgment model

When tracking, the position with the highest response
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score is regarded as the position of the target. Response
score is the output of the correlation filter 7 in tracking
model, with feature map f as input. Response score can be
calculated as f® h. However, in some cases, the tracker’s
performance is poor and the tracking result is untrusted, if
we do not make a judgment on this situation, the probabi-
lity of missing or tracking the wrong target would greatly
increase. Therefore in this section, a simple and effective
observation state judgment model would be discussed.

From Fig. 2(a), we can see that when the tracking
result is trustworthy, the peak value is salient and much
greater than its neighboring value and with little noise,
while in Fig. 2(b), there is no obvious peak value, and a
lot of noise exists in the response.
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Fig.2 Response scores in different tracking states

Based on the characteristic of response scores in differ-
ent tracking states, we assume that when the medium
value of the response score is greater than the mean
value, the tracking result is reliable. And to make this cri-
terion more general, we represent it as follows:

1, medium-7 > mean
TrackState = . )

0, medium-7 < mean
where medium = (max(scores) + min(scores))/2, mean is
the average score, TrackState =1 means the tracking
result is unreliable, TrackState = 0 means reliable, T is a
hyper-parameter which could manually adjust from 1 to 0.

3.2 Speed-accuracy-balanced feature
extraction model

Current trackers have difficulty in finding the balance
between speed and accuracy, those who run fast always
adopt simpler feature extraction strategy or model con-
struction, meanwhile, those with high accuracy always

have heavier model structures and run much slower. In
this subsection, a speed-accuracy-balanced feature extrac-
tion model is put forward.

On the basis of Subsection 3.1, we now have an obser-
vation state judgment model, thus when the observation
state judgment model determines that the tracking state is
good, we could just use a simple feature extraction
approach to track and train a simple and fast tracker.
When the observation state judgment model finds the
simple tracker’s tracking result is unreliable, the model
will be changed into using a complex feature extraction
method and train a more complex tracker with high accu-
racy. In this way, unnecessary complex computation is
avoided and when the tracking state gets bad, it could be
timely corrected. Fig. 3 shows the speed-accuracy-ba-
lanced feature extraction model. When the tracking state
is good, HOG feature trained correlation filter is adopted.
When tracking state is judged to be poor, deep feature
trained correlation filter will be adopted.
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We parallelly train two trackers, the one using his-
tograms of oriented gradients with floating-point preci-
sion (FHOG), color names (CN) and indensity channel
(ic) features in samples to train a simpler correlation fil-
ter in a lower dimension, the other using FHOG and con-
volution neural network extracted features to train a more
sophisticated tracker in a higher dimension. When the
observation state from the simple tracker is poor, the
sophisticated tracker will be applied to track which
requires longer calculation time to timely correct the mis-
take.

3.3 Kalman filter based motion model

For a fast-moving object, its position would be far away
from its location in the last frame. If we assume the
search area as a rectangle centered at last frame object
position, the search area has to be large enough to include
the object in next frame. However, by doing so, the com-
putation cost will greatly increase and more disruptors
will be included which are negative to our tracking.

In this subsection, a Kalman filter based motion model
is proposed using the motion information of the object in
the last frame to predict its future location in the next
frame, therefore giving a more reasonable search area to
tracker to obtain more excellent performance. Besides,
this motion model could handle the occlusion cases, by
supposing the object will follow its previous motion
mode in those occluded frames. This assumption works
well for object with regular movement.

Process equation: because the camera sampling rate
(frame rate) is extremely high, using the idea of differen-
tial approximation, the movement pattern between frames

could be deemed as uniform linear motion. On top of this,
the transition matrix of the Kalman filter can be written
as

X(k) = AX(k— 1)+ w(k—1)
x(k) 10 1 07 xk=1)
o | o1 0 1| yk-1
v |10 01 ol wk-1 [F@&-D
vy (k) 0 0 0 1 vy(k—=1)
(10)

where x(k),y(k),v.(k),v,(k) mean the pixel horizontal
ordinate, vertical ordinate, horizontal speed, vertical
speed at frame k respectively. Vector w(k—1) is the
Gaussian noise with normal probability distribution
p(w) ~N(0,0). Due to the reason that external input is
changeful in various circumstances and it is impossible to
find a unified expression, the external input is ignored.
The state prediction equation is also as shown in (10).

Measurement equation: State space of Z(k) includes
pixel horizontal ordinate and vertical ordinate, thus the
measurement equation is as follows:

Xk

Z<k>=HX<k>+v<k)=[(1) " (1’] YL
V}'k

(an

where H is the measurement matrix, Z(k) is the measure-
ment observed at time &, X(k) is the object’s state at time
k, and v(k) is the Gaussian measurement noise with nor-
mal probability distribution p(v) ~ N(O,R).
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Time update equations: The time update equations are
shown as follows:

Xklk-=1)= AX(k-1)+ w(k), (12)

(13)
where P(k—1) is the covariance error matrix at time £k—1,
and P(klk—1) is the time update of P(k—1).

Measurement update equations: The final measure-
ment equation of Kalman filter is as follows:

Pklk—1)=APKk-1)A"+Q,

K(k) = P(klk— )H"(HP(klk— DH" + R)™", (14)
X(k) = X(klk - 1)+ K(k)[Z(k) - HX(klk—1)],  (15)
P(k)=(1 - K(k)H)P(klk—1), (16)

where K(k) is Kalman gain which could be attained by
independently calculating the covariance matrix, process
noise, and observation noise. X (k) is the final estimated
state at time k by the Kalman filter. The time and mea-
surement equations are calculated recursively with previ-
ous estimates to predict new estimates.

The overall process of this motion model can be seen
in Fig. 4. Moreover, the pseudo is shown in Algorithm 1.
When the object is judged to be occluded, the object’s
movement state keeps the same as the previous frame.
The occlusion judgment criteria have been written in the
overall process. When occlusion happens, the state transi-
tion computation result will be directly taken as the track-
ing result, and based on this, using the state transition
equation derives the next frame search area.
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Fig. 4 Overall process of the Kalman filter based occlusion handle motion model

Algorithm 1 Kalman filter based motion model
Input: X(k—1), P(k—1), Y(k), Q, R, Miss
Output: X(k), P(k)

: Initialize A matrix and H matrix

. if Miss>5 then

1

2

3: goto occlusion handdle.

4: end if

5: Predictstate vector and covariance:

6: X(klk—1)= AX(k-1)

7: P(klk—1)= AP(k-1)AT+Q

8: Compute Kalman gain factor:

9: K(k) = P(klk— 1 )H"(HP(klk—1)H™ + R)™!
10: Correction based on observation:

11: X(k) = X(klk = 1) + K(k)[Z(k) — HX (klk - 1)]
12: P(k)=(1-K(k)H)P(klk—1)

13: return X(k), P(k)

14: occlusion handdle:

15: X(k) = AX(k-1)

16: P(k)= AP(k—1)AT + 0

17: Miss =0

18: return X(k), P(k)

3.4 Constrained model updater

In this subsection, a constrained model updater is put for-
ward aiming to solve the problem of sample and filter
contamination in bad situations, like occlusion or miss-
ing. The tracker only updates its parameter and renews its
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samples when the observation state judgment model
claims the tracking state is reliable. This update strategy
is as follows:

H*(k—1), TrackState =1
M
Y FoG;
H*(k) =

R
ZF,-@F,.*
i=1

where H(k) represents the correlation filter at frame k.
When TrackState is bad, the correlation filter does not
update and takes the same value as the filter of previous
frame. Only when the TrackState is good, the new sam-
ple of the current frame is used to update the filter.

By taking this update strategy, when missing or occlu-
sion happens, the original correct sample and filter are
maintained, and could better relocate the object when it
reappears. Otherwise, for example, when a tracking
object is occluded by a board, the board would be taken
as new samples and the filter would learn from new sam-
ples, as a result, gradually putting more weight on the
board rather than on the tracking object.

(17)
, TrackState =0

4. Experiment

In this section, first, an ablation study of every module
we propose above will be conducted to prove the func-
tion of every module. Then we will run the integrated
tracking model on OTB100 [23] and a dataset collected
by ourselves comparing with other advanced and popular
tracking models to illustrate the advantage of our track-
ing method.

4.1 Ablation study of every module

The original tracking model is ECO-HC, and every mo-
dule we propose above is expressed as shown in Table 1.

Table 1 Notation of every module
Speed-accuracy-balanced Constrained model Motion
model updater model
Deep-HC Renew Kalman filter

Based on abundant experiments on OTB100, the
proper size of the search area is about three or four times
of the object’s size. The ablation study result of every
module added to the original tracking model is arranged
in Table 2. The major difficult situations in tracking have
been classified into 11 types: fast motion (FM), back-
ground clutter (BC), illumination variation (IV), motion
blur (MB), deformation (DEF), in-plane rotation (IPR),
low resolution (LR), occlusion (OCC), out-of-plane rota-
tion (OPR), out-of-view (OV) and scale variation (SV).

Table 2 Ablation experiment result

Scene Module AUC || Scene Module AUC
Deep-HC-renew  0.626 Deep-HC-renew  0.633
MB Deep-HC 0.617 M Deep-HC 0.625
Deep-HC-renew-KF 0.614 ECO-HC 0.621
ECO-HC 0.610 Deep-HC-renew-KF 0.608
Deep-HC-renew-KF 0.549 Deep-HC-renew  0.567
Deep-HC-renew  0.539 Deep-HC 0.556

IPR OPR
Deep-HC 0.532 ECO-HC 0.556
ECO-HC 0.530 Deep-HC-renew-KF 0.552
Deep-HC-renew-KF 0.631 ECO-HC 0.594
Deep-HC-renew  0.627 Deep-HC-renew-KF 0.594
BC Deep-HC 0.611 LR Deep-HC-renew  0.592
ECO-HC 0.583 Deep-HC 0.586
Deep-HC-renew-KF 0.574 Deep-HC-renew-KF 0.616
Deep-HC-renew  0.574 Deep-HC-renew  0.609

occ v
Deep-HC 0.562 Deep-HC 0.595
ECO-HC 0.562 ECO-HC 0.588
Deep-HC-renew-KF 0.548 Deep-HC-renew-KF 0.594
Deep-HC-renew  0.530 ECO-HC 0.593
oV ECO-HC 0.526| SV Deep-HC-renew  0.592
Deep-HC 0.525 Deep-HC 0.587
Deep-HC-renew  0.615 Deep-HC-renew  0.568
Deep-HC-renew-KF 0.612 Deep-HC 0.564
all Deep-HC 0.609 || DEF ECO-HC 0.558
ECO-HC 0.604 Deep-HC-renew-KF 0.554

From the ablation study result, it is clear that speed-
accuracy-balanced feature extraction module and con-
strained updater module could greatly enhance the perfor-
mance of the original tracking model, especially in the
motion blur (+2.62%), fast-moving (+4.11%), out-of-
plane rotation (+1.98%) and deformation (+1.79%)
scenes. Because comparing with the ECO-HC model
which only simply uses FHOG and color features, Deep-
HC-renew model utilizes additional high-level features
obtained from convolution neural networks, therefore
being better at handling variation in shallow features and
consistency in complex deep features. However, diffe-
rent from those tracking models applying convolution
neural networks through the whole tracking process,
Deep-HC-renew model only applies convolution neural
networks when the simple feature extraction model is not
working well. Hence, while improving accuracy, this
model reaches high speed at the same time. Moreover, the
constrained updater ensures that some low-quality sam-
ples, like blur, partial occlusion and out-of-plane object
would not be taken into training, as a result, it prevents
the occurrence of degradation.

The Kalman filter based motion module would help the
tracking model further improve its performance with
almost no extra time spent, in background clutter
(+8.23%), occlusion (+2.14%), and out-of-view (+4.18%)
scenes. Because Klaman filter only adopts historical
information before one frame and four simple motion
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state variables (X, Y, Vy,Vy), its data size is tiny and the
calculation amount is also small. However, its prediction
is reliable, particularly in those approximate linear regu-
lar motion scenarios. When an object moves extremely
fast, its future location can be well predicted. Or when an
object is occluded, though with no observation informa-
tion, its location could also be estimated. Consequently,
excellent performance is fully manifested in fast-moving
and occluded situations.

The reason why the original tracking model, ECO-HC,
obtained good performance in low resolution and scale
variation situations probably is that the object’s features
required for tracking in these situations are simple and
just ordinary color and profile features are enough.

4.2 Integred model performance

(1) Performance on OTB100: The experiment results are
shown in Fig. 5, where the quantities of each sample are

Journal of Systems Engineering and Electronics Vol. 35, No. 3, June 2024

shown in the bracket. When the overlap score is greater
than a given threshold, it is considered a successful frame
of tracking. The percentage of successful frames is
referred to as the success rate. By plotting the success rate
against the threshold values, a success plot can be gener-
ated. The number in the bracket behind the subtitle means
how many samples are classified into that kind of major
difficult situations in tracking. From the experiment result
shown in Fig. 5, we can learn that our tracking method
has exceeded most of the popular and advanced tracking
methods: CSK, KCF, LCT2, SiameseFC, staple, SRDCF,
ECO-HC in tracking success rate at the whole OTB100
benchmark. In those different scenarios, like motion in
blur scene, Deep-HC-renew derives the best performance
and in occlusion, out-of-view, scale variation scenes
Deep-HC-renew-KF gets the greatest results. Addition-
ally, the speed of our method is also satisfying which is
21 fps, ran on Intel (R) Core (TM) i7-10700F CPU.
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(i1) Performance on our own dataset: Due to the reason
that OTB100 does not have enough datasets in regularly
moving patterns, we collect our own dataset. We use high-
speed camera (QianYanLang-2F01C) whose maximum
resolution is 1120%x860, shooting frame rate is up to
20000 fps (at a lower resolution), timestamp is accurate
to 1/24 microseconds and supports synchronous shooting
with multiple cameras, compatible with Nikon, Pentax,
Canon and other DSLR lenses to collect 20 video seg-
ments in various scenarios of throwing PingPang balls,
including different frame rates: from 30 fps to 100 fps,
and different occasions: short-term occlusion, long-term
occlusion and no occlusion.

The collected data in different scenes and track
ing results obtained from different tracking methods
are shown in Fig. 7-Fig. 9. The green dashed lines
describe the trajectories of the PingPang, and those green
dots represent the Ground Truth location of PingPang
at Fi (the ith frame in the video segment). Moreover,
the tracking result from different models at different
Frame i is also marked as rectangular boxes in other co-
lors.

[1:0UR; []:ECO-HC; :CSK; [J:KCF.
Fig. 7 Tracking result of different methods on 30 fps dataset

[1:0UR; []:ECO-HC;
Fig. 8 Tracking result of different methods on 100 fps no occlu-

:CSK; [1:KCF.

sion dataset

[1:0UR; []:ECO-HC;
Fig. 9 Tracking result of different methods on 100 fps short-term
occlusion dataset

:CSK; [J:KCF.

Fig. 7 shows a video segment collected from set-
ting the frame rate of the camera to 30 fps. It is obvious
that at such a low frame rate the object suffers severe
motion blur and huge translocation. In such harsh situa-
tion, those normal tracking methods are impossible to
catch up with the object and stagnated at the location of
the first initialization. However, our approach has stable
and accurate performance, keeping precisely locating the
object.

Fig. 8 and Fig. 9 illustrate the tracking results of differ-
ent methods on video segments obtained from setting
camera’s frame rate to 100 fps. In Fig. 8 and Fig. 9, the
motion blur has been greatly alleviated for the high frame
rate. Therefore, as shown in Fig. 8§, ECO-HC and our
method could accurately track the object from beginning
to end. While, KCF and LCT2 could track the object at
the initial frames, like in video frame 5, but miss the
object later. This phenomenon demonstrates that our
model could track object in complex and cluttered back-
ground more stably.

Additionally, when occlusion happens, without proper
countermeasures, KCF, LCT2, CSK, ECO-HC lose the
object inevitably. Our methods adopting Kalman filter
based motion model perfectly predict the movement of
the object when the observation state judgment model
determines that it is occluded, tracking along its moving
pattern without enlarging the search area and relocating
the object when it appears again, like the tracking result
of frame 55 as shown in Fig. 9.

The experiment result is shown in Fig. 10, where the
quantities of each sample are shown in the bracket. Our
method improves the AUC of the original tracking model
from 0.52 to 0.563, increasing 8%. In occlusion situation
it improves 32%, and in fast motion scene it improves
8%. These results prove that our model by adding the
observation state judgment module, speed-accuracy-ba-
lanced module, Kalman filter based motion module and
constrained updater, enhances the tracking accuracy in
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cluttered

backgrounds and stability in fast-moving, occlu-

sion scenes.
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Fig. 10  Tracking result of advanced methods on our own col-

lected dataset

5. Conclusions

In this paper, given the limits of nowadays tracking me-
thods, like the ignoring of handling the occlusion, diffi-
culty in finding the balance between speed and accuracy,
a new tracking method which takes tracking state obser-
vation, speed-accuracy balance, motion pattern and con-
strained update into consideration is proposed. This track-
ing method can run in real time 21 fps and perform pretty
well in background clutter, occlusion, fast-moving, out-of-
view scenarios. Abundant experiments on OTB100 and
our own collected dataset thoroughly prove the effi-
ciency of the proposed tracking model.
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