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Abstract: Diffusion models are a type of generative deep learning model that can process medical images more

efficiently  than  traditional  generative  models.  They  have  been  applied  to  several  medical  image  computing

tasks. This paper aims to help researchers understand the advancements of diffusion models in medical image

computing. It begins by describing the fundamental principles, sampling methods, and architecture of diffusion

models. Subsequently, it discusses the application of diffusion models in five medical image computing tasks:

image  generation,  modality  conversion,  image  segmentation,  image  denoising,  and  anomaly  detection.

Additionally,  this  paper  conducts  fine-tuning  of  a  large  model  for  image  generation  tasks  and  comparative

experiments  between  diffusion  models  and  traditional  generative  models  across  these  five  tasks.  The

evaluation of the fine-tuned large model shows its potential for clinical applications. Comparative experiments

demonstrate  that  diffusion  models  have  a  distinct  advantage  in  tasks  related  to  image  generation,  modality

conversion,  and  image  denoising.  However,  they  require  further  optimization  in  image  segmentation  and

anomaly  detection  tasks  to  match  the  efficacy  of  traditional  models.  Our  codes  are  publicly  available  at:

https://github.com/hiahub/CodeForDiffusion.
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1　Introduction

Medical  image  is  an  indispensable  part  of  the  modern
healthcare  system,  playing  a  key  role  in  the  early
detection, diagnosis, treatment planning, monitoring of
treatment  effects,  and  patient  care[1].  As  technology
continues  to  advance,  its  role  in  enhancing  the
efficiency  and  accuracy  of  disease  diagnosis  and
treatment will continue to grow. However, interpreting

medical  images  is  complex,  requiring  expertise  and
comprehensive  analysis  for  accurate  diagnosis,
demanding  high  accuracy  and  consistency  of
diagnostic  results[2].  This  undoubtedly  places  higher
requirements  for  the  accuracy  and  consistency  of
diagnosis results.

Medical  Imaging  Computing  (MIC),  as  a  cutting-
edge  interdisciplinary  research  field,  focuses  on  the
analysis  and  processing  of  medical  imaging  data[3].
This  field  integrates  knowledge  from  various
disciplines, such as computer science, medical imaging,
deep  learning,  medical  physics,  and  biomedical
engineering.  Its  goal  is  to  improve  disease  detection
and  diagnostic  accuracy  by  applying  advanced
computational  methods  to  the  acquisition,  processing,
analysis,  and interpretation of  medical  images[4].  With
the  advancement  of  deep  learning,  MIC  is  bringing
innovation  and  opportunities  to  medical  research  and
clinical practice[5]. However, advancements in this field
have  been  accompanied  by  a  series  of  challenges,
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particularly in the area of deep learning model training.
The  various  sources  and  modalities  of  medical  image
data,  as  well  as  patient  privacy protection issues,  pose
significant  obstacles  to  training  efficient  and  accurate
deep  learning  models.  Deep  learning  models,  such  as
autoregressive  models[6],  Generative  Adversarial
Networks  (GANs)[7],  and  Variational  AutoEncoders
(VAEs)[8],  have  been  used  in  MIC.  However,  these
models  still  face  challenges  in  improving  sample
quality  and  controllability.  Recently,  the  successful
application of diffusion models in computer vision has
attracted  the  attention  of  MIC  researchers,  who  have
begun  to  explore  these  new  techniques  to  address  the
current challenges[9].

The  fundamental  principle  of  diffusion  models  is  to
learn  the  relevant  features  of  data  by  progressively
adding  noise  and  subsequently  learning  to  denoise,
effectively  capturing  the  data  distribution[10].  This
ability of diffusion models has led to its unprecedented
potential  in  areas,  such  as  image  generation[11].  For
example,  some  large  models,  such  as  Dall-E  2[12],
Stable  Diffusion[13],  Imagen[14],  and  Midjourney† ,
utilize  gradual  addition  and  removal  of  noise  in  the
diffusion models to learn the fine structure and patterns
of  generative  data.  This  enables  them  to  perform  the

task  of  text-to-image  generation.  These  achievements
represent  a  significant  development  in  generative
modeling  technology,  and  demonstrate  the  potential
and  application  value  of  diffusion  models  in  various
fields,  such  as  computer  vision[15],  natural  language
processing[16, 17],  reinforcement  learning[18],  and
MIC[9].

Recently,  there  have  been  significant  advancements
in  the  application  of  diffusion  models  in  the  field  of
MIC. Therefore, a comprehensive review in this area is
urgently  needed. Figure  1 shows  the  application  of
diffusion  models  in  various  tasks.  While  there  are
already  reviews  summarizing  the  use  of  diffusion
models  in  MIC[9, 19],  this  paper  focuses  on  their
application  in  five  specific  tasks:  image  generation,
modality  conversion,  image  segmentation,  image
denoising,  and  anomaly  detection.  The  paper  also
addresses  the  challenges  and  issues  associated  with
each  task.  Additionally,  this  paper  discusses  and
conducts  fine-tuning  experiments  on  Stable  Diffusion
in  the  field  of  MIC,  analyzing  the  advantages  and
disadvantages  of  diffusion  models  compared  to  other
generative  models  through  extensive  comparative
experiments, and proposing optimization strategies.

The  remaining  structure  of  the  article  is  as  follows:
Section  2  introduces  the  main  types  of  diffusion

 
 

†https://www.midjourney.com
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Fig. 1    Application of diffusion models in different tasks. Different colors represent different tasks. Pie chart and bar chart are
used to illustrate the publication trends of papers related to diffusion models over the past three years from PubMed, Scopus,
Web of  Science,  IEEE Xplore,  Google  Scholar,  and  ArXiv.  The  pie  charts  show the  distribution  of  applications  of  diffusion
models in the five tasks, while the bar charts reveal the trends of these applications based on the retrieved literature.
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models,  sampling  methods,  and  basic  architectures;
Section  3  reviews  the  application  of  diffusion  models
in  five  MIC tasks  and discusses  the  existing problems
for  each  task;  Section  4  analyzes  the  performance  of
diffusion models in different tasks through fine-tuning
Stable  Diffusion  and  comparative  experiments,  and
proposes  targeted  improvement  strategies  based  on
experimental results; Section 5 summarizes the overall
challenges  faced  by  diffusion  models  in  the  field  of
MIC and discusses future development directions.

Our major contributions are as follows:
•  Summarize  the  fundamentals  of  diffusion  models,

including sampling methods and infrastructure.
•  Provide  an  overview of  the  clinical  importance  of

diffusion models in five MIC tasks, research advances,
and current issues.

• Perform fine-tuning Stable Diffusion to explore its
potential  in  medical  image  generation  tasks.
Additionally,  we  invite  10  clinical  physicians  to
participate in evaluating the fine-tuning results.

•  Conduct  a  series  of  comparative  experiments  to
analyze  the  advantages  and  improvement  strategies  of
the diffusion models in five MIC tasks.

•  Provide  an  outlook  on  future  development
directions  of  diffusion  models  after  discussion  on  the
challenges  faced  by  this  approach  in  performing  MIC
tasks.

2　Diffusion Model

2.1　Foundations for diffusion models

2.1.1　Denoising diffusion probabilistic models
Denoising Diffusion Probabilistic Models (DDPMs)[11]

typically  contain  two  Markov  chains:  a  forward
Markov  chain  and  a  reverse  Markov  chain. Figure  2
shows the process of adding noise and denoising using
DDPM.  The  forward  chain  adds  noise  to  the  images,
while the inverse chain removes noise.  The core work
of DDPMs is to train a neural network to learn the data
distribution  of  the  training  dataset  and  generate  new
data.

x0

x0 ∼ q (x)

xt

xt−1 xt xt−1

The  forward  process  involves  gradually  adding
Gaussian  noise  to  the  original  data  until  the  data
structure  is  corrupted  and  becomes  random  noise.
Specifically, given the original data , its distribution
is denoted as . Since the memoryless nature of
the  Markov  chain,  the  probability  distribution  of  the
next  state  in  the  diffusion  process  can  only  be
determined  by  the  current  state ,  i.e.,  and 
satisfy the following relation:
 

xt =
√

1−βt xt−1+
√
βtε (1)

βt t
ε

ε ∼ N (0,1)

where  increases  with  timestep .  There  can  be
several  choices  for  the  distribution  of  the  noise ,
DDPMs  use  the  standard  normal  distribution,  denoted
as .

xt−1 xt

Since the noise adding process of DDPMs follows a
Gaussian  distribution,  the  process  from  to  can
be described as
 

q (xt |xt−1) =N (xt;
√

1−βt xt−1, βtI) (2)

√
1−βt xt−1

βt I

Equation (2) is likewise the most common choice for
transition kernels, in which  is the mean and

 is  the  variance.  represents  the  identity  matrix,
which  is  used  to  ensure  that  the  noise  is  independent
and  has  the  same  variance  across  all  dimensions.  In
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Fig. 2    Process  of  adding  noise  and  denoising  using  DDPM.  The  process  of  adding  noise  uses  a  forward  Markov  chain  to
gradually add noise to the original image until the original image becomes purely noisy. The process of denoising uses a reverse
Markov chain to gradually denoise the image until the image is restored to its original state.
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αt = 1−βt ᾱt =
∏t

i=1αi

xt t

addition,  if  we  make  and ,  in
Eq.  (1)  by  the  reparameterization  trick,  the  noise  data

 at timestep  can be expressed as
 

xt =
√
ᾱt x0+

√
1− ᾱtε (3)

xt

x0 βt

This  means  that  we  can  introduce  the  noise  data 
for any step only if we have , and have determined 
for each step.

xt

xt ∼ N (0,1)

The reverse  process  means that  the  real  samples  are
generated by gradually denoising the noised data  until
the  original  data  structure  is  restored.  Specifically,
given  the  noise  data ,  its  distribution  is  denoted  as

. Then, the DDPMs denoise the data using
the reverse Markov chain.

xt

xt−1

Since the denoising process of  DDPMs also follows
a Gaussian distribution,  the  denoising process  from 
to  can be described as
 

pθ (xt−1|xt) =N (xt−1; µθ (xt, t),
∑
θ

(xt, t)) (4)

pθ (xt−1|xt)
µθ (xt, t)

∑
θ (xt, t)

xt−1 θ

where  is  a  probability  density  function,
 and  are  the  mean  and  variance  of

,  respectively,  and  denotes  a  neural  network
parameter. It can be seen from the above equation that
the neural network needs to learn how to best adjust the
mean  and  variance  at  each  step  of  the  denoising
process to make it closer to the original data.

ε xt

According  to  the  above,  DDPMs  need  to  learn  the
data  distribution  by  adding  noise  and  denoising  to
generate  new data.  However,  the  noise  of  the  forward
process  and  the  reverse  process  are  not  fixed  at  the
same value. Therefore, the key to the reverse process is
to  extract  the  noise  from  by  neural  network,  and
make it similar to the noise used in the forward process
to  reduce  the  gap  between  the  generated  data  and  the
real data. The loss in training is defined as follows:
 

Loss = ||ε−εθ (xt, t)||2 (5)
εθ (xt, t)where  denotes the noise estimation model.

2.1.2　Score-based generative models
Score-based  Generative  Model  (SGMs)[20, 21] is  a
method used to  model  and generate  data  distributions.
The  core  idea  is  to  use  the  gradient  of  the  probability
density  function  of  the  data,  also  known  as  the  score
function, to generate new samples.

p (x)

∇x log p (x)

For  a  given  probability  density  function ,  its
score  function  is  defined  as  the  gradient  of  its  log
probability density , and this gradient points
to the fastest growing probability density.

In  the  process  of  SGMs  implementation,  Gaussian

x
x1, x2, . . . , xt

sθ (xt, t)

noise is gradually added to the original data  to form a
series of noisy data . For each noise level,
the  model  evaluates  the  score  function  of  the
noisy data by training a deep neural network, known as
the Noise Conditional  Score Network (NCSN)[21],  and
the  goal  of  this  training  process  is  to  minimize  the
difference  between  the  true  score  function  and  the
model  estimated  score  function,  which  is  usually
achieved  by  minimizing  a  loss  function  in  the
following:
 

L(θ) = Ex0, xt

[∥∥∥∇x log pt (xt |x0)− sθ (xt, t)
∥∥∥2] (6)

x0 ∼ p (x) xt ∼ pt (x|x0)
x t

x0

where  and ,  which  describe  the
evolution of the distribution of  over timestep , given
the initail stste .
2.1.3　Stochastic differential equation
Stochastic Differential Equations (SDEs)[22] represent a
significant  development  in  the  field  of  generative
model,  particularly  for  complex  data.  These  models
integrate  forward  backward  stochastic  differential
equations and diffusion based models. This integration
has resulted in the emergence of new variants of SDEs,
such  as  sub-VP  SDEs[23] and  variance  exploding
SDEs[24].

For DDPMs and SGMs, it  is essential to perturb the
data  distribution  with  multi-scale  noise  levels.  As  the
noise  intensity  and  timestep  approach  infinity,  the
perturbation  and  denoising  processes  become
continuous-time  stochastic  processes  that  can  be
described by SDEs.

SDEs first perturbs the data using a diffusion process
and decomposes it into random noise. The perturbation
of the data by SDEs can be expressed as follows:
 

dx = f (x, t)dt+g (t)dw (7)
f (x, t) g (t)

t w
where  denotes  drift  coefficient,  denotes
diffusion coefficient,  denotes timestep, and  denotes
Brownian motion.

When the noise level becomes infinite, reverse SDEs
can  be  utilized  to  invert  the  diffusion  process.  The
reverse SDEs process is defined as follows:
 

dx =
[
f (x, t)−g2 (t)∇x log pt (x)

]
dt+g (t)dw (8)

∇x log pt (x)
pt (x) x

t w

where  represents  the  gradient  of  the  log
probability  density  with  respect  to  the  data  at
timestep , and  represents the reverse time direction
of the wiener process. To calculate the SDEs, the drift
coefficients,  diffusion  coefficients,  and  scoring
functions  must  be  determined  at  each  timestep  in  the
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forward  diffusion  process.  With  this  information,  the
reverse  SDEs can be  calculated to  invert  the  diffusion
process.

2.2　Sampling for diffusion models

Diffusion  models  generate  data  from  random  noise
through  a  sampling  process,  thus  effectively  learning
the distribution pattern of the target data and generating
diverse  and  high-quality  samples.  In  this  paper,  we
introduce  the  guided  and  fast  sampling  methods  for
diffusion models.
2.2.1　Guided sampling methods
Guided  sampling  methods  are  used  to  generate  new
samples based on specific conditional data distributions
in  a  diffusion  model.  These  methods  fall  into  two
categories:  classifier  guidance  and  classifier-free
guidance.

Classifier  guidance.  This  method  requires  an
additional  classifier  to  identify  or  classify  specific
features  or  attributes  that  are  subsequently  used  to
guide  the  sampling  process  of  the  diffusion  model  to
ensure  that  the  generated  samples  match  specific
conditions  or  labels.  The  advantage  of  this  method  is
that  the  classifier  and  the  diffusion  model  can  be
trained  independently,  and  if  a  diffusion  model  is
already  in  place,  an  additional  classifier  is  simply
trained  and  used  in  combination  with  the  diffusion
model during sampling. Liu et al.[25] extended classifier
guidance  to  semantic  diffusion,  enabling  diffusion
models  to  generate  images  based  on  image,  text,  and
multimodal  conditions.  In  recent  research,  Wallace
et al.[26] provided a plug-and-play guiding method that
does  not  require  retraining  or  fine-tuning  of  existing
models.  The  method  calculates  gradients  on  actual
output  and  incorporates  guidance  in  a  semantically
meaningful  way,  addressing  the  issues  of  gradient
misalignment  and  inadequate  control  that  been
prevalent in previous classifier guidance methods.

Classifier-free guidance. This method works on the
principle  of  speeding  up  the  sampling  algorithm  by
directly  modifying the  sampling algorithm for  a  given
diffusion  model  without  introducing  an  additional
learning  process.  During  training,  the  model  learns  to
complete  both  conditional  and  unconditional
generation  tasks  by  randomly  ignoring  conditional
information,  allowing  it  to  operate  efficiently  in  both
conditional  and  unconditional  situations.  The
advantage of this method lies in the fact that it does not
require  a  separate  classifier,  thus  simplifying  the

model’s training and deployment process. Furthermore,
classifier-free  guidance  enables  the  model  to  directly
learn how to adjust its generation process based on the
provided  conditional  information,  resulting  in
improved performance and higher sample quality.

Although  classifier  guidance  and  classifier-free
guidance  methods  have  made  many  advances  in
guided  sampling  research  for  diffusion  models,  these
methods  still  require  the  support  of  labeled  data  and
their  application  is  limited  to  the  use  of  conditional
diffusion  models.  They  also  require  extra  training
details  and occasionally zero the category embeddings
during  the  training  stage,  which  adds  complexity.  To
address  these  issues,  Hong  et  al.[27] proposed  novel
unconditional  and  untrained  strategies  to  improve
the  applicability  of  fine-grained  information  and
intermediate  sample  structure  through  blurred
guidance,  This  enables  diffusion  models  to  generate
higher-quality  samples  with  an  appropriate  scale  of
guidance. To further reduce the cost of sampling, Choi
et  al.[28] proposed  a  diffusion  model  without  a  prior
guidance.  This  model  uses  the  forward  scores  of  the
process probability distribution instead of the estimated
scores  of  the  hybrid  unconditional  model,  effectively
improving  the  sampling  efficiency  of  the  diffusion
model.
2.2.2　Fast sampling methods
DDPMs  require  multiple  iterations  to  generate  high-
quality  samples.  Each  generated  sample  involves  a
Markov chain  transformation,  which leads  to  a  slower
iteration speed in the sampling process.  This  is  due to
the  large  number  of  steps  that  must  be  performed
sequentially  for  each  sample.  This  poses  a  challenge
for DDPMs in practical applications, particularly when
computational resources are limited and low latency is
critical. Therefore, it is necessary to use both learning-
free  and  learning-based  methods  to  improve  the
sampling efficiency.

Learning-free  sampling.  This  method  achieves
acceleration  by  directly  modifying  the  sampling
algorithm  for  a  given  diffusion  model,  without
requiring  the  introduction  of  an  additional  learning
process.  A  typical  method  is  the  Denoising  Diffusion
Implicit  Model  (DDIM)[29],  which  emerged  as  one  of
the  important  advances  in  fast  sampling  of  diffusion
models. Unlike the DDPM’s inverse Markov diffusion
process,  DDIM  uses  a  non-Markov  process  for
sampling.  However  the  training  objective  of  both
models is the same, which allows for a faster sampling
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process  by  using  DDIM’s  method  on  top  of  the
DDPMs trained model.  In  addition,  DDIM proposes  a
skip-step approach, in which the forward noise addition
and  the  reverse  denoising  process  are  performed  on
only a subset of the original time points. Subsequently,
Zhang  et  al.[30] improved  the  fractional  network
parameterization  of  DDIM  and  extended  the
application  to  a  wider  range  of  general  diffusion
models.  Liu  et  al.[31] utilized  pseudo  numerical
methods  for  diffusion  model  to  treat  the  diffusion
model as solving the problems of differential equations
and  accelerated  the  inference  process  by  changing  the
classical numerical methods.

Learning-based sampling.  This method requires an
additional  learning  process  to  improve  the  sampling
efficiency  of  the  diffusion  models  and  thus  achieve
faster  sampling.  Previous  research  has  been  centered
around  the  discrete  approach,  truncated  diffusion,  and
knowledge  distillation.  The  discrete  approach  speeds
up  sampling  by  optimizing  the  diffusion  model’s
discretization  process.  Zhang  and  Chen[32] used
exponential  integrators  to  discretize  ordinary
differential  equations  and  the  semilinear  structure  of
the diffusion process to reduce the discretization error,
thereby  reducing  the  number  of  steps  required  to
generate  high-quality  samples.  Truncated  diffusion
methods  reduce  the  sampling  steps  by  truncating  the
diffusion  process  at  a  certain  point.  For  example,
instead of transforming the data completely into noise,
the  Truncated  Diffusion  Probabilistic  Model
(TDPM)[33] truncates  the  process  at  an  earlier  stage  to

achieve the effect of a hidden distribution of the noisy
data and reduces the reverse diffusion steps required to
generate  the  data.  In  addition,  related  studies  have
attempted  to  utilize  knowledge  distillation  to  enhance
the  sampling  effect  of  diffusion  models,  resulting  in
various diffusion distillation strategies[34].

2.3　Architecture for diffusion models

2.3.1　U-Net architecture
U-Net is a neural network architecture consisting of an
encoder-decoder,  which  is  widely  used  in  medical
image  computation,  computer  vision  and  other
fields[35]. Its uniqueness lies in the combination of three
core  components:  downsampling,  upsampling,  and
skip-connection  to  realize  the  capture  of  high-level
semantic  information  and  recover  accurate  spatial
details in images[36]. Figure 3 shows the architecture of
U-Net.

The  score  function  of  the  diffusion  models  has  the
same  dimension  as  the  input  data  because  it  is  the
derivative of the approximation to the latter. Similarly,
the  neural  network  predicts  the  noise  with  the  same
dimension  as  the  input  data  because  a  separate
Gaussian  noise  is  added  to  the  input  data  in  each
dimension,  which  satisfies  the  U-Net  architecture’s
requirement  for  the  resolution  of  inputs  and  outputs.
From Fig. 3, it can be seen that the workflow of the U-
Net  architecture  for  diffusion  models  consists  of
several  main  stages:  At  first,  the  convolutional  layer
processes  a  batch  of  noisy  images  to  compute  the
positional  embedding  of  the  noise  level.  Then,  the
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Fig. 3    Overview  of  U-Net  architecture.  The  left  side  shows  the  downsampling  stage  of  U-Net  and  the  right  side  shows  the
upsampling stage. The downsampling stage reduces the image resolution to capture higher level features, while the upsampling
stage restores the resolution and reconstructs the image details[36].
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model  goes  through  a  series  of  downsampling  and
upsampling  phases,  each  of  which  includes  resnet
blocks,  group  normalization,  an  attention  mechanism,
and  residual  concatenation.  The  downsampling  phase
reduces  the  image  resolution  to  capture  higher  level
features,  while  the  upsampling  phase  restores  the
resolution  and  reconstructs  the  image  details.  Finally,
to further refine and optimize the image, U-Net applies
an additional resnet block and convolutional layer. This
efficiently  removes  the  noise  from  the  noisy  image
while preserving or reconstructing the key features and
details  of  the  image,  ultimately  generating  a  high-
quality clear image.
2.3.2　Transformer architecture
Recently,  related  researchers  found  that  the  use  of
transformer in diffusion models can also achieve good
results[37],  whose  architecture  is  shown  in Fig.  4.  The
unique  feature  of  the  transformer  architecture  is  its
self-attention  mechanism,  which  allows  the  model  to
process  each  element  of  a  sequence  comprehensively,
taking  into  account  all  other  elements  in  the
sequence[38].  This  greatly  enhances  the  ability  to
capture  complex  relationships  within  the  sequence.
Meanwhile,  transformer  abandons  the  traditional
structure of Convolutional Neural Networks (CNNs)[39]

and  Recurrent  Ueural  Networks  (RNNs)[40],  which
allows  for  more  efficient  parallel  processing  of  data
and  improves  training  efficiency.  In  addition,  the
transformer  model  typically  comprises  multiple
cascading  encoders  and  decoders,  which  further

strengthens its processing capabilities.
In the diffusion model, noisy data at each step can be

encoded  using  the  transformer  architecture,
subsequently, these encoded results are used to predict
the expectation and variance of the transition kernel for
the next step[41]. In the implementation, the transformer
architecture  first  splits  an  image  into  patches,  and
converts  them  into  serialized  tokens  that  can  be
processed  by  the  transformer  blocks.  Subsequently,
each  transformer  block  processes  the  input  image
tokens  sequentially,  while  the  final  outputs  are
generated  by  a  linear  decoder,  including  noise
prediction  and  covariance  prediction.  In  this  process,
the  self-attention  mechanism  allows  the  model  to
consider  the  overall  context  of  the  entire  image,
thereby synthesizing the before and after information at
each step of the image generation[42].

3　Application

3.1　Image generation

In the field of MIC, image generation mainly includes
image  synthesis  and  image  reconstruction[43].  The
diffusion  models  can  be  used  to  generate  synthetic
and  reconstructed  samples  that  are  consistent  with
the  original  image  distribution. Table  1 provides
information  on  the  application  of  diffusion  models  in
medical image generation tasks.

Clinical  importance.  By  generating  high-quality,
high-resolution  medical  images,  diffusion  models  can
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Fig. 4    Overview  of  diffusion  transformer  (namely  DIT)  architecture.  DIT  first  processes  the  input  content  using  patch
embedding  to  obtain  several  tokens.  Then,  a  vision  transformer  based  positional  embedding  is  applied  to  the  input  tokens,
followed by fast processing of the tokens using multiple transformers[37].
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help  physicians  more  accurately  identify  and  evaluate
disease  features,  especially  in  complex  or  hard-to-
diagnose  cases.  For  patients  who  require  regular
radiological  examinations,  such  as  those  with  certain
cancers  and  chronic  diseases,  diffusion  models  can
generate  alternative  images  to  reduce  the  number  of
actual  scans,  thereby  reducing  the  risk  of  long-term
radiation  exposure.  In  addition,  in  medical  education
and professional training, synthetic medical images can
provide  a  rich  resource  for  learning  and  practice,
especially  in  diagnostic  training  for  rare  diseases  or
special cases.

In  research  on  image  synthesis  tasks.  Shao  et  al.[44]

proposed  a  four-stage  model,  called  DiffuseExpand,
which  is  based  on  the  Diffusion  Probabilistic  Model
(DPM).  This  model  aims  to  expand  medical  image
datasets  by  employing  a  series  of  stages  and
techniques. This model first synthesizes a segmentation
mask  from  Gaussian  noise,  and  then  uses  the
segmentation  mask  as  a  conditional  prior  to  generate
the  corresponding  image,  thus  realizing  image-mask
sample  pair  generation.  Zhang  et  al.[45] proposed  a
Generalized  Hybrid  Denoising  Diffusion  Model  (GH-
DDM)  for  medical  image  generation.  This  model
combines the global modeling capability of transformer
with  the  texture  modeling  capability  of  CNN.
Additionally, it includes a cross-attention module to the
skip  connection  of  the  U-Net  structure,  which  has

demonstrated  strong  generative  capability  on  multiple
medical  datasets.  Huy  and  Quan[46] proposed  a  multi-
branch Denoising Diffusion Medical Model (DDMM),
which  consists  of  two  independent  DDPMs  sharing
noise latent codes. This model can improve the quality
of  downstream  tasks  by  generating  synthetic  X-rays
and labels in an unsupervised manner.

MRI and CT images often contain 3D data with rich
diagnostic  information.  Dorjsembe  et  al.[47] proposed
3D-DDPM  for  the  first  time  to  generate  3D  medical
image  generation.  In  the  experiments,  the  images
generated from this model are judged as real by experts
more  frequently  than  actual  images,  and  the  model
output  shows  better  visual  accuracy.  Pinaya  et  al.[48]

generated  a  3D  adult  brain  MRI  based  on  Latent
Diffusion  Model  (LDM),  a  model  can  effectively
control  image  generation  by  using  conditional
variables,  such  as  age  and  gender,  and  all  metrics
outperform  the  GAN-based  method.  Khader  et  al.[49]

used  LDM-based  DPM  for  the  latent  representation
compressed  by  VQ-GAN[50].  The  model  can  generate
realistic 3D synthetic images even with a small dataset.
For  parts  such  as  the  human  heart  that  are  constantly
changing,  4D  medical  images  containing  time-series
information are usually required for analysis. Kim and
Ye[51] proposed  a  Diffusion  Deformation  Model
(DDM)  based  on  DDPM  to  generate  4D  time-series
images. By learning the latent space encoding between

 

Table 1    Detailed information on comparison methods for medical image generation tasks.
Reference Year Algorithm Dataset Conference/Journal

[44] 2023 DPM COVID-19,
CGMH Pelvis International Joint Conferences on Artificial Intelligence (IJCAI)

[45] 2023 DDIM Chest Xray,
Lung CT, IDRID Multimedia Systems

[46] 2023 DDPM ChestXR,
VinDr-CXR IEEE International Symposium on Biomedical Imaging (ISBI)

[47] 2022 DDPM ICTS Medical Imaging with Deep Learning (MIDL)

[48] 2022 LDM UK Biobank International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI)

[49] 2023 LDM ADNI, LIDC,
DUKE, MRNet Scientific Reports

[51] 2022 DDPM ACDC MICCAI

[52] 2021 SGM LIDC, LDCT,
BraTS International Conference on Learning Representations (ICLR)

[53] 2022 SGM FastMRI Medical Image Analysis

[54] 2022 DM FastMRI,
SKM-TEA MICCAI

[55] 2022 DM IXI, FastMRI Medical Image Analysis
[56] 2023 SGM AAPM2016, BraTS IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)
[57] 2023 DM SARS-CoV-2 CT International Conference on Information Networking (ICOIN)
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the  source  image  and  the  target  image,  it  can
continuously output any intermediate time point image.

In  research  on  image  reconstruction  tasks.  Song
et  al.[52] proposed  an  unsupervised  approach  to  learn
the  prior  distribution  of  medical  images  based  on  a
generative model  of  scores.  This  approach enables the
generation  of  image  samples  that  adhere  to  both  the
prior distribution and the measured images, providing a
valuable  tool  for  CT  and  MRI  reconstruction  tasks.
The  denoising  score-matching  method  was  employed
by  Chung  et  al.[53] to  train  a  continuous-time
autoregressive score model.  This  model  achieves MRI
reconstruction  through  iteration  between  solving  the
backward  SDEs  and  enforcing  data  consistency  steps
during the inference stage utilizing a Variational Euler
Stochastic Differential Equation (VE-SDE) solver. The
use  of  conditional  prior-based  diffusion  models  has
become a hot topic for CT and MRI reconstruction, as
it  allows the incorporation of prior knowledge and the
generation  of  high-quality  image  reconstructions.  In
their work, Peng et al.[54] introduced a diffusion model-
based  MRI  reconstruction  method  called
DiffuseRecon.  This  method  involves  guiding  the
reverse process of the diffusion model by observing k-
space  signals  to  achieve  MRI  reconstruction.  The
reverse  process  employs  a  cosine  noise  scheme  and  a
U-Net architecture with multi-head attention, achieving
excellent  performance  in  generating  reconstructed
images  from  the  original  acquisition  signals.  In
addition  to  using  static  image  priors,  Güngör  et  al.[55]

introduced  the  initial  adaptive  diffusion  prior  model,
known  as  AdaDiff,  to  generate  MRI  reconstruction
images.  It  employs  adversarial  learning  to  implement
reverse  diffusion,  accelerating  the  generation  of  high-
quality reconstructed samples with fewer steps.

For 3D medical image reconstruction. Chung et al.[56]

introduced  DiffusionMBIR  that  utilizes  a  pre-trained
2D  diffusion  model  for  3D  medical  image
reconstruction.  The  forward  diffusion  step  adopts  a
Model-Based  Iterative  Reconstruction  (MBIR)

optimization  strategy.  The  reverse  step  applies  the  2D
diffusion  model  on  different  slices  of  the  3D  image,
aggregating  slices  and  combining  an  Adam
optimization  framework  to  achieve  data  consistency.
This  approach  is  capable  of  reconstructing  out-of-
distribution data with significant variations.

Discussion. Diffusion models  have made significant
advances  in  the  field  of  medical  image  generation.
However,  the  training  of  most  diffusion  models  relies
on specific datasets, which may limit the diversity and
representativeness  of  the  images  generated  by  the
models.  Particularly  with  respect  to  imaging  data  for
rare diseases or specific populations (e.g.,  specific age
groups  or  ethnicities),  existing  datasets  may  not  be
sufficient to train models that can be widely applicable.
In  addition,  targeting  high-resolution  and  3D  models
often  requires  significant  computational  resources  and
time.  This  limits  their  application  in  resource-limited
environments.  Recently,  Nguyen  et  al.[57] proposed  a
lightweight  diffusion  model  to  generate  medical
images  without  the  need  to  train  on  large  amounts  of
data, but the difference between the synthesized images
and the original images is not significant, and research
on lightweight models is yet to be conducted.

3.2　Modality conversion

Medical  image  modality  conversion  refers  to  the
conversion  of  one  type  of  medical  image  into  another
type. Table  2 shows information  on  the  application  of
diffusion  models  in  medical  image  modality
conversion tasks.

Clinical  importance. Doctors  often  need  various
modalities  of  imaging  information  to  aid  in  disease
diagnosis.  Diffusion  models  can  provide  alternative
diagnostic means when specific types of medical scans
are  not  applicable  due  to  equipment  limitations  or
patient  conditions.  For  instance,  a  patient  with
sensitivity  to  specific  radiation  types  could  receive
necessary  diagnostic  data  through  the  conversion  of
images  from  alternate  modalities,  thereby  diminishing

 

Table 2    Detailed information on the comparison methods for the task of medical imaging modality conversion.
Reference Year Algorithm Dataset Journal/Preprint server

[58] 2023 DDPM IXI, BraTS Pelvic MRI-CT IEEE Transactions on Medical Imaging
[59] 2022 DDPMs SDEs Gold Atlas arXiv
[60] 2023 DDPMs Gold Atlas, BRATS2018 arXiv
[61] 2023 DM Head and Neck Dataset, Lung Dataset arXiv
[62] 2023 DDPMs – arXiv
[63] 2023 DDM CAMUS IEEE Access
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the  potential  health  risk  for  the  patient.  Furthermore,
the  integration  of  information  from  various  imaging
modalities  can  be  achieved  through  diffusion  models.
This  approach  provides  a  more  comprehensive
understanding  of  the  pathology,  such  as  the  ability  to
accurately locate tumors and monitor their response to
treatment by combining data from PET and MRI.

Özbey  et  al.[58] proposed  the  first  unsupervised
medical  imaging modality conversion method SynDiff
based  on  the  adversarial  diffusion  model.  Compared
with  ordinary  diffusion  models,  SynDiff  uses  a  larger
diffusion step size, and adopts adversarial mapping for
the  reverse  process.  Efficient  and  high-fidelity
modality  conversion  can  be  achieved  by  using  the
conditional  diffusion process to gradually generate the
target  image  guided  by  the  source  image.  Lyu  and
Wang[59] carried  out  a  conversion  from  MRI  to  CT
using DDPMs and SDEs, based on T2-weighted MRI.
Their  method  produces  much  better  results  than  other
models.  Li  et  al.[60] proposed  the  Denoising  Diffusion
Model  for  Medical  image  Synthesis  (DDMM-Synth).
This model combines the anatomical information from
MRI  and  the  relevant  information  from  sparsely
sampled  CT  to  achieve  the  synthesis  of  high-quality
CT  images.  The  synthesized  CT  maintains  the  data
consistency  with  sparsely  sampled  CT while  retaining
the  anatomical  information  in  MRI.  Li  et  al.[61]

proposed  a  Frequency-Guided  Diffusion  Model
(FGDM),  which  uses  only  target-domain  samples  for
training and can be directly applied to source-to-target
medical  image  modality  conversion.  It  is  the  first
model  that  performs  the  task  of  medical  image
modality  conversion  through  zero-shot  learning  at  the
anatomical  level,  outperforming  other  state-of-the-art
methods  in  the  task  of  cone-beam  CT-to-CT  mode
conversion.

For  3D  medical  imaging  modality  conversion,  Pan
et  al.[62] proposed  MC-DDPM  based  on  DDPM  for
MRI  to  CT  conversion.  This  model  represents  a
significant  advancement  in  the  field,  offering  a  novel
approach to address the task of synthesizing CT images
from  MRI  data  in  a  three-dimensional  context.  The
reverse  process  of  the  model  uses  the  optimized  and
trained Swin-Vnet structure. Noisy CT is denoised and
then  guided  by  MRI  to  generate  a  synthetic  CT  that
matches  the  MRI  anatomy.  In  the  study  of  the  heart’s
motion, echocardiograms that include time information
are  also  often  used.  Tiago  et  al.[63] trained  an
adversarial  denoising  diffusion  model  combined  with

GAN to synthesize echocardiograms and realize image
translation  between  different  domains.  This  model
adopts GAN to learn the denoising process. It preserves
relevant  anatomical  structures  under  the  guidance  of
prior images and utilizes a larger step size to generate a
variety of image samples with less sampling time.

Discussion. Diffusion  models  have  demonstrated
potential  for  modality  conversion  tasks  in  medical
images.  However,  they  face  challenges,  such  as  high
computational  resource  requirements,  difficulties  in
processing  large  volumes  of  3D  data,  and  balancing
between accuracy and speed. Bieder et al.[64] proposed
a  patch-based  training  method  and  a  coordinate
encoding  strategy  to  improve  the  efficiency  and
performance  of  the  models,  but  these  methods  still
need to be further optimized for practical applications.
Particularly,  the  balance  between  accuracy  and
processing  speed  is  still  an  important  research
direction.

3.3　Image segmentation

Image  segmentation  involves  separating  the  area  of
interest  in the medical  image from the background,  so
that physicians can perform more accurate analysis and
diagnosis. Table  3 presents  information  for  the
application  of  diffusion  models  in  medical  image
segmentation tasks.

Clinical  importance. Diffusion  models  maintain
high  accuracy  even  with  poor  image  quality  or  tiny
target  structures,  which  is  valuable  for  early  disease
diagnosis and precise treatment, especially in the fields
of  oncology,  neurology,  and  cardiovascular  diseases.
Furthermore,  diffusion  models  exhibit  exceptional
efficiency  and  reliability  in  automated  image
segmentation.  They  can  reduce  the  workload  of
radiologists  and  image  specialists,  accelerate  the
diagnostic  process  by  segmenting  images  quickly  and
accurately,  and  improve  the  overall  workflow
efficiency.

Wu et al.[65] introduced MedSegDiff, which stands as
the  pioneering  DPM-based  general  medical  image
segmentation  model.  This  model  extends  DPM  by
incorporating  dynamic  conditional  encoding  and  FF-
Parser.  It  achieves  adaptive  calibration  of  the
segmentation  masks  at  the  current  step  by  integrating
them  with  image  priors  at  multiple  scales.  It  also
suppresses  high-frequency  noise  contained  in  the
feature maps using the Fourier transform. Compared to
other  methods,  the  model  produces  more  accurate
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segmentation  results,  particularly  in  blurry  regions.
Subsequently, Wu et al.[66] introduced the MedSegDiff-
V2 model, which combines a transformer-based U-Net
framework  with  the  diffusion  model.  It  adds  anchor
conditions and SS-Former to address the limitations of
direct  integration,  achieving  more  stable  and  accurate
results  compared  to  the  MedSegDiff  model.  Wolleb
et al.[67] proposed a new semantic segmentation model
based  on  the  deep  diffusion  probability  model.  The
original  MRI  serves  as  a  conditional  prior  to  enhance
anatomical  information  in  the  generated  image.  This
model generates five different  segmentation masks for
the same MRI through random sampling. By implicitly
integrating  these  segmentation  masks,  the  integrated
image  further  improves  the  segmentation  performance
of  the  model.  Guo  et  al.[68] presented  the  PD-DDPM
model,  a  pre-segmentation  diffusion  sampling  model
designed  to  accelerate  medical  image  segmentation.
This  model  can  generate  segmentation  results  with
fewer inverse steps by combining noise prediction with
pre-segmentation results.

For  3D  medical  image  segmentation,  Fu  et  al.[69]

proposed a 3D medical image multi-class segmentation
model  based  on  DDPM.  The  model  predicts
segmentation masks and directly optimizes them using
the  dice  loss.  The  previous  step’s  mask  is  used  to
generate  noise-disturbed  masks  to  reduce  information
leakage  and  decrease  diffusion  steps,  thereby
improving  the  efficiency  and  performance  of  the
model.  Xing  et  al.[70] proposed  Diff-Unet,  an  end-to-
end  3D  medical  image  segmentation  model  based  on
the  diffusion  model,  to  solve  the  problem  of  high-
dimensional  medical  image  segmentation.  This  model
takes volumetric images and noisy segmentation maps
as  inputs.  During  the  inference  process,  a  fusion
module  based  on  step  uncertainty  is  introduced  to
combine the model output at each step. It  outperforms

other state-of-the-art methods in multiple segmentation
tasks.

By  applying  multiple  random  perturbations  to  the
input image,  diffusion models can generate a series of
diverse image samples.  Rahman et  al.[71] proposed the
Collective  Intelligent  Medical  Diffusion  model
(CIMD)  that  is  based  on  a  single  diffusion  model.  It
employs  the  random  sampling  procedure  of  the
diffusion  model  to  capture  the  ambiguity  of  medical
images.  Obtaining  multiple  segmentation  masks  by
generating  from  a  single  input  image,  the  proposed
approach  surpasses  existing  blurry  segmentation
networks and exhibits superior performance in the task
at  hand.  Chen  et  al.[72] presented  the  conditional
Bernoulli  Diffusion  model  (BerDiff)  as  a  novel
technique for medical image segmentation. This model
uses  bernoulli  noise  instead  of  Gaussian  noise,
resulting  in  the  generation  of  more  precise
segmentation  masks.  Leveraging  the  stochasticity  of
the  diffusion  process,  the  model  performs  multiple
sampling  to  generate  different  segmentation  masks.
This  approach  highlights  the  regions  of  interest  and
provides valuable references for medical professionals.
The  annotation  information  may  be  uncertain  due  to
potential  variations  in  segmentation  annotations
provided by different doctors for the same image. Due
to  different  doctors  possibly  providing  varying
segmentation  annotations  for  the  same  image,  the
annotation  information  possesses  uncertainty.  Amit  et
al.[73] proposed a multi-annotator segmentation method
that combines different segmentation annotations using
the  diffusion  model.  It  generates  a  unified
segmentation  map  representing  a  consensus  among
different  physicians,  improving  the  efficiency  and
quality of medical image segmentation.

Discussion. While diffusion models have potential in
medical  image  segmentation  tasks,  they  still  have

 

Table 3    Detailed information on the comparison methods for medical image segmentation tasks.
Reference Year Algorithm Dataset Conference/Preprint server

[65] 2023 DDPMs REFUGE-2, BraTS2021, DDTI MIDL
[66] 2023 DDPMs AMOS, BraTS2021, REFUGE-2, DDTI AAAI Conference on Artificial Intelligence (AAAI)
[67] 2022 DDPMs CheXpert, BraTS2020 MIDL
[68] 2023 DDPMs AMOS, Prostate MR MICCAI
[69] 2023 DDM MSD Liver, BTCV, BraTS2020 arXiv
[70] 2023 DDPMs WMH arXiv
[71] 2023 DM LIDC-IDRI, MSMRI CVPR
[72] 2023 DM LIDC-IDRI, BraTS2021 arXiv
[73] 2023 DPM QUBIQ arXiv
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limitations.  Their  generalization  abilities  are  limited,
and  their  performance  may  be  unstable,  especially
when  dealing  with  different  types  of  data  from  the
training  set.  In  addition,  these  models  require  huge
computational  resources  when  processing  large-scale
or  high-resolution  3D  medical  images.  During  the
pursuit  of  high-precision  segmentation,  processing
speed  may  decrease,  which  can  impact  clinical
applications.  Noise  and  artifacts  in  medical  images
may  also  affect  the  segmentation  accuracy,  especially
when the image quality is poor.

3.4　Image denoising

Image denoising is the process of reconstructing noisy
images  into  high-quality  images  under  the  premise  of
retaining important information about medical images.
Table  4 shows  information  on  the  application  of
diffusion models in medical image denoising tasks.

Clinical  importance. Diffusion  models  can
effectively  remove  noise  from  medical  images  while
maintaining key anatomical structures and pathological
features. This is particularly important for early disease
diagnosis,  especially  in  areas  such  as  tumor
identification  and  cardiovascular  disease  assessment.
By  improving  image  clarity  and  contrast,  diffusion
models  help  radiologists  and  other  medical
professionals  more  accurately  identify  and  evaluate
diseased  areas.  In  addition,  automated  denoising
through diffusion models  reduces the need for  manual
editing,  speeds  up  the  diagnostic  process,  and  enables
medical  teams to  process  image  data  more  efficiently.
This  is  especially  important  in  emergency  and  high
intensity medical environments.

Abirami  et  al.[74] used  a  finite  difference
approximation  scheme  to  create  a  spatiotemporal
variable order fractional diffusion equation for medical
image  denoising.  The  proposed  model  is  superior  to
fractional  and  integer  order  diffusion  models  in
maintaining  details  and  edge  information,  which  can
better perform image denoising. Hu et al.[75] employed
unsupervised  DPM  for  denoising  retinal  OCT

denoising.  By  adjusting  the  number  of  steps  in  the
reverse  process,  the  model  produces  different  degrees
of  denoising  results,  providing  controllable  denoising
capabilities.  Chung  et  al.[76] proposed  the  image
denoising  method  based  on  regularized  reverse
diffusion uses a score-based diffusion model for image
denoising.  After  training  on  knee  joint  MRI  data,  the
model  can  be  used  for  liver  MRI  denoising.  Liu  et
al.[77] proposed  an  unsupervised  model  based  on
DDPM  for  low-dose  CT  denoising.  This  model  first
uses normal dose CT to train the unconditional DDPM
and  then  integrates  the  trained  unconditional  DDPM
into  the  denoising  framework  to  solve  the  problem of
denoising  medical  images.  In  each  iteration,  low-dose
CT  is  used  as  the  conditional  prior  of  the  denoising
process to generate high-quality images corresponding
to low-dose CT to achieve low-dose CT denoising. Xia
et  al.[78] applied  conditional  DDPM  for  low-dose  CT
denoising  and  used  a  fast  Ordinary  Differential
Equation (ODE) solver to improve sampling efficiency.
Using the ODE solver is 20 times faster than using the
original  DDPM  denoising  without  compromising  the
denoising effect.

Discussion. Most  existing  studies  rely  on  limited,
specific  datasets,  which  can  lead  to  inadequate
generalization  capabilities  of  the  models.  The  lack  of
diverse and large-scale medical image datasets restricts
the  application  of  diffusion  models  across  different
equipment, patient groups, and types of diseases. When
faced with various types of noise and different qualities
of  images,  the  robustness  of  diffusion  models  is  a
challenge. Current research has not fully addressed the
issue  of  performance  stability  under  extreme  or
abnormal conditions.

3.5　Anomaly detection

Detecting anomalies in medical images using diffusion
models  is  usually  done  by  weakly  supervised  or
unsupervised  learning  based  on  image  reconstruction.
The  image  with  lesions  is  reconstructed  into  a  lesion-
free  image,  and  the  difference  between  the  diseased

 

Table 4    Detailed information on the comparison methods for medical image denoising tasks.
Reference Year Algorithm Dataset Conference/Journal/Preprint server

[74] 2021 SGMs – Mathematical Problems in Engineering
[75] 2022 DPM – SPIE Medical Imaging
[76] 2022 SGMs FastMRI IEEE Transactions on Medical Imaging
[77] 2023 DDPMs LDCT-PD arXiv
[78] 2022 DDPMs NIH-AAPM-Mayo 2016 arXiv
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image and the reconstructed image forms a pixel-level
abnormal image that can be used to display the location
of  the  lesion. Table  5 shows  information  on  the
application  of  diffusion  models  in  medical  image
anomaly detection tasks.

Clinical importance. Diffusion models show a high
degree  of  flexibility  and  accuracy  when  dealing  with
complex  and  high-dimensional  medical  imaging  data.
They  can  learn  from  many  normal  and  abnormal
images,  effectively  identifying  potential  abnormal
features and maintaining a high detection rate even for
subtle or atypical lesions. In addition, diffusion models
provide  a  powerful  tool  for  early  detection  and
monitoring  of  disease  progression  by  automatically
detecting abnormal changes. In oncology, for example,
this technique can be used to monitor tumor growth or
response  to  treatment,  thereby  effectively  guiding
treatment decisions.

Sanchez  et  al.[79] trained  a  diffusion  probabilistic
model  using  healthy  and  diseased  images.  By
employing implicit guidance and attention modulation,
the generation process is controlled to generate healthy
images  corresponding  to  the  input  images.  Wolleb
et  al.[80] proposed  an  iterative  method  that  combines
DDIM  with  noise  injection  and  denoising  processes.
They used DDIM’s reverse sampling scheme to encode
anatomical information and the deterministic sampling
scheme for denoising. With the guidance of a classifier,
the  diseased  images  are  transformed  into  healthy
images.  Wyatt  et  al.[81] introduced  a  partially  diffused
unsupervised  anomaly  detection  model  called
AnoDDPM  based  on  DDPM.  In  this  model,  a  partial
Markov  chain  is  used  diffusion  to  accelerate  the
training and inference processes. Simplex noise is used
for larger region anomaly detection instead of Gaussian
noise.  The  model  is  trained  on  healthy  images  and
maps abnormal data to a normal distribution.

Iqbal  et  al.[82] described  an  unsupervised  anomaly
detection  model  called  mDPPM  that  reconstructs  the
generation  task  of  diffusion  models  in  DDPM  by

introducing a mask-based regularization. The model is
trained  on  healthy  images  to  eliminate  abnormal
regions  in  diseased  images  and  then  generate  healthy
images. Pinaya et al.[83] employed VQ-VAE for image
dimensionality  reduction  to  accelerate  the  processing
of  diffusion  models.  They  first  trained  VQ-VAE  and
DDPM on healthy images  and then utilized DDPM to
process  the  compressed  latent  representations  to
eliminate  abnormal  regions  and  generate  healthy
images.  Behrendt  et  al.[84] proposed  a  patch-based
unsupervised  anomaly  detection  model  called  p-
DDPM.  It  only  adds  noise  and  performs  denoising  on
image  patches  of  the  input  image  while  incorporating
global  image  information  and  eventually  reconstructs
the  entire  image  by  integrating  the  denoised  patches.
This  method  allows  for  a  better  reconstruction  of  the
brain MRI and generates corresponding healthy images.

Discussion. Currently,  diffusion  models  have  made
some  progress  in  medical  image  anomaly  detection
tasks, but the running time of this method is relatively
long,  mainly  due  to  the  long  Markov  chain  sequence
required,  which  leads  to  an  increase  in  sampling  time
and affects the scalability and practicality of the model.
Meanwhile,  the  Gaussian  diffusion  model  is  a
probability-based generative model that reconstructs or
generates  images  by  gradually  adding  noise  and  then
gradually  removing  it.  This  approach  tends  to  smooth
and  remove  extreme  values  or  large  deviations  when
processing  an  image,  which  can  make  it  difficult  to
accurately capture larger anomalous regions, especially
if these regions are not common in the overall dataset.

4　Experimental and Result Analysis

In this section, we conduct fine-tuning experiments on
Stable  Diffusion,  as  well  as  comparative  experiments
based  on  OpenAI’s  open  source  projects:  Improved
DDPM (IDDPM)[85] and Guided DDPM (GDDPM)[86].

Stable  Diffusion  is  a  deep  learning  text-to-image
generation model based on LDM[13]. When given a text
prompt, the model generates an image that matches the

 

Table 5    Detailed information on the comparison methods for medical imaging anomaly detection tasks.
Reference Year Algorithm Dataset Conference/Preprint server

[79] 2022 DDPMs BraTS2021 MICCAI
[80] 2022 DDIMs BraTS2020, CheXpert MICCAI
[81] 2022 DDPMs NFBS CVPR
[82] 2023 DDPMs IXI, MSLUB, BraTS2021 arXiv
[83] 2022 DDPMs MedNIST, UKB, BraTS, WM, MSLUB MICCAI
[84] 2023 DDPMs IXI, BraTS2021, MSLUB MIDL
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given  prompt.  Compared  to  other  models,  Stable
Diffusion  is  an  open  source  model,  which  makes  it
easier  to  realize  its  application  potential  in  different
scenarios.  However,  in  practice,  Stable  Diffusion  may
have  uncontrollable  output  that  require  domain  fine-
tuning  to  meet  the  requirements  of  a  particular
scenario.

IDDPM  reduces  the  number  of  forward  passes
required  in  the  generation  process  by  optimising
the  algorithm[85].  GDDPM  balances  diversity  and
fidelity  in  conditional  image  synthesis  by  introducing
classifier  guidance[86].  Through  literature  research,  we
find  that  there  are  many  models  related  to  diffusion
models  that  are  constructed  based  on  IDDPM  and
GDDPM[54, 65, 66, 70, 73, 80].  To  further  explore  their
effects in different tasks, we apply the diffusion model
to  image  generation,  modality  conversion,  image
segmentation, image denoising, and anomaly detection
tasks  by  adjusting  the  architecture  and  parameters  of
IDDPM  and  GDDPM,  and  compare  them  with  other
generation  models  to  analyze  the  performance  and
improvement  strategies  of  IDDPM  and  GDDPM  in
different tasks.

4.1　Fine-tuning experiments

The  fine-tuning  methods  used  in  the  experiments
include  LoRA[87],  DreamBooth[88],  HyperNetwork[89],
and  Embedding[90].  LoRA  is  an  efficient  fine-tuning
method that optimises the model output by fine-tuning
the  weights  of  the  U-Net  cross-attention  layer.
Meanwhile, DreamBooth fully tunes all the weights of
the  model,  paying  special  attention  to  preserving  the
integrity  of  the  original  generated  topics  during  the
training  process,  while  HyperNetwork  influences  the
final  performance  of  the  model  by  adding  a  small
auxiliary network in front of the cross-attention layer in
the  noisy  predictor  of  U-Net.  In  addition,  Embedding,
also  known  as  textual  inversion,  greatly  improves  the
model’s ability and efficiency in processing image data
by  transforming  the  input  data  into  a  vector
representation.  The  application  of  these  methods
enables  the  Stable  Diffusion  to  gain  a  wider  range  of
adaptability  and  application  while  maintaining  its
original performance.

To  measure  the  impact  of  dataset  size  on  the
experimental  results,  100,  500,  and  1000  images  are
selected for the experiments. Meanwhile, Peak Signal-
to  Noise  Ratio  (PSNR)  and  Structural  SIMilarity
(SSIM)  metrics  are  used  to  objectively  evaluate  the

quality of the generated results generated by the model.
Figure 5 shows the objective evaluation scores for  the
generated  results.  In  addition,  to  further  validate  the
applicability  of  the  generated  images  in  clinical
diagnosis,  we  invite  10  physicians  with  professional
knowledge  and  clinical  experience  to  subjectively
evaluate  the  accuracy  and  clinical  applicability  of  the
generated  results. Table  6 shows  the  subjective
evaluation scores for the generated results.

In Fig. 5, higher scores of PSNR and SSIM indicate
better  performance  of  the  fine-tuning  method.  As
shown in Fig.  5d,  the  PSNR scores  of  the  Embedding
method  demonstrate  relative  stability  under  different
dataset  sizes and different  prompt conditions,  Prompts
1−3 denote “photo of  a  lung X-ray”, “photo of  a  lung
X-ray with cardiomegaly”, and “photo of a long X-ray
with  visible  pleural  effusion”,  respectively.  However,
as  seen  in Fig.  5h,  the  Embedding  method  generally
scores  lower  than  other  methods  in  terms  of  SSIM
value.  Intuitively,  the  LoRA  method  exhibits  some
advantages  in  PSNR  and  SSIM,  as  evidenced  in
Figs.  5a and 5e.  In Table  6,  higher  accuracy  and
suitability  scores  indicate  better  fine-tuning.  It  is
observed  that  the  LoRA  method  achieves  the  best
average  scores  in  both  accuracy  and  suitability  with  a
dataset size of Image100.

The  generated  results  of  different  fine-tuning
methods  are  shown in Fig.  6.  After  inputting  Prompts
1−3,  the  model  generates  the  images corresponding to
the descriptions. As shown in Fig. 6, the outputs image
of  Stable  Diffusion  without  fine-tuning  is  more
abstract,  which is far from the expectation.  After fine-
tuning,  the  subjective  effect  of  the  model’s  output
image  is  significantly  improved,  where  the  effects
generated after fine-tuning using the LoRA method and
the  HyperNetwork  method  are  visually  closer  to  the
real  CT  X-ray.  However,  the  Embedding  method
appeares  to  have  incomplete  thoracic  structures  and
produces more artifacts.

The  fine-tuning  experiments  on  Stable  Diffusion
show its  capability  in  medical  image generation tasks.
Specifically,  the  LoRA  method  outperforms  others  in
both  objective  and  subjective  evaluations,  effectively
generating  synthetic  CT  X-ray  samples  that  closely
match  the  prompts  and  have  high  clinical
applicabilities.  Although  the  Embedding  method
achieves  high  PSNR  values,  it  falls  short  in  single
channel  grayscale  medical  image  contexts,  especially
in  subjective  assessments  and  generation  quality.
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Moreover,  as  shown  in Fig.  5 and Table  6,  a  larger
dataset  size  dose  not  necessarily  correlate  with
improved  experimental  outcomes.  This  might  have
been  due  to  increased  complexity  and  potential
compromises  in  image  quality  with  larger  datasets,
highlighting  the  importance  of  high-quality  medical
images for effectively fine-tuning Stable Diffusion.

4.2　Comparative experiments

The  comparison  experimental  environment  is  the
Ubuntu20.04  Linux  operating  system,  and  it  utilizes  a

single RTX 3090 Ti GPU. The software framework is
PyTorch. Table  7 shows  an  introduction  to  each
generative  model. Table  8 shows  a  description  of  the
datasets used in the comparison experiments.

Tables 9−13 show the quantitative evaluation results
on the tasks of image generation, modality conversion,
image  segmentation,  image  denoising,  and  anomaly
detection.  Each  task  is  evaluated  by  three  indicators.
Some  tasks,  such  as  image  generation,  image
segmentation, image denoising, and anomaly detection,
are  performed  on  three  different  datasets.  In  modality
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Fig. 5    Average  and  standard  deviations  of  objective  evaluation  of  different  fine-tuning  methods.  Evaluation  results  of  four
different  fine-tuning  methods  (LoRA,  Dreambooth,  HyperNetwork,  and  Embedding)  on  Stable  Diffusion  model  for  three
different  sizes  of  datasets  (Image100,  Image500,  and  Image1000),  and  three  different  prompts.  (a)−(d)  Show  the  evaluation
results based on PSNR, and (e)−(h) show the evaluation results based on SSIM score.

 

Table 6    Subjective scores for different fine-tuning methods. The results are evaluated by 10 physicians, who score them based
on the accuracy of the generated outcomes and the applicability to clinical diagnosis. Each evaluation index has a scoring range
from 0 to 10, and the bold value in each column is the optimal value.

Strategy Dataset
Accuracy score Suitability score

Prompt 1 Prompt 2 Prompt 3 Average Prompt 1 Prompt 2 Prompt 3 Average

LoRA
Image100 6.333 9.167 6.306 3.417 7.300 8.800 7.100 7.733
Image500 6.083 4.167 3.500 4.583 6.300 4.500 3.100 4.633
Image1000 4.750 7.167 4.338 5.418 5.400 8.700 8.400 7.500

DreamBooth
Image100 5.000 5.000 4.500 4.833 4.300 4.200 4.400 4.300
Image500 3.417 4.000 4.167 3.861 3.400 3.700 4.400 3.833
Image1000 4.422 5.083 4.838 4.781 5.500 4.700 5.300 5.167

HyperNetwork
Image100 4.917 6.333 5.083 5.444 6.200 6.100 7.000 6.433
Image500 4.167 3.833 4.667 4.222 5.600 7.000 7.000 6.533
Image1000 3.000 7.167 4.088 4.752 3.000 7.100 6.300 5.467

Embedding
Image100 4.808 5.250 5.088 4.809 4.200 4.600 4.700 4.500
Image500 3.177 6.177 4.760 4.704 4.100 6.100 5.500 5.233
Image1000 3.088 5.265 5.250 4.534 3.900 5.700 5.000 4.867
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conversion  task,  three  different  conversion  directions
on the BRATS2020 dataset are selected.
4.2.1　Performance  of  diffusion  models  on  image

generation tasks
Table  9 shows  a  comparison  between  the  diffusion
models and the traditional generative models for image
generation  on  the  ISIC2018,  BRATS2018,  and
LiTS2017  datasets.  The  evaluation  uses  Normalized
Mean  Absolute  Error  (NMAE),  PSNR,  and  SSIM
metrics,  where  lower  values  of  NMAE  indicate  better
quality,  while  higher  values  of  PSNR  and  SSIM
correspond  to  improved  results. Figure  7 shows  the
effect of generation of different models. From Table 9,
it  can  be  seen  that  on  the  three  datasets,  IDDPM  has
the lowest NMAE values, indicating the smallest errors
in  image  generation  tasks.  At  the  same  time,  IDDPM
also  scores  the  highest  values  in  PSNR  and  SSIM,
showing  the  best  image  quality  and  structural
similarity. GDDPM is close to RegGAN in NMAE, but
performes better in PSNR and SSIM, especially on the
BRATS2018  and  LiTS2017  datasets.  CycleGAN  and
Pix2pix  show  average  performance  in  these  metrics,
while  RegGAN  performs  better  in  some  aspects,  but
overall  still  lower  than  IDDPM  and  GDDPM.  The
reason  for  these  results  might  be  that,  compared  to
some  traditional  generative  models,  IDDPM  offers  a
deeper  understanding of  the  probability  distribution of

generated  images.  It  is  able  to  produce  diverse
outcomes  while  maintaining  consistency  with  the  real
data distribution.
4.2.2　Performance of diffusion models on modality

conversion tasks
Table  10 shows  a  comparison  between  the  diffusion
models  and  the  traditional  generative  models  for
modality  conversion  on  the  BRATS2018  dataset.  The
evaluation employs NMAE, PSNR, and SSIM metrics.
Figure  8 shows  the  effect  of  modality  conversion  for
different  models.  From Table  10,  it  can  be  seen  that
IDDPM  performs  the  best  overall  performance  in  all
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Fig. 6    Generation effects of different fine-tuning methods. In (b), the original output of Stable Diffusion and the outputs after
fine-tuning  using  different  methods  are  shown  with  the  inputs  of  Prompts  1−3  in  top  row,  middle  row,  and  bottom  row,
respectively.

 

Table 7    Introduction to generative models.
Year Model Infrastructure Reference
2016 ResNet ResNet [91]
2015 VGG VGG [92]
2017 DNCNN-B CNN [93]
2017 SegNet SegNet [94]
2017 CycleGAN GAN [95]
2017 Pix2Pix GAN [96]
2019 A-Unet U-Net [97]
2021 RegGAN GAN [98]
2019 nnUnet U-Net [99]
2022 EDCNN CNN [100]
2020 DETR Transformer [101]
2022 VT-Unet U-Net [102]

    372 Tsinghua Science and Technology, February 2025, 30(1): 357−383

 



tasks. Pix2pix and GDDPM have similar performances,
especially  in  the  T1,  FLAIR  →  T2  and  T2,  FLAIR  →
T1 conversions.  CycleGAN performs relatively poorly
on these  tasks.  These  performance differences  may be
attributed  to  the  way  that  each  model  processes  and
learns  from  the  imaging  data.  Traditional  models
typically require two generators and two discriminators
for modality conversion. Each generator is responsible
for one direction of the conversion. The discriminators
work  to  distinguish  real  images  from  those  generated
by  the  generators.  In  contrast,  IDDPM  enhances  this
process  by  adding  a  guiding  mechanism.  This
mechanism  directs  the  diffusion  process  using  the

image’s  middle  layer  feature  conditions.  There  have
been studies based on IDDPM and GDDPM for image
conversion  tasks[117, 118].  However,  the  experimental
results  in  this  paper  show  that  a  simple  structural
change in IDDPM and GDDPM can yield good results
in  modality  conversion.  While  there  is  still  room  for
optimization,  these  findings  inspire  the  application  of
diffusion models in modality conversion tasks.
4.2.3　Performance  of  diffusion  models  on  image

segmentation tasks
Table  11 shows  a  comparison  between  the  diffusion
models and the traditional generative models for image
segmentation  on  the  MSD,  BRATS2021,  and  ROSE

 

Table 8    Information of the dataset used for the comparison experiment.
Task Dataset Description Reference

Image
generation

ISIC2018 The training set contains 2,074 skin lesion JPEG images and the test set
contains 520 skin lesion JPEG images. [103]

BRATS2018 The training set consists of MRI data from 285 patients, saved in NIfTI
format. [104−106]

LiTS2017 The training set contains 130 CT images and the test set contains 70 CT
images. [107]

Modality
conversion BRATS2020 The dataset comprises a collection of 112 120 chest X-ray films obtained

from 30 805 individual patients. [104−106]

Image
segmentation

MSD The dataset  comprises 10 different datasets,  including a cardiac dataset
that consists of 30 MRI images dedicated to left atrium segmentation. [108]

BRATS2021 The training set and validation set contain MRI of 1251 and 219 patients
respectively. [104, 105, 109]

ROSE It is divided into ROSE-1 and ROSE-2, containing 117 and 112 OCTA
images, respectively. [110]

Image
denoising

BrainWeb
The dataset includes simulated brain MRI data based on two anatomical
models:  normal  and  multiple  sclerosis.  It  provides  three  modalities  of
MRI data.

[111]

ISBI2015 The  dataset  consists  of  400  skull  measurement  X-ray  images  with  a
resolution of 2400×1935 pixels. [112]

NIH AAPM-Mayo Clinic The training set consists of paired full-dose CT and LDCT images from
10 patients. [113]

Anomaly
detection

HKU-SZH X-ray Set The dataset consists of 326 normal X-ray images and 336 abnormal X-
ray images, all of which are saved in JPEG format. [114]

PALM The  training  set  consists  of  800  color  fundus  photographs  with  image
resolutions of either 1444 pixel × 1444 pixel or 2124 pixel × 2056 pixel. [115]

Digital Knee X-ray This  dataset  contains  1650  digital  X-ray  images  of  the  knee  from
hospitals and diagnostic centers. [116]

 

Table 9    Performance comparison between diffusion models and traditional generative models on image generation tasks. The
bold value in each column is the optimal value.

Model
ISIC2018 BRATS2018 LiTS2017

NMAE PSNR SSIM NMAE PSNR SSIM NMAE PSNR SSIM
CycleGAN 0.092 22.8 0.83 0.089 23.6 0.83 0.080 23.6 0.84
RegGAN 0.079 24.9 0.87 0.076 25.4 0.85 0.074 25.7 0.87
Pix2pix 0.085 23.8 0.82 0.080 24.9 0.85 0.081 24.9 0.86
IDDPM 0.071 26.8 0.87 0.068 26.8 0.87 0.064 27.1 0.88
GDDPM 0.079 25.1 0.85 0.071 25.9 0.86 0.070 26.1 0.88
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datasets.  The  evaluation  uses  dice  coefficient  (DICE),
95% Hausdorff  Distance  (95HD),  and  Intersection
Over  Union (IOU) metrics,  where  lower  95HD values
indicate  better  quality,  while  higher  values  of  DICE
and  IOU  correspond  to  improved  results.  From Table
11,  it  can  be  seen  that  nnUnet  performs  the  best  on
these  three  datasets,  especially  on  the  ROSE  dataset.
While  IDDPM  and  GDDPM  show  good  performance
in some aspects, they are overall still inferior to nnUnet

and  VT-Unet.  The  reason  for  this  could  be  that  the
segmentation  task  focuses  on  predicting  the  label  of
each  pixel,  while  the  diffusion  model  generates  new
pixels  during  the  diffusion  process.  Thus,  the  final
segmentation  effect  is  affected  by  the  pixel  value.
The  convolution  and  deconvolution  operations  of
U-Net  and  its  variants  enable  the  model  to  obtain
context  information  and  spatial  information  of  each
scale,  thereby  accurately  performing  pixel-level

 

Table 10    Performance comparison between diffusion models and traditional generative models on modality conversion tasks.
The bold value in each column is the optimal value.

Model
T1, T2 → FLAIR T1, FLAIR → T2 T2, FLAIR → T1

NMAE PSNR SSIM NMAE PSNR SSIM NMAE PSNR SSIM
A-Unet 0.075 25.27 0.85 0.068 27.64 0.92 0.081 24.98 0.91

CycleGAN 0.080 24.75 0.84 0.084 23.48 0.88 0.081 23.69 0.91
Pix2pix 0.075 25.13 0.86 0.072 26.88 0.92 0.069 26.01 0.92
IDDPM 0.070 26.69 0.89 0.067 27.24 0.93 0.066 27.14 0.93
GDDPM 0.072 26.01 0.88 0.068 26.96 0.92 0.069 26.85 0.92

 

Table 11    Performance comparison between diffusion models and traditional generative models on image segmentation tasks.
The bold value in each column is the optimal value.

Model
MSD BRATS2021 ROSE

DICE 95HD IOU DICE 95HD IOU DICE 95HD IOU
nnUnet 0.91 4.73 0.84 0.88 13.46 0.79 0.96 3.91 0.92

VT-Unet 0.91 6.29 0.85 0.87 13.87 0.77 0.92 3.98 0.85
SegNet 0.81 9.20 0.68 0.83 16.74 0.71 0.88 7.62 0.79
IDDPM 0.90 6.31 0.81 0.83 16.79 0.71 0.90 5.59 0.81
GDDPM 0.86 5.79 0.75 0.82 17.21 0.69 0.86 6.47 0.76

 

Table 12    Performance comparison between diffusion models and traditional generative models on image denoising tasks. The
bold value in each column is the optimal value.

Model
BrainWeb ISBI2015 NIH AAPM-Mayo-Clinic

RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM
Reg-GAN 0.0199 30.99 0.80 0.0159 33.75 0.88 0.0095 40.96 0.98
DNCNN-B 0.0206 30.81 0.75 0.0182 32.08 0.81 0.0117 39.79 0.91

EDCNN 0.0213 30.89 0.78 0.0161 33.16 0.85 0.0079 41.59 0.97
IDDPM 0.0185 31.41 0.81 0.0147 34.71 0.90 0.0071 43.24 0.98
GDDPM 0.0189 31.19 0.83 0.0158 33.94 0.88 0.0076 41.82 0.98

 

Table 13    Performance comparison between diffusion models  and traditional  generative models  on anomaly detection tasks.
The bold value in each column is the optimal value.

Model
HKU-SZH X-ray Set PALM Digital Knee X-ray

Top-1 error AUC Top-5 error Top-1 error AUC Top-5 error Top-1 error AUC Top-5 error
DETR 23.64 84.63 6.57 22.99 84.68 6.21 23.35 82.67 6.31
ResNet 25.69 82.79 7.23 24.87 83.79 7.23 26.58 82.52 7.92
VGG 28.87 82.58 8.89 28.74 81.28 8.60 29.38 80.01 9.57

IDDPM 37.85 70.87 14.14 35.91 63.62 12.76 36.16 62.69 13.12
GDDPM 38.96 70.09 15.38 37.69 60.89 13.98 35.99 60.13 12.81
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segmentation.  Wu  et  al.[65] constructed  FF-Parser  to
eliminate  the  negative  impact  of  high-frequency  noise
in  the  diffusion  process,  while  Hu  et  al.[119] used
image-level annotations to obtain the predicted mask of
the  target  object,  which  does  not  require  the  guidance

of  an  external  classifier  and  avoids  the  influence  of
noise in the diffusion process.
4.2.4　Performance  of  diffusion  models  on  image

denoising tasks
Table  12 shows  a  comparison  between  the  diffusion
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Fig. 7    Comparison of the performance between the diffusion models and traditional generative models in image generation
tasks.  The  generation  performances  of  different  models  on  BRATS2018,  LiTS2017,  and ISIC2018 datasets  are  shown in  the
top, middle, and bottom rows, respectively.
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models and the traditional generative models for image
denoising  on  the  BrainWeb,  ISBI2015,  and  NIH
AAPM-Mayo-Clinic  datasets.  The  evaluation  uses
RMSE, PSNR, and SSIM metrics, where lower RMSE
values indicate better quality. Figure 9 shows the effect
of  denoising  for  different  models.  From Table  12,  it
can  be  seen  that  IDDPM  consistently  shows  the  best
performance  across  all  datasets,  particularly  excelling
in  reducing  RMSE  and  achieving  high  PSNR  and
SSIM scores,  indicating superior  denoising ability and
image  quality  retention.  GDDPM  also  performs  well,
especially  in  maintaining  structural  integrity  as
indicated by its SSIM scores. Reg-GAN and EDCNN-
B show strong performances in specific datasets, while
DNCNN-B  generally  lags  behind  the  others  in  these
tasks.  This  could  be  explained  by  the  generative
process of IDDPM and GDDPM, which typically starts
with  noise  diffusion  and  ends  with  target  distribution.
This  makes  it  conducive  to  image  denoising.  When
there  is  explicit  conditional  information,  such  as  a
textual description or label, the diffusion model can be
guided to generate images with specific properties.
4.2.5　Performance of diffusion models on anomaly

detection tasks
Table  13 shows  a  comparison  between  the  diffusion
models  and  the  traditional  generative  models  for
anomaly  detection  on  the  HKU-SZH  X-ray  Set,
PALM,  and  Digital  Knee  X-ray  datasets.  The
evaluation uses Top-1 error, Area Under Curve (AUC),
and Top-5 error metrics,  where lower Top-1 error and
Top-5 error values indicate better quality, while higher

AUC  values  correspond  to  improved  results.  From
Table  13,  it  can  be  seen  that  DETR  and  ResNet
perform better than VGG, IDDPM, and GDDPM in all
datasets,  with  DETR  showing  the  best  overall
performance. This model has the highest AUC and the
smallest  Top-1  error  and  Top-5  error,  indicating  its
strong  capability  for  anomaly  detection.  However,
IDDPM and GDDPM show weaker anomaly detection
performance  in  these  specific  datasets.  Traditional
models can locate and identify abnormal regions in the
image  in  the  form  of  bounding  boxes,  while  IDDPM
and GDDPM, which are reconstruction-based methods
for anomaly detection, need to compare the pixels and
characteristics of the input image and the reconstructed
image  to  locate  the  anomaly.  Therefore,  the  diffusion
model  is  easily  affected  by  the  quality  of  image
reconstruction  when  performing  anomaly  detection
tasks.  Fontanella  et  al.[120] presented  a  weakly
supervised technique that integrates DDPM and DDIM
at  each  stage  of  the  sampling  process.  This  method
guarantees  the  reconstruction  quality  of  images  and
greatly  improves  the  effectiveness  of  anomaly
detection.

5　Challenge and Prospect

5.1　Current challenges

As  an  advanced  generative  model,  diffusion  models
have  great  potential  in  MIC.  However,  they  are  faced
with several challenges:

Data acquisition and annotation. Training and fine-
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tuning  diffusion  models  require  a  large  amount  of
medical image data, and acquiring and annotating such
data  is  costly  and  time-consuming.  Obtaining  medical
imaging  data  entails  collaborating  with  medical
institutions and raises concerns regarding data privacy.
Accurate  annotation  of  medical  image  data  requires
specialized medical knowledge and expertise.

Model  complexity  and  computational  resources.
The  design  and  training  of  diffusion  models  are
typically  more  complex  than  those  of  traditional
generative  models,  requiring  more  computational
resources  and  time.  This  can  limit  many  researchers
and  healthcare  institutions,  particularly  when  the
models  are  applied  to  large-scale  datasets  or  real-time
diagnostic systems.

Model  generalizability  and  interpretability.
Current diffusion models may perform well on specific
datasets.  However,  their  ability  to  generalize  across
different tasks is still an issue, and their robustness and
adaptability  to  different  environments  need  further
improvement.  In  addition,  diffusion  models  are  often
regarded  as  black-box  models,  which  presents
challenges in interpreting the internal  decision-making
and  reasoning  processes  of  the  model.  This  is  an
important  issue  in  MIC,  where  physicians  need  to
understand the model’s decision-making basis to make
accurate  judgments  and  decisions  about  diagnostic
results.

5.2　Future prospects

The  application  of  diffusion  models  in  MIC  is  still  in
its  early  stages.  It  requires  further  improvements  in
both  theoretical  development  and  empirical
investigation.  The  following  areas  of  research  may  be
possible future directions:

Combining  diffusion  models  with  large  models.
From an algorithmic perspective, both diffusion models
and  large  models  are  generative  pre-training  methods.
The  inclusion  of  human-annotated  feedback  and
reinforcement  learning  in  the  training  process  of
diffusion  models,  like  how  ChatGPT  is  fine-tuned
based  on  human  feedback,  is  worth  exploring.
Additionally,  efficient  fine-tuning  of  Stable  Diffusion
for MIC tasks is also worth further investigation.

Theoretical  explanations  of  diffusion  models.
Diffusion  models  are  powerful  models,  particularly  in
applications  where  they  can  rival  GANs  without  the
need  for  adversarial  strategies.  Therefore,  it  is  crucial
to understand why diffusion models are more efficient

than  other  models  in  performing  specific  tasks.  The
theoretical interpretation of diffusion models represents
an important research direction. Furthermore, exploring
various  modeling approaches  within  the  framework of
diffusion model theory presents a promising avenue.

Personalized  medicine  and  precision  diagnosis.
Diffusion  models  can  be  used  to  analyze  patient-
specific  medical  image  data  and  reveal  disease
characteristics and pathological changes. This provides
customized  diagnostic  information  for  each  patient  by
learning  patterns  and  associations  in  the  data.  The
integration  of  deep  learning  and  artificial  intelligence
technologies  will  further  improve  the  accuracy  and
adaptability of diffusion models in processing complex
medical  imaging data,  and combining them with other
health data can provide physicians with evidence-based
personalized treatment recommendations.

6　Conclusion

In this study, we review the core theoretical framework
of the diffusion models and their recent applications in
five MIC tasks. We not only summarize the progress of
the  diffusion  models  in  MIC,  but  also  explore  the
performance  of  the  diffusion  models  in  different  MIC
tasks  through  fine-tuning  experiments  and  a  series  of
comparison  experiments.  Through  these  experiments,
we show the unique advantages of the diffusion models
in  handling  different  MIC  tasks,  and  also  explore
potential  strategies  for  its  performance  improvement.
We  also  recognize  that  diffusion  models  still  face
challenges  in  practical  applications,  such  as
computational  efficiency  and  model  generalization
ability.  Future  research  could  aim  to  address  these
issues  and  develop  more  efficient  and  accurate  model
variants  to  further  expand  their  applications  in  areas
such  as  medical  diagnosis,  disease  monitoring,  and
treatment planning.
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