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Abstract: Recent years have seen growing demand for the use of edge computing to achieve the full potential

of  the  Internet  of  Things  (IoTs),  given  that  various  IoT  systems  have  been  generating  big  data  to  facilitate

modern latency-sensitive applications. Network Dismantling (ND), which is a basic problem, attempts to find an

optimal set of nodes that will maximize the connectivity degradation in a network. However, current approaches

mainly  focus  on  simple  networks  that  model  only  pairwise  interactions  between  two  nodes,  whereas  higher-

order groupwise interactions among an arbitrary number of nodes are ubiquitous in the real world, which can be

better modeled as hypernetwork. The structural difference between a simple and a hypernetwork restricts the

direct application of simple ND methods to a hypernetwork. Although some hypernetwork centrality measures

(e.g.,  betweenness)  can  be  used  for  hypernetwork  dismantling,  they  face  the  problem  of  balancing

effectiveness  and  efficiency.  Therefore,  we  propose  a  betweenness  approximation-based  hypernetwork

dismantling method with a Hypergraph Neural Network (HNN). The proposed approach, called “HND”, trains a

transferable  HNN-based  regression  model  on  plenty  of  generated  small-scale  synthetic  hypernetworks  in  a

supervised  way,  utilizing  the  well-trained  model  to  approximate  the  betweenness  of  the  nodes.  Extensive

experiments on five actual hypernetworks demonstrate the effectiveness and efficiency of HND compared with

various baselines.

Key words:  hypernetwork  dismantling; Graph  Neural  Network  (GNN); betweenness  approximation; edge

computing

1　Introduction

The Internet of Things (IoTs) has significantly changed

the  way  we  live  in  a  variety  of  aspects[1, 2],  including
entertainment,  agriculture,  and  manufacturing.  In  this
situation,  the  recently  emerged  new  computing
paradigms  have  provided  a  beneficial  complement  to
the  traditional  cloud-based  systems.  An  example  is
edge  computing,  which  can  provide  partial  computing
resources  that  are  closer  to  the  user  or  device  side.
Intuitively, the IoT is a heterogeneous service network,
each  with  the  ability  to  depict  entities  and  their
relations[3].  The IoT has been widely applied to model
various  application  systems  and  is  considered  one  of
the  major  sources  of  data  that  facilitate  modern
latency-sensitive applications at the network edge, such
as  artificial  intelligence,  industrial  automation,  and
smart  transportation.  Hence,  edge computing is  highly
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demanded to achieve the full potential of the IoT.
However,  as  a  basic  problem  in  network  science,

Network  Dismantling  (ND)[4] aims  to  find  a  set  of
nodes  whose  removal  will  greatly  destroy  network
connectivity. Due to the fact that network connectivity
is highly related to the spread efficiency of information
or  even  infectious  diseases,  ND  has  been  widely
applied  in  corresponding  fields[5, 6].  Many  researchers
have  proposed  several  dismantling  methods  to  solve
this  problem.  However,  current  methods[4, 7, 8] mainly
focus  on  the  traditional  simple  network  that  only
considers  the  pairwise  relation  between  two  nodes.
However,  there  are  numerous  higher-order  groupwise
relations  among  an  arbitrary  number  of  nodes  in  the
real  world,  and  traditional  simple  networks  cannot
model  this  kind  of  relation.  Thus,  the  application  of
these  methods  is  limited  when  facing  groupwise
relations.

Fortunately, a hypernetwork[9] has unique advantages
in modeling such groupwise relations, that is why it has
attracted  increasing  research  attention.  As  shown  in
Fig.  1,  a  hyperedge  in  hypernetworks  can  naturally
express  the  higher-order  relations  among  an  arbitrary
number  of  nodes.  Thus,  in  modeling  real-world
systems,  a  hypernetwork  is  more  suitable  than  a
traditional  simple  network,  especially  when  dealing
with groupwise relations. However, even if the higher-
order  relation  modeling  problem  is  solved  by  a
hypernetwork,  the  existing  dismantling  methods  still
have  limitations  when  it  comes  to  hypernetwork
applications. On the one hand, these methods cannot be
directly  applied  due  to  the  structural  difference
between  a  hypernetwork  and  a  traditional  simple
network. On the other hand, although various centrality
measures  in  a  hypernetwork  can  be  used  for
dismantling  just  like  in  a  traditional  network,  both
networks  face  the  problem  of  balancing  effect  and
efficiency. For example, betweenness centrality is very
suitable  for  dismantling  a  network,  but  it  requires

complex  calculations.  Meanwhile,  degree  centrality  is
easy  to  calculate,  but  it  has  poor  dismantling
performance.

Recently,  with  the  emergence  of  deep  learning
technology,  researchers  have  attempted to  utilize  deep
models  to  approximate  complex  centrality  measures,
such  as  betweenness[10] and  closeness[11].  These
measures can be approximated with less computational
complexity  within  a  limited  error  range.  This  means
that  the  approximate  centrality  values  are  naturally
utilized  in  various  tasks,  taking  both  effect  and
efficiency  into  consideration.  Therefore,  the  present
paper  proposes  a  novel  hypernetwork  dismantling
method  based  on  deep  learning  technology,  which  we
call “HND”.  This  method  adopts  the  Hypergraph
Neural  Network  (HNN)  to  approximate  betweenness
centrality  in  hypernetworks  and  utilizes  the
approximate  values  to  accomplish  the  task  of
hypernetwork  dismantling.  Specifically,  HND  first
generates  numerous  small-scale  synthetic
hypernetworks  and  constructs  betweenness  ranking
samples  according  to  these.  Then,  an  HNN-based
betweenness  ranking  model  is  built,  and  the  samples
generated  in  the  previous  step  are  used  to  train  this
ranking model.  Finally,  the well-trained model is  used
to approximate the betweenness of all nodes in a given
hypernetwork, and the hypernetwork is then dismantled
based on the approximate betweenness values.

Our main contributions are summarized as follows:
●  We  design  a  betweenness  approximation  model

based  on  an  HNN.  The  model  can  be  trained  with
numerous  synthetic  ranking  samples  and  applied  to
real-world  hypernetworks.  With  the  help  of  deep
learning’s  powerful  representation  ability,  the  trained
model  can  well-approximate  the  betweenness  of  real-
world  hypernetworks  with  a  lower  computation
complexity.

●  We  propose  a  novel  hypernetwork  dismantling
method,  called “HND”,  utilizing  the  betweenness
approximation  model  to  calculate  the  approximate
betweenness  that  is  adopted  to  achieve  hypernetwork
dismantling. Due to the approximation ability of HND,
our  proposed model  can  achieve  performance  close  to
betweenness  with  much  lower  computational
complexity.

●  We  conduct  extensive  experiments  on  five  real-
world  hypernetworks,  and  the  results  show  that  our
proposed method outperforms the baselines. Moreover,

 

(a) Simple network (b) Hyper network 
Fig. 1    Structural difference between a hypernetwork and a
simple network.
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the  experimental  results  confirm  that  the  betweenness
ranking model can approximate betweenness with less
time consumption.

The  remainder  of  the  paper  is  organized  as  follows.
Section  2  introduces  the  related  works  about  DN  and
Graph  Neural  Networks  (GNNs).  Section  3  provides
some  necessary  definitions.  Section  4  introduces  the
proposed  method  in  detail,  while  Section  5  describes
the experimental settings and presents detailed analyses
of  the  experimental  results.  Finally,  Section  6
summarizes  the  whole  paper  and  presents  a  potential
direction for our future work.

2　Related Work

2.1　Network dismantling

ND[4] is  a  problem that  aims to  find an optimal  set  of
nodes  whose  removal  will  greatly  destroy  network
connectivity.  It  is  an  NP-hard  graph  combinatorial
optimization  problem  with  an  exact  solution  that  is
difficult to obtain. Thus, researchers have attempted to
find  approximate  solutions  and  propose  various  ND
methods.

Generally,  current  ND  methods  can  be  divided  into
three  classes.  The  first  class  is  based  on  centrality
measures  in  which  nodes  are  selected  greedily
according to their  centrality measures.  However,  these
methods  typically  face  the  problem  of  balancing
effectiveness and efficiency. Local centrality measures
(e.g., degree centrality) are easy to calculate but cannot
achieve  good  dismantling  performance,  while  global
centrality  measures  (e.g.,  betweenness  centrality  and
closeness centrality) have good dismantling ability but
have  a  high  computation  complexity.  To  take  both
effectiveness  and  efficiency  into  consideration,  some
centrality  measures  utilizing  mesoscopic  network
structures  have  been  proposed.  For  example,  the
Collective  Influence  (CI),  proposed  by  Morone  and
Makse[12] considers  both  the  dismantling effectiveness
and  efficiency  by  flexibly  balancing  globality  and
locality through a tuning hyperparameter.

The second class of ND methods consists of heuristic
methods  that  work  by  dismantling  a  network  using
multiple  heuristic  steps.  For  example,  Braunstein  et
al.[4] proposed  a  three-step  method  called “MinSum”,
which  dismantles  a  network  by  decycling,  tree-
breaking,  and  node  reinsertion.  Similar  to  MinSum,
CoreHD[13] and BPD[14] also adopt this framework but
have  differences  in  details.  Moreover,  Ren  et  al.[7]

proposed  the  GND  algorithm  to  consider  the  case  of
weighted nodes.

The  third  class  of  ND  methods  is  based  on  deep
learning,  wherein  researchers  aim  to  achieve  better
dismantling effectiveness with the help of the powerful
ability  of  deep  learning.  Specifically,  Fan  et  al.[8]

proposed  FINDER  based  on  deep  reinforcement
learning.  This  method  trains  an  agent  to  perform
dismantling  exercises  on  numerous  small-scale
synthetic  networks,  and  is  then  applied  to  real  large-
scale  networks.  Meanwhile,  Grassia  et  al.[15] proposed
the  GDM  method  that  trains  a  GNN  ranking  model
using  ground-truth  dismantling  sequences,  and  then
applies  it  to  real  ND.  Recently,  with  the  surge  of
hypernetworks,  Yan  et  al.[16] proposed  a  dismantling
method  suitable  for  hypernetworks  based  on  deep
reinforcement  learning  called  HITTER.  Generally,
current  works  mainly  focus  on  traditional  simple
networks but have so far ignored hypernetworks. Thus,
in  the  present  paper,  we  attempt  to  solve  the
hypernetwork  dismantling  problem  via  deep  learning
technology.

2.2　GNNs

As  a  kind  of  network  embedding  method,  GNNs  can
map nodes into low-rank vectors according to specific
tasks. Various GNNs based on the most basic neighbor
information  aggregation  mechanisms  have  been
proposed and applied to many fields. Among these, the
Graph  Convolution  Network  (GCN)[17, 18] is  the  most
common  method.  Through  neighbor  information
aggregation,  feature  linear  transformation,  and
nonlinear  activation,  node  embedding  can  be  obtained
and applied to various downstream tasks, such as node
classification  and  line  prediction.  Other  GNNs
following this framework have been proposed as well.
For  example,  in  the  Graph  Attention  Network
(GAT)[19],  different  neighbors  have  varying  levels  of
importance  to  the  target  nodes  in  the  step  of  neighbor
aggregation.  GAT  has  also  introduced  the  attention
mechanism to  make  target  nodes  adaptively  aggregate
information.  Hamilton et  al.[20] proposed the inductive
GraphSAGE, which can infer the embeddings of nodes
unseen  in  the  training  stage.  Due  to  their  powerful
expression ability, GNNs have been applied to various
fields, such as recommendation systems[21–23] and user
profiles[24, 25].  However, the core neighbor information
aggregation  mechanism  in  GNN  relies  on  pairwise
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interactions.  Therefore,  because  of  the  structural
differences  with  traditional  simple  networks,  these
GNNs cannot be directly applied to hypernetworks. To
solve  this  problem,  researchers  have  proposed  various
methods  to  extend  the  traditional  GNNs  to
hypernetworks.  For  example,  Feng  et  al.[26] proposed
HGNN,  which  applies  GCN  to  hypernetworks  by
transforming  hypernetworks  into  simple  networks  in
accordance  with  clique  expansion.  Similarly,  Yadati
et  al.[27] transformed  hypernetworks  into  simple
networks  by  breaking  hyperedges  into  pairwise  edges
via  specific  rules  and  then  directly  applying  GCN  to
these.

Unlike  the  abovementioned  methods,  the  UniGNN
proposed  by  Huang  and  Yang[28] features  a  neighbor
information aggregation mechanism that is suitable for
hypernetworks.  Through  the  aggregation  paths  of
nodes to hyperedges and hyperedges to nodes, various
traditional GNNs, such as GCN, GAT, and GIN[29], can
be transferred to hypernetworks.

In  this  paper,  we  adopt  the  HNN  to  accomplish  the
betweenness  approximation  task.  Although  some
works have attempted to approximate betweenness via
GNNs,  they  are  not  suitable  for  hypernetworks.
Therefore,  an  HNN  for  hypernetwork  betweenness
approximation is necessary.

3　Preliminary

In  this  section,  we  briefly  introduce  some  related
concepts.

G = (V, E) V = {v1, v2, . . . , vN}
N = |V |

E = {e1, e2, . . . , eM}
M = |E|

e e ⊆ V
e , ϕ

Definition  1 (Hypernetwork[9])　 A  hypernetwork
is  defined  as ,  where 
denotes  the  node  set  in  the  hypernetwork,  and 
is the number of nodes. The  is the
set  of  hyperedges,  and  denotes  the  number  of
hyperedges. Each hyperedge  is defined as  and

.
e

e
For  each  hyperedge  in  the  hypernetwork,  the  size

of  denotes  the  number  of  nodes  contained  in  it.
Obviously, given that the size of hyperedges is flexible,
the  hypernetwork  can  model  both  pairwise  and
groupwise  interactions.  This  hypernetwork  becomes  a
traditional  simple  network  when  the  size  of  all
hyperedges  in  a  hypernetwork  equals  2.  Therefore,  a
traditional  simple  network  can  be  seen  as  a  specific
form of hypernetwork.

H ∈ RN×M
Definition 2 (Incidence matrix[30])　The incidence

matrix of a hypernetwork is  a matrix .  Each

Helement of  is given below:
 

Hvi, e j =

1, vi ∈ e j;
0, otherwise

(1)

Similar  to  the  adjacent  matrix  in  traditional  simple
networks,  the  incidence matrix  can be used to  express
relations  between  nodes  and  hyperedges  in  a
hypernetwork. Figure 2a shows a sample hypernetwork
and its incidence matrix.

vi G vi

vi

Definition  3 (Hyperdegree[30] and  degree[9])　For
each node  in hypernetwork , the hyperdegree of 
is  defined  as  the  number  of  hyperedges  containing
node ,
 

hdeg (vi) =
∑
e j∈E

Hvi, e j (2)

deg (vi)
vi

The  degree,  namely ,  denotes  the  number  of
nodes adjacent to the ,
 

deg (vi) =
∑
v j∈V

(H ·HT)vi, v j −hdeg (vi) (3)

Given that the dismantling problem is highly related
to network connectivity,  we define the connectivity of
a hypernetwork as follows.

G

G connectivity (G)

|VGCC| G
|VG |

Definition  4 (Hypernetwork  connectivity)　 The
connected component containing the highest number of
hyperedges  in  hypernetwork  is  called  the  Giant
Connected Component (GCC), and the connectivity of

, denoted as , is defined as the ratio of
the  number  of  nodes  in  GCC  (which  is  denoted  as

) to the number of nodes in  (which is denoted
as ),
 

connectivity (G) =
|VGCC|
|VG |

(4)

 

1 0

1 0

1 1

0 1

0 1

Incidence
matrix

(a) Incidence matrix

(b) Connectivity (c) 2-section network

e0
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Fig. 2    Hypernetwork and its corresponding definitions.
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Unlike in a traditional simple network, our definition
of  hypernetwork  connectivity  is  related  to  the
connections  between  hyperedges.  According  to
Berge[31],  a  connected  hypernetwork  relies  on  its
relations  among  hyperedges,  not  nodes.  Moreover,
selecting  the  connected  component  containing  the
highest number of nodes as the GCC is also reasonable.
However, the connectivity defined in this way is likely
to be influenced by those huge hyperedges.  As shown
in Fig.  2b,  selecting  the  left-connected  component
cannot  reflect  the  property  of  hypernetwork
connectivity, and this move also violates the purpose of
dismantling.

e
G

e

Definition  5 (2-section  network[30])　 A  2-section
network  is  a  traditional  simple  network  transformed
from  a  hypernetwork.  For  each  hyperedge  in  a
hypernetwork ,  the  groupwise  interaction  can  be
transformed into multiple pairwise interactions through
linking each two nodes in . Furthermore, the 2-section
network  is  obtained  when  all  hyperedges  are
transformed over.

As  shown  in Fig.  2c,  each  hypernetwork  can  be
transformed into a simple network. In this way, various
methods designed for a simple network can be applied
to a hypernetwork.

4　Proposed Method: HND

4.1　Overall framework

In  this  section,  we  introduce  our  proposed  method  in
detail.  Generally,  our  proposed  HND  method  can  be
divided into three steps.

Step  1: To  supply  training  samples  for  the
subsequent model, we adopt a hypernetwork generator
to  generate  numerous  small-scale  synthetic
hypernetworks  and  calculate  each  node’s  betweenness
value  in  these  networks.  Then,  training  samples  are
constructed  in  accordance  with  the  ground-truth
betweenness values (as shown in Section 4.2).

Step  2: Based  on  the  HNN,  we  build  a  node
betweenness  approximation  model  in  a  hypernetwork.
This  model  can  be  applied  to  approximate  the  nodes’
betweenness  in  a  hypernetwork  based  on  the  network
structure  and  predict  the  nodes’ approximation
betweenness values (as shown in Section 4.3).

Step 3: By combining the node ranking samples and
approximation  betweenness  values,  we  build  the
pairwise ranking loss to optimize the parameters in the
ranking model. After multiple iterations, the model can

be used to approximate the nodes’ betweenness in real-
world  hypernetworks;  it  can also  be  further  applied to
hypernetwork dismantling (as shown in Section 4.4).

4.2　Training sample generation

p
q

In this step, numerous node pair samples are generated
according  to  their  betweenness  values.  Thus,  a
synthetic hypernetwork generator is needed to generate
small-scale  hypernetworks.  Two  synthetic
hypernetwork generators have been recently proposed,
namely,  HyperPA[32] and  HyperFF[33].  The  main
difference  between  them  is  that  HyperPA  generates
hypernetworks  according  to  a  predefined  distribution
from real-world hypernetworks, while HyperFF adopts
two  hyper-parameters  (i.e.,  burning  probability  and
expanding  probability )  to  tune  the  density  of
synthetic  hypernetworks.  Furthermore,  compared  with
HyperPA,  HyperFF  is  more  flexible  and  can  produce
more  generalized  hypernetworks.  Thus,  HyperFF  is
adopted in the present study to accomplish this task.

G

B Bvi

vi

vi v j

vi v j lvi, v j

Once  the  generator  is  chosen,  many  small-scale
synthetic  hypernetworks  can  be  generated.  For  each
synthetic  hypernetwork ,  we  transform  it  into  its  2-
section  network,  after  which  we  calculate  the
corresponding  betweenness  value  (where 
denotes  the  betweenness  value  of  node ).  Then,
multiple  node  pairs  are  sampled  to  construct  ranking
instances.  For  two  random  nodes  and ,  instances
( , , ) can be constructed,
 

lvi, v j =

1, Bvi > Bv j ;

0, Bvi < Bv j

(5)

lvi, v j vi v jwhere  represents the difference between  and .
Notably, ranking instances cannot be constructed when
two  nodes’ betweenness  values  are  equal.  Therefore,
this case should be avoided when sampling node pairs.

S G

Ω

Through the method described above, each synthetic
hypernetwork can generate  one  corresponding ranking
sample  set,  denoted  as ,  after  which  the  training
samples space  is also obtained, as shown below:
 

S G =
{
(vG

0 , vG
1 , lGv0, v1

), (vG
1 , vG

2 , lGv1, v2
), . . .
}

(6)
 

Ω = {S G1 , S G2 , . . .} (7)

4.3　Betweenness approximation model

S G

To  approximate  the  betweenness  of  a  node  in  a
hypernetwork, we build an HNN-based ranking model.
For each ranking sample set , our model first obtains
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the  nodes’ embeddings  via  an  HNN. Then,  the  nodes’
embeddings  are  fed  into  a  fully  connected  neural
network  to  obtain  the  approximation  betweenness
values. The detailed process is introduced below.

GFor a given hypernetwork , we first map the nodes
into  their  dense  vector  form  with  an  HNN.  However,
conventional  transductive  HNNs,  such  as  HGNN  and
HyperGCN,  are  not  applicable  in  our  framework
because  the  training  process  is  conducted  on  a  large
number  of  small-scale  synthetic  hypernetworks.  Then,
the  trained  model  is  applied  to  real-world
hypernetworks.  Thereafter,  we  choose  the  inductive
HNN called HyperSAGE[16], which we proposed in our
previous  work.  Generally,  HyperSAGE  contains  two
levels  of  information  aggregation,  i.e.,  hyperedge  and
node level aggregation.

Al
In  the  step  of  hyperedge  level  aggregation,  the

hyperedge  features  (denoted  as )  are  first  obtained
according to the nodes’ features, as shown below:
 

Al = softmax (HT⊙ (XlW1)T) (8)
 

Yl = AlXl (9)

Xl ∈ RN×Dl Yl ∈ RM×Dl

l
Dl l

W1 ∈ RDl×1

⊙
softmax

X0 = 1 X0

1

where  and  are  the  nodes’ and
hyperedges’ embeddings in the -th layer,  respectively
(  denotes the embedding dimension in the -th layer).
In  addition,  refers  to  the  trainable
parameters,  and  denotes  the  operation  of  the
element-wise  product.  Function  is  used  to
normalize  the  aggregation  weight.  Notably,  we  set

 due  to  the  lack  of  initial  node  features .
Based  on  the  view  of  information  propagation,  nodes
with  high  betweenness  values—as  hubs  of  multiple
shortest  paths—have  more  powerful  information
propagation  ability  than  those  with  low  betweenness
values. Thus, the initial node feature  can be regarded
as  the  initial  information,  and  each  layer  of  HNN is  a
kind of information propagation. After multiple layers,
nodes’ embeddings  can  reflect  their  ability  of
information  propagation,  thus  enabling  their  further
application  to  betweenness  approximation.  Once  the
hyperedges’ embeddings  are  obtained,  the  hyperedge
level aggregation can be performed as shown below:
 

Yl+1 = f ([YlW2||(HTHYlW3)]W4) (10)

W2 W3 ∈ RDl×Dl+1 W4 ∈ R2Dl+1×Dl+1

||

f ( )

where ,  and  are  all
trainable parameters.  denotes the operation of matrix
concatenation,  and  the  nonlinear  activation  function

 is specified as ReLU.

The next step is node-level aggregation. In this step,
node  aggregate  information  from  their  adjacent
hyperedges is obtained, as shown below:
 

Xl+1 = f ([XlW5||HYl+1W6]W7) (11)
W5 ∈ RDl × Dl+1 W6 ∈ RDl+1 × Dl+1 W4 ∈

R2Dl+1×Dl+1

where  ,  , and 
 are trainable parameters.

XL L

B̂

Once multiple layers are chained in HyperSAGE, the
nodes’ final  embeddings  are  obtained  (  denotes
the total number of layers in HyperSAGE). By feeding
them  into  a  fully  connected  neural  network,  the
approximated  betweenness  values  of  the  nodes  can
be calculated by
 

B̂ = f (XLW8+b) (12)
W8 ∈ RDL×1 b ∈ Rwhere  and  are trainable parameters.

Thus, the approximated betweenness values of nodes
are obtained through the above steps. According to the
values,  a  hypernetwork  can  be  dismantled  by  greedily
removing  nodes  with  the  highest  approximated
betweenness values. Upon the removal of each batch of
nodes,  the  approximated  betweenness  values  of  the
residual  nodes  are  recalculated  due  to  the  structural
changes  of  the  hypernetwork.  Betweenness  value
approximation  and  node  removal  are  then  conducted
repeatedly until  the scale of GCC in the hypernetwork
decreases  to  a  threshold  value  or  when  all  nodes  are
removed.

4.4　Optimization

To  optimize  the  betweenness  approximation  model,
node  ranking  samples  generated  in  Section  4.2  are
utilized to update all trainable parameters in the model.
Thus, we build the pairwise ranking loss as follows.

S G

(vG
i , vG

j , lGvi, v j
)

lossG
vi,v j

For each samples set ,  the Bayesian Personalized
Ranking (BPR)[34] loss of each instance ,
denoted as , is calculated,
 

l̂Gvi, v j
= sigmoid

(
B̂G

vi
− B̂G

v j

)
(13)

 

lossG
vi, v j
= −lGvi, v j

log
(
l̂Gvi, v j

)
−
(
1− lGvi, v j

)
log
(
l̂−G

vi, v j

)
(14)

B̂G
vi

B̂G
v j

vi v j

G l̂Gvi, v j

sigmoid

Ω

where  and  denote  the  approximated
betweenness  values  of  node  and  node  in
hypernetwork ,  respectively,  denotes  the  value
calculated by . In accordance with the pairwise
loss  of  a  single  instance,  the  total  loss  of  the  whole
sample  can be obtained as below.
 

loss =
1
|Ω|
∑

S G∈Ω

1
|S G |

∑
(
vG

i , v
G
j , l

G
vi , v j

)
∈ S G

lossG
vi, v j

(15)
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Next,  we  use  gradient  decrease[35] to  update  all
trainable  parameters  in  our  model.  Through  multiple
iterations of parameter updating, the loss of the model
will  converge.  Then,  the  model  can  be  used  to
approximate  nodes’ betweenness  in  real-world
hypernetworks.

4.5　Time complexity

O (M×D)
O (N ×D)

O ((N +2×M)×L×D)
O (N ×D)

O ((N +2×M)×L×D+N ×D)

O (N ×M) L
D≪ N M

In  the  process  of  inference,  the  time  complexity  of
HND  is  mainly  due  to  hypernetwork  embedding  (i.e.,
HyperSAGE) and the approximation function (i.e.,  the
fully  connected  neural  network).  For  the  former  part,
there are two steps in each layer of HyperSAGE. (1) In
hyperedge  level  aggregation,  the  time  complexities  of
attention  mechanism  and  information  propagation  are
both ; (2) In node-level aggregation, the time
complexity  of  information  propagation  is .
Therefore,  the  time  complexity  of  HyperSAGE  is

.  For  the  latter  part,  the  time
complexity  of  the  fully  connected  layer  is .
Thus,  the  inference  complexity  of  HND  is

.  While  for  exact
betweenness centrality calculation, its time complexity
for  unweighted  networks  is .  Given  that 
and  and  in  most  real-world  scenarios,  our
proposed  HND  has  a  linear  time  complexity  and  is
more  practically  applicable  than  exact  betweenness
centrality calculation, which is showed in Algorithm 1.

5　Experiment

In  this  section,  we  conduct  extensive  experiments  to
verify the effectiveness of our proposed method.

5.1　Experimental datasets and settings

5.1.1　Experimental datasets
We  collect  five  real-world  hypernetworks  to  evaluate
our  proposed  method.  Brief  introductions  about  these
datasets are listed below.

● Cora-co-authorship[27] This  dataset  contains
scientific  papers  published  in  the  field  of  machine
learning.  We  construct  a  hypernetwork  by  taking
authors as nodes and co-author relations as hyperedges.

● Citeseer[27] This dataset contains scientific papers
in  six  fields,  along  with  their  citation  relations.  To
construct  the  hypernetwork,  we  map  the  papers  and
citation  relations  as  nodes  and  hyperedges,
respectively.

● MAG[36] This  dataset  contains  scientific  papers
and  authors  from  the  field  of  history  in  Microsoft

Academic  Graph.  Similar  to  the  Cora-co-authorship
dataset,  we  map  papers  as  nodes  and  co-author
relations as hyperedges.

● Pubmed[27] This dataset contains scientific papers
from  the  field  of  diabetes,  along  with  their  citation
relations.  Given  that  Pubmed  is  the  same  as  Citeseer,
the  method  of  constructing  hypernetworks  in  Citeseer
is also suitable for Pubmed.

● NDC[37] This  dataset  contains  information  about
many  kinds  of  drugs,  each  consisting  of  multiple
substances.  The  hypernetwork  can  be  constructed  by
considering  substances  and  drugs  as  nodes  and
hyperedges, respectively.

For these datasets, we conducted some preprocessing
steps.  Due  to  the  dismantling  problem  being
concentrated  on  the  connectivity  of  the  network,  a
disconnected  network  is  likely  to  disturb  the
experimental  results.  Therefore,  for  each  original
hypernetwork, we only select their GCCs as the initial
 

Algorithm 1　Training process of HND
(Nmin, Nmax)

(pmin, pmax)
(qmin, qmax)

J I L
D r

Require: Scale range of synthetic hypernetworks ,
burning propabality range  in HyperFF, expanding
propabality range  in HyperFF, synthetic hypernetwork
number , max iteration number , HyperSAGE layer number ,
embedding dimension , and node pairs sample ratio 

ΘEnsure: Betweenness approximation model parameter 
Θ  1: Initialize model parameter  randomly;

Ω = { }  2: Initialize sample set 
n J  3: for  = 1 to  do

p, q, N [pmin, pmax] [qmin,

qmax] [Nmin, Nmax]
  4:　Take random values  in range , 
  　　 , and , respectively;

G N
p q

  5:　Generate a hypernetwork  which has  nodes by HyperFF
　　  with hyperparameters  and ;

B̂G G  6:　Calculate the exact betweenness values  of ’s
　  　corresponding 2-section network;

⌈rN⌉  7:　Sample  node pairs randomly;
S G  8:　Generate ranking samples  according to Eqs. (5) and (6);

S G Ω  9:　Add  into sample set ;
10: end for

i I11: for  = 1 to  do
S G ∈ Ω12:　for  do

G13:　　Embed nodes in hypernetwork  according to Eqs. (8)–(11);
14:　　Calculate nodes’ approximated betweenness values
　  　　according to Eq. (12);
15:　　Calculate pairwise loss according to Eq. (14);

Θ16:　　Update model parameters  through gradient decrease;
17:　end for
18: end for

Θ19: return model parameter 
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hypernetwork waiting to be dismantled. Some statistics
of  hypernetworks  after  preprocessing  are  summarized
in Table 1.
5.1.2　Baselines
We select various baselines to evaluate the dismantling
performance of our method, and their introductions are
presented below:

● Highest  Degree  Adaptive  (HDA) This  method
dismantles a network according to degree. Nodes with
the  highest  degree  will  be  removed  in  each  removal
step.  After  each  removal  step,  the  nodes’ degrees  will
be recalculated due to the changes in network structure.

● Highest  HyperDegree  Adaptive  (HHDA) This
method  dismantles  a  hypernetwork  according  to
hyperdegree.  Similar  to  HDA,  nodes  with  the  highest
hyperdegree  will  be  removed  in  each  step,  and  their
hyperdegrees will be updated upon removal.

● Collective  Influence  (CI)[12] This  method
removes  nodes  according  to  their  CI  values,  and  the
way of calculating the CI value for each node is given
below:
 

CIvi = (deg (vi)−1)
∑

v j ∈ Neik(vi)

(deg (v j)−1) (16)

Neik (vi) k vi

k
where  denotes the -hop neighbors of node ,
and in this paper,  we set  to be 2.  The node with the
highest CI value will be removed in each step, and the
CI values of residual nodes will also be recalculated.

● GND[7] GND  first  computes  the  network’s
weighted Laplacian matrix,  which is  utilized to  obtain
nodes’ eigenvector  through  spectrum  approximation.
Then, we split  the nodes into two groups according to
their eigenvector. Finally, we used the weighted vertex
cover algorithm to select the nodes to be removed.

● FINDER[8] This  method  is  based  on  deep
reinforcement learning. It builds an agent and makes it
to  perform dismantling  exercises  on  many  small-scale
synthetic networks to optimize the agent’s dismantling
strategy. Once its strategy converges, the agent can be
used to dismantle real-world networks.

● SubTSSH[38] This method is designed to solve the

problem of selecting target nodes set in hypernetworks.
By  iteratively  conducting  node  removal  and  influence
propagation,  this  can  be  used  for  hypernetwork
dismantling.

● HITTER[16] This  method is  specifically designed
for  hypernetwork  dismantling  based  on  deep
reinforcement  learning.  First,  it  builds  an  agent  to  do
trial-and-error  on  many  small-scale  synthetic
hypernetworks.  After  the  agent’s  dismantling  strategy
is  well  optimized,  it  can  be  utilized  to  dismantle  real-
world hypernetworks.

In the abovementioned baselines,  HDA, HHDA, CI,
and  SubTSSH  are  methods  based  on  centrality
measures.  GND  is  a  recently  proposed  heuristic
method,  while  FINDER  and  HITTER  are  methods
based  on  deep  learning.  Generally,  these  baselines
cover  several  commonly  used  dismantling  methods.
Moreover,  some  of  these  baselines  (HDA,  CI,  GND,
and  FINDER)  cannot  be  directly  applied  to
hypernetworks.  Therefore,  we  transform  the
hypernetworks  into  their  corresponding  2-section
networks when applying these methods.
5.1.3　Metrics
We  adopt  Accumulated  Normalized  Connectivity
(ANC)[39] to evaluate the performance of hypernetwork
dismantling. The calculation of ANC is given below:
 

ANC(κ) =
1
K

K∑
k=1

connectivity (G\{v1, v2, . . . , vk})
connectivity (G)

(17)

κ = {v1, v2, . . . , vK}

G\{v1, v2, . . . , vk}
{v1, v2, . . . , vk} G
κ

where  is the node removal sequence
obtained  by  various  dismantling  methods,  and

 denotes  the  residual  hypernetwork
after  removing  nodes  from .  Given  a
node removal sequence , a low ANC value means this
sequence can dismantle the network effectively.
5.1.4　Experimental settings

Nmin

Nmax

(pmin, pmax)
(qmin, qmax) (0.1, 0.4)

In the step of  sample generation,  the minimal  scale  of
synthetic  hypernetwork  is  set  to  100,  and  the
maximal  scale  is  set  to  150.  The  burning
probability  range  and  expanding
probability range  are all fixed to .

 

Table 1    Statistics of datasets.
Dataset Number of nodes Number of hyperedges Average node hyperdegree Average hyperedge size

Cora-co-authorship 1676 463 1.66 6.00
Citeseer 1019 626 2.23 3.63
MAG 1669 784 1.59 3.38
NDC 3065 4533 13.57 9.17

Pubmed 3825 5432 7.45 5.25
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The  number  of  synthetic  hypernetworks  is  set  to
1000, and for each hypernetwork we randomly sample

 node  pairs  as  training  samples.  In  the
betweenness  approximation  model,  the  number  of
layers  of  HyperSAGE  is  set  to  4,  and  the  embedding
dimension  is  set  to  32.  In  the  training  process,  the
learning rate of the model is set to 0.005. Furthermore,
we generate 50 synthetic hypernetworks as a validation
dataset  to  verify the model  training.  We also adopt  an
early stopping mechanism to avoid model over-fitting,
and its patience is fixed at 100.

5.2　Experimental results and analyses

5.2.1　Overall performance
We  apply  the  proposed  HND  and  baselines  to
dismantle  those  real-world  hypernetworks  in  datasets,
and  their  performance  is  summarized  in Table  2.  As
shown  in  the  results,  we  can  easily  conclude  that  our
proposed HND approach has  a  significant  dismantling
performance  than  the  baselines  in  the  majority  of
datasets. This finding indicates the effectiveness of the
HND in  approximating betweenness  for  hypernetwork
dismantling  with  the  advantage  of  reducing
computational  complexity.  We  present  further  details
of the dismantling process in Fig. 3. The detailed ANC
curves in Fig. 3 show that, for most hypernetworks, the
removal  of  only  a  small  portion  of  nodes  will
significantly destroy their connectivity. Under the same
removal budget (i.e.,  removing fraction), our proposed
HND  often  fragments  the  hypernetwork  into  the
smallest connected components.

Notably,  the  overall  performance  of  the  dismantling
methods designed for traditional simple networks,  i.e.,
HDA, CI, GND, and FINDER, is generally poorer than
those  designed  specifically  for  hypernetworks,  i.e.,
HHDA,  SubTSSH,  and  HITTER.  This  is  because
hypernetworks  must  be  transformed  to  their  2-section
forms  before  applying  dismantling  methods  designed
for  traditional  simple  networks,  and  this  kind  of
transformation  introduces  some  noisy  structures,  such

as  dense  cliques.  Moreover,  to  our  best  knowledge,
using  FINDER  as  the  state-of-the-art  method  for
traditional  ND  performs  even  worse  than  the  other
traditional  simple  ND  methods.  This  could  be  due  to
the  fact  that  it  utilizes  the  BA  model[40] for  synthetic
network  generation  in  the  training  process.  However,
the  BA  model  is  a  generative  model  for  traditional
simple  networks,  and  it  cannot  model  the  structure  of
hypernetwork.
5.2.2　Impact of the number of embedding layers

L

L

HND  relies  on  a  multiple-layer  HNN  to  extract
structural information into node embeddings, which are
then utilized for betweenness approximation. Different
numbers of layers indicate different levels of awareness
abilities  of  global  hypernetwork  structure;  thus,  the
number  of  layers  has  a  vital  influence  on
hypernetwork dismantling performance. The impact of
the  number  of  embedding  layers  on  each  dataset  is
shown in Fig. 4. From this figure, we can conclude that
an  excessively  small  or  large  value  will  reduce  the
hypernetwork  dismantling  performance.  The  reason
may  be  that  too  few  layers  will  limit  the  information
propagation  of  HNN. In  turn,  this  phenomenon would
prevent  the  node  embeddings  from preserving  enough
global  structure  information,  while  too  many  layers
will  excessively  smoothen  the  node  embeddings  and
make nodes less distinguishable. In addition, too many
layers  can  bring  extra  computational  costs.  Thus,
taking both effectiveness and efficiency into account, it
is  necessary  to  choose  a  proper  number  of  embedding
layers in real-world applications.
5.2.3　Analysis of model efficiency
The  motivation  for  proposing  HND  is  to  reduce  the
high  computational  complexity  of  global  structure-
based  centrality  (such  as  betweenness)  while
preserving  its  effectiveness  in  hypernetwork
dismantling.

First,  the  inference  efficiency  of  HND  is  compared
against  HITTER.  The  exact  betweenness  centralities
under  different  hypernetwork  scales  and  the  time

 

Table 2    Overall performance in terms of ANC.

Dataset
Method

HDA CI GND FINDER HHDA SubTSSH HITTER HND
Cora-co-authorship 0.1564 0.1181 0.1111 0.4068 0.0977 0.1267 0.0792 0.0713

Citeseer 0.0930 0.0915 0.2528 0.1109 0.0788 0.0965 0.0607 0.0592
MAG 0.0261 0.0238 0.0335 0.0410 0.0195 0.0226 0.0130 0.0161

Pubmed 0.3933 0.3930 0.3606 0.4809 0.3831 0.4038 0.3529 0.3344
NDC 0.2608 0.2623 0.4372 0.4804 0.2374 0.2666 0.2209 0.2144
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consumption  of  each  calculation  in  these  methods  are
shown  in Fig.  5.  As  shown  in Fig.  5,  the  inference
times of  HND and HITTER increase  linearly  with  the
hypernetwork  scale,  while  the  inference  time  of  the
exact betweenness centrality grows quadratically.  This
indicates a potential  application of our proposed HND
to large-scale hypernetworks.

Moreover,  given  that  HND  and  HITTER  are  deep
learning based hypernetwork dismantling methods, we
also  compare  their  training  efficiencies.  From  the
results shown in Table 3, we can see that the training of
HITTER usually needs tens of thousands of iterations,
while  that  of  HND  only  needs  hundreds  of  iterations.
The  training  time  of  HND  is  also  obviously  less  than
that  of  HITTER.  The  core  reason  behind  this  is  the

difference  in  training  mode.  In  particular,  the
reinforcement  learning  adopted  by  HITTER  trains  the
model  with  exploration  and  exploitation,  and  a  huge
amount  of  time  is  needed  to  explore  effective
dismantling  actions.  In  comparison,  the  supervised
learning  adopted  by  our  HND  directly  guides  the
model  training  with  effective  dismantling  actions.
Thus, HND can significantly decrease the training time
than HITTER.

6　Conclusion

In this paper, we propose a betweenness approximation
method  based  on  hypernetwork  dismantling  called
HND.  To  achieve  betweenness  approximation  in  a
supervised  manner,  we  utilize  an  HNN  to  preserve

 

(a) Cora-co-authorship (b) MAG

(c) Citeseer (d) NDC

(e) Pubmed 
Fig. 3    Detailed dismantling curve.
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structure  information  in  the  node  embeddings.  Then,
we  train  the  model  based  on  a  large  number  of
synthetic  hypernetworks  with  the  supervision  of  exact
betweenness  value  in  order  to  achieve  real-world
hypernetwork  dismantling.  Extensive  experiments
conducted  on  five  real-world  hypernetworks
demonstrate  that  our  proposed  HND  outperforms  the
baselines in terms of effectiveness and time efficiency.
In  our  future  work,  we  will  consider  the  situation  of
noisy  hyperedges  in  hypernetworks  and  design  robust
leaning-based  hypernetwork  dismantling  methods
accordingly.

 

(a) Cora-co-authorship (b) MAG

(c) Citeseer (d) NDC

(e) Pubmed 
Fig. 4    Impact of the number of embedding layers.

 

Table 3    Efficiency comparison between HITTER and HND.
Method Number of training iterations Training time (s)
HITTER ±84 766 ( 17 470) ±32 505.51 ( 2808.82)

HND ±101 ( 45) ±11 235.07 ( 4866.57)
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Hypernetwork scale 
Fig. 5    Inference time under different hypernetwork scales.
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