

Betweenness Approximation for Edge Computing with
Hypergraph Neural Networks

Yaguang Guo, Wenxin Xie, Qingren Wang*, Dengcheng Yan, and Yiwen Zhang

Abstract: Recent years have seen growing demand for the use of edge computing to achieve the full potential

of the Internet of Things (IoTs), given that various IoT systems have been generating big data to facilitate

modern latency-sensitive applications. Network Dismantling (ND), which is a basic problem, attempts to find an

optimal set of nodes that will maximize the connectivity degradation in a network. However, current approaches

mainly focus on simple networks that model only pairwise interactions between two nodes, whereas higher-

order groupwise interactions among an arbitrary number of nodes are ubiquitous in the real world, which can be

better modeled as hypernetwork. The structural difference between a simple and a hypernetwork restricts the

direct application of simple ND methods to a hypernetwork. Although some hypernetwork centrality measures

(e.g., betweenness) can be used for hypernetwork dismantling, they face the problem of balancing

effectiveness and efficiency. Therefore, we propose a betweenness approximation-based hypernetwork

dismantling method with a Hypergraph Neural Network (HNN). The proposed approach, called “HND”, trains a

transferable HNN-based regression model on plenty of generated small-scale synthetic hypernetworks in a

supervised way, utilizing the well-trained model to approximate the betweenness of the nodes. Extensive

experiments on five actual hypernetworks demonstrate the effectiveness and efficiency of HND compared with

various baselines.

Key words: hypernetwork dismantling; Graph Neural Network (GNN); betweenness approximation; edge

computing

1　Introduction

The Internet of Things (IoTs) has significantly changed

the way we live in a variety of aspects[1, 2], including
entertainment, agriculture, and manufacturing. In this
situation, the recently emerged new computing
paradigms have provided a beneficial complement to
the traditional cloud-based systems. An example is
edge computing, which can provide partial computing
resources that are closer to the user or device side.
Intuitively, the IoT is a heterogeneous service network,
each with the ability to depict entities and their
relations[3]. The IoT has been widely applied to model
various application systems and is considered one of
the major sources of data that facilitate modern
latency-sensitive applications at the network edge, such
as artificial intelligence, industrial automation, and
smart transportation. Hence, edge computing is highly

 Yaguang Guo is with School of Management, Hefei University

of Technology, Hefei 230009, China. E-mail: 2005800134@
hfut.edu.cn.

 Wenxin Xie, Dengcheng Yan, and Yiwen Zhang are with
School of Computer Science and Technology, Anhui
University, Hefei 230601, China. E-mail: xiewxahu@
foxmail.com; yanzhouahu.edu.cn; zhangyiwen@ahu.edu.cn.

 Qingren Wang is with Global Cognition and International
Communication Laboratory, Anhui University, Hefei 230601,
China. E-mail: wqr@ahu.edu.cn.

* To whom correspondence should be addressed.
 Manuscript received: 2023-07-14; revised: 2023-09-11;

accepted: 2023-09-27

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 24/31 pp331−344
DOI: 10 .26599 /TST.2023 .9010106
Volume 30, Number 1, February 2025

© The author(s) 2025. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

demanded to achieve the full potential of the IoT.
However, as a basic problem in network science,

Network Dismantling (ND)[4] aims to find a set of
nodes whose removal will greatly destroy network
connectivity. Due to the fact that network connectivity
is highly related to the spread efficiency of information
or even infectious diseases, ND has been widely
applied in corresponding fields[5, 6]. Many researchers
have proposed several dismantling methods to solve
this problem. However, current methods[4, 7, 8] mainly
focus on the traditional simple network that only
considers the pairwise relation between two nodes.
However, there are numerous higher-order groupwise
relations among an arbitrary number of nodes in the
real world, and traditional simple networks cannot
model this kind of relation. Thus, the application of
these methods is limited when facing groupwise
relations.

Fortunately, a hypernetwork[9] has unique advantages
in modeling such groupwise relations, that is why it has
attracted increasing research attention. As shown in
Fig. 1, a hyperedge in hypernetworks can naturally
express the higher-order relations among an arbitrary
number of nodes. Thus, in modeling real-world
systems, a hypernetwork is more suitable than a
traditional simple network, especially when dealing
with groupwise relations. However, even if the higher-
order relation modeling problem is solved by a
hypernetwork, the existing dismantling methods still
have limitations when it comes to hypernetwork
applications. On the one hand, these methods cannot be
directly applied due to the structural difference
between a hypernetwork and a traditional simple
network. On the other hand, although various centrality
measures in a hypernetwork can be used for
dismantling just like in a traditional network, both
networks face the problem of balancing effect and
efficiency. For example, betweenness centrality is very
suitable for dismantling a network, but it requires

complex calculations. Meanwhile, degree centrality is
easy to calculate, but it has poor dismantling
performance.

Recently, with the emergence of deep learning
technology, researchers have attempted to utilize deep
models to approximate complex centrality measures,
such as betweenness[10] and closeness[11]. These
measures can be approximated with less computational
complexity within a limited error range. This means
that the approximate centrality values are naturally
utilized in various tasks, taking both effect and
efficiency into consideration. Therefore, the present
paper proposes a novel hypernetwork dismantling
method based on deep learning technology, which we
call “HND”. This method adopts the Hypergraph
Neural Network (HNN) to approximate betweenness
centrality in hypernetworks and utilizes the
approximate values to accomplish the task of
hypernetwork dismantling. Specifically, HND first
generates numerous small-scale synthetic
hypernetworks and constructs betweenness ranking
samples according to these. Then, an HNN-based
betweenness ranking model is built, and the samples
generated in the previous step are used to train this
ranking model. Finally, the well-trained model is used
to approximate the betweenness of all nodes in a given
hypernetwork, and the hypernetwork is then dismantled
based on the approximate betweenness values.

Our main contributions are summarized as follows:
● We design a betweenness approximation model

based on an HNN. The model can be trained with
numerous synthetic ranking samples and applied to
real-world hypernetworks. With the help of deep
learning’s powerful representation ability, the trained
model can well-approximate the betweenness of real-
world hypernetworks with a lower computation
complexity.

● We propose a novel hypernetwork dismantling
method, called “HND”, utilizing the betweenness
approximation model to calculate the approximate
betweenness that is adopted to achieve hypernetwork
dismantling. Due to the approximation ability of HND,
our proposed model can achieve performance close to
betweenness with much lower computational
complexity.

● We conduct extensive experiments on five real-
world hypernetworks, and the results show that our
proposed method outperforms the baselines. Moreover,

(a) Simple network (b) Hyper network
Fig. 1 Structural difference between a hypernetwork and a
simple network.

 332 Tsinghua Science and Technology, February 2025, 30(1): 331−344

the experimental results confirm that the betweenness
ranking model can approximate betweenness with less
time consumption.

The remainder of the paper is organized as follows.
Section 2 introduces the related works about DN and
Graph Neural Networks (GNNs). Section 3 provides
some necessary definitions. Section 4 introduces the
proposed method in detail, while Section 5 describes
the experimental settings and presents detailed analyses
of the experimental results. Finally, Section 6
summarizes the whole paper and presents a potential
direction for our future work.

2　Related Work

2.1　Network dismantling

ND[4] is a problem that aims to find an optimal set of
nodes whose removal will greatly destroy network
connectivity. It is an NP-hard graph combinatorial
optimization problem with an exact solution that is
difficult to obtain. Thus, researchers have attempted to
find approximate solutions and propose various ND
methods.

Generally, current ND methods can be divided into
three classes. The first class is based on centrality
measures in which nodes are selected greedily
according to their centrality measures. However, these
methods typically face the problem of balancing
effectiveness and efficiency. Local centrality measures
(e.g., degree centrality) are easy to calculate but cannot
achieve good dismantling performance, while global
centrality measures (e.g., betweenness centrality and
closeness centrality) have good dismantling ability but
have a high computation complexity. To take both
effectiveness and efficiency into consideration, some
centrality measures utilizing mesoscopic network
structures have been proposed. For example, the
Collective Influence (CI), proposed by Morone and
Makse[12] considers both the dismantling effectiveness
and efficiency by flexibly balancing globality and
locality through a tuning hyperparameter.

The second class of ND methods consists of heuristic
methods that work by dismantling a network using
multiple heuristic steps. For example, Braunstein et
al.[4] proposed a three-step method called “MinSum”,
which dismantles a network by decycling, tree-
breaking, and node reinsertion. Similar to MinSum,
CoreHD[13] and BPD[14] also adopt this framework but
have differences in details. Moreover, Ren et al.[7]

proposed the GND algorithm to consider the case of
weighted nodes.

The third class of ND methods is based on deep
learning, wherein researchers aim to achieve better
dismantling effectiveness with the help of the powerful
ability of deep learning. Specifically, Fan et al.[8]

proposed FINDER based on deep reinforcement
learning. This method trains an agent to perform
dismantling exercises on numerous small-scale
synthetic networks, and is then applied to real large-
scale networks. Meanwhile, Grassia et al.[15] proposed
the GDM method that trains a GNN ranking model
using ground-truth dismantling sequences, and then
applies it to real ND. Recently, with the surge of
hypernetworks, Yan et al.[16] proposed a dismantling
method suitable for hypernetworks based on deep
reinforcement learning called HITTER. Generally,
current works mainly focus on traditional simple
networks but have so far ignored hypernetworks. Thus,
in the present paper, we attempt to solve the
hypernetwork dismantling problem via deep learning
technology.

2.2　GNNs

As a kind of network embedding method, GNNs can
map nodes into low-rank vectors according to specific
tasks. Various GNNs based on the most basic neighbor
information aggregation mechanisms have been
proposed and applied to many fields. Among these, the
Graph Convolution Network (GCN)[17, 18] is the most
common method. Through neighbor information
aggregation, feature linear transformation, and
nonlinear activation, node embedding can be obtained
and applied to various downstream tasks, such as node
classification and line prediction. Other GNNs
following this framework have been proposed as well.
For example, in the Graph Attention Network
(GAT)[19], different neighbors have varying levels of
importance to the target nodes in the step of neighbor
aggregation. GAT has also introduced the attention
mechanism to make target nodes adaptively aggregate
information. Hamilton et al.[20] proposed the inductive
GraphSAGE, which can infer the embeddings of nodes
unseen in the training stage. Due to their powerful
expression ability, GNNs have been applied to various
fields, such as recommendation systems[21–23] and user
profiles[24, 25]. However, the core neighbor information
aggregation mechanism in GNN relies on pairwise

 Yaguang Guo et al.: Betweenness Approximation for Edge Computing with Hypergraph Neural Networks 333

interactions. Therefore, because of the structural
differences with traditional simple networks, these
GNNs cannot be directly applied to hypernetworks. To
solve this problem, researchers have proposed various
methods to extend the traditional GNNs to
hypernetworks. For example, Feng et al.[26] proposed
HGNN, which applies GCN to hypernetworks by
transforming hypernetworks into simple networks in
accordance with clique expansion. Similarly, Yadati
et al.[27] transformed hypernetworks into simple
networks by breaking hyperedges into pairwise edges
via specific rules and then directly applying GCN to
these.

Unlike the abovementioned methods, the UniGNN
proposed by Huang and Yang[28] features a neighbor
information aggregation mechanism that is suitable for
hypernetworks. Through the aggregation paths of
nodes to hyperedges and hyperedges to nodes, various
traditional GNNs, such as GCN, GAT, and GIN[29], can
be transferred to hypernetworks.

In this paper, we adopt the HNN to accomplish the
betweenness approximation task. Although some
works have attempted to approximate betweenness via
GNNs, they are not suitable for hypernetworks.
Therefore, an HNN for hypernetwork betweenness
approximation is necessary.

3　Preliminary

In this section, we briefly introduce some related
concepts.

G = (V, E) V = {v1, v2, . . . , vN}
N = |V |

E = {e1, e2, . . . , eM}
M = |E|

e e ⊆ V
e , ϕ

Definition 1 (Hypernetwork[9])　 A hypernetwork
is defined as , where
denotes the node set in the hypernetwork, and
is the number of nodes. The is the
set of hyperedges, and denotes the number of
hyperedges. Each hyperedge is defined as and

.
e

e
For each hyperedge in the hypernetwork, the size

of denotes the number of nodes contained in it.
Obviously, given that the size of hyperedges is flexible,
the hypernetwork can model both pairwise and
groupwise interactions. This hypernetwork becomes a
traditional simple network when the size of all
hyperedges in a hypernetwork equals 2. Therefore, a
traditional simple network can be seen as a specific
form of hypernetwork.

H ∈ RN×M
Definition 2 (Incidence matrix[30])　The incidence

matrix of a hypernetwork is a matrix . Each

Helement of is given below:

Hvi, e j =

1, vi ∈ e j;
0, otherwise

(1)

Similar to the adjacent matrix in traditional simple
networks, the incidence matrix can be used to express
relations between nodes and hyperedges in a
hypernetwork. Figure 2a shows a sample hypernetwork
and its incidence matrix.

vi G vi

vi

Definition 3 (Hyperdegree[30] and degree[9])　For
each node in hypernetwork , the hyperdegree of
is defined as the number of hyperedges containing
node ,

hdeg (vi) =
∑
e j∈E

Hvi, e j (2)

deg (vi)
vi

The degree, namely , denotes the number of
nodes adjacent to the ,

deg (vi) =
∑
v j∈V

(H ·HT)vi, v j −hdeg (vi) (3)

Given that the dismantling problem is highly related
to network connectivity, we define the connectivity of
a hypernetwork as follows.

G

G connectivity (G)

|VGCC| G
|VG |

Definition 4 (Hypernetwork connectivity)　 The
connected component containing the highest number of
hyperedges in hypernetwork is called the Giant
Connected Component (GCC), and the connectivity of

, denoted as , is defined as the ratio of
the number of nodes in GCC (which is denoted as

) to the number of nodes in (which is denoted
as),

connectivity (G) =
|VGCC|
|VG |

(4)

1 0

1 0

1 1

0 1

0 1

Incidence
matrix

(a) Incidence matrix

(b) Connectivity (c) 2-section network

e0

e0 v0

v1

v2

v3

v4

v4e1

v3v2

v1

v0

e1

Fig. 2 Hypernetwork and its corresponding definitions.

 334 Tsinghua Science and Technology, February 2025, 30(1): 331−344

Unlike in a traditional simple network, our definition
of hypernetwork connectivity is related to the
connections between hyperedges. According to
Berge[31], a connected hypernetwork relies on its
relations among hyperedges, not nodes. Moreover,
selecting the connected component containing the
highest number of nodes as the GCC is also reasonable.
However, the connectivity defined in this way is likely
to be influenced by those huge hyperedges. As shown
in Fig. 2b, selecting the left-connected component
cannot reflect the property of hypernetwork
connectivity, and this move also violates the purpose of
dismantling.

e
G

e

Definition 5 (2-section network[30])　 A 2-section
network is a traditional simple network transformed
from a hypernetwork. For each hyperedge in a
hypernetwork , the groupwise interaction can be
transformed into multiple pairwise interactions through
linking each two nodes in . Furthermore, the 2-section
network is obtained when all hyperedges are
transformed over.

As shown in Fig. 2c, each hypernetwork can be
transformed into a simple network. In this way, various
methods designed for a simple network can be applied
to a hypernetwork.

4　Proposed Method: HND

4.1　Overall framework

In this section, we introduce our proposed method in
detail. Generally, our proposed HND method can be
divided into three steps.

Step 1: To supply training samples for the
subsequent model, we adopt a hypernetwork generator
to generate numerous small-scale synthetic
hypernetworks and calculate each node’s betweenness
value in these networks. Then, training samples are
constructed in accordance with the ground-truth
betweenness values (as shown in Section 4.2).

Step 2: Based on the HNN, we build a node
betweenness approximation model in a hypernetwork.
This model can be applied to approximate the nodes’
betweenness in a hypernetwork based on the network
structure and predict the nodes’ approximation
betweenness values (as shown in Section 4.3).

Step 3: By combining the node ranking samples and
approximation betweenness values, we build the
pairwise ranking loss to optimize the parameters in the
ranking model. After multiple iterations, the model can

be used to approximate the nodes’ betweenness in real-
world hypernetworks; it can also be further applied to
hypernetwork dismantling (as shown in Section 4.4).

4.2　Training sample generation

p
q

In this step, numerous node pair samples are generated
according to their betweenness values. Thus, a
synthetic hypernetwork generator is needed to generate
small-scale hypernetworks. Two synthetic
hypernetwork generators have been recently proposed,
namely, HyperPA[32] and HyperFF[33]. The main
difference between them is that HyperPA generates
hypernetworks according to a predefined distribution
from real-world hypernetworks, while HyperFF adopts
two hyper-parameters (i.e., burning probability and
expanding probability) to tune the density of
synthetic hypernetworks. Furthermore, compared with
HyperPA, HyperFF is more flexible and can produce
more generalized hypernetworks. Thus, HyperFF is
adopted in the present study to accomplish this task.

G

B Bvi

vi

vi v j

vi v j lvi, v j

Once the generator is chosen, many small-scale
synthetic hypernetworks can be generated. For each
synthetic hypernetwork , we transform it into its 2-
section network, after which we calculate the
corresponding betweenness value (where
denotes the betweenness value of node). Then,
multiple node pairs are sampled to construct ranking
instances. For two random nodes and , instances
(, ,) can be constructed,

lvi, v j =

1, Bvi > Bv j ;

0, Bvi < Bv j

(5)

lvi, v j vi v jwhere represents the difference between and .
Notably, ranking instances cannot be constructed when
two nodes’ betweenness values are equal. Therefore,
this case should be avoided when sampling node pairs.

S G

Ω

Through the method described above, each synthetic
hypernetwork can generate one corresponding ranking
sample set, denoted as , after which the training
samples space is also obtained, as shown below:

S G =
{
(vG

0 , vG
1 , lGv0, v1

), (vG
1 , vG

2 , lGv1, v2
), . . .
}

(6)

Ω = {S G1 , S G2 , . . .} (7)

4.3　Betweenness approximation model

S G

To approximate the betweenness of a node in a
hypernetwork, we build an HNN-based ranking model.
For each ranking sample set , our model first obtains

 Yaguang Guo et al.: Betweenness Approximation for Edge Computing with Hypergraph Neural Networks 335

the nodes’ embeddings via an HNN. Then, the nodes’
embeddings are fed into a fully connected neural
network to obtain the approximation betweenness
values. The detailed process is introduced below.

GFor a given hypernetwork , we first map the nodes
into their dense vector form with an HNN. However,
conventional transductive HNNs, such as HGNN and
HyperGCN, are not applicable in our framework
because the training process is conducted on a large
number of small-scale synthetic hypernetworks. Then,
the trained model is applied to real-world
hypernetworks. Thereafter, we choose the inductive
HNN called HyperSAGE[16], which we proposed in our
previous work. Generally, HyperSAGE contains two
levels of information aggregation, i.e., hyperedge and
node level aggregation.

Al
In the step of hyperedge level aggregation, the

hyperedge features (denoted as) are first obtained
according to the nodes’ features, as shown below:

Al = softmax (HT⊙ (XlW1)T) (8)

Yl = AlXl (9)

Xl ∈ RN×Dl Yl ∈ RM×Dl

l
Dl l

W1 ∈ RDl×1

⊙
softmax

X0 = 1 X0

1

where and are the nodes’ and
hyperedges’ embeddings in the -th layer, respectively
(denotes the embedding dimension in the -th layer).
In addition, refers to the trainable
parameters, and denotes the operation of the
element-wise product. Function is used to
normalize the aggregation weight. Notably, we set

 due to the lack of initial node features .
Based on the view of information propagation, nodes
with high betweenness values—as hubs of multiple
shortest paths—have more powerful information
propagation ability than those with low betweenness
values. Thus, the initial node feature can be regarded
as the initial information, and each layer of HNN is a
kind of information propagation. After multiple layers,
nodes’ embeddings can reflect their ability of
information propagation, thus enabling their further
application to betweenness approximation. Once the
hyperedges’ embeddings are obtained, the hyperedge
level aggregation can be performed as shown below:

Yl+1 = f ([YlW2||(HTHYlW3)]W4) (10)

W2 W3 ∈ RDl×Dl+1 W4 ∈ R2Dl+1×Dl+1

||

f ()

where , and are all
trainable parameters. denotes the operation of matrix
concatenation, and the nonlinear activation function

 is specified as ReLU.

The next step is node-level aggregation. In this step,
node aggregate information from their adjacent
hyperedges is obtained, as shown below:

Xl+1 = f ([XlW5||HYl+1W6]W7) (11)
W5 ∈ RDl × Dl+1 W6 ∈ RDl+1 × Dl+1 W4 ∈

R2Dl+1×Dl+1

where , , and
 are trainable parameters.

XL L

B̂

Once multiple layers are chained in HyperSAGE, the
nodes’ final embeddings are obtained (denotes
the total number of layers in HyperSAGE). By feeding
them into a fully connected neural network, the
approximated betweenness values of the nodes can
be calculated by

B̂ = f (XLW8+b) (12)
W8 ∈ RDL×1 b ∈ Rwhere and are trainable parameters.

Thus, the approximated betweenness values of nodes
are obtained through the above steps. According to the
values, a hypernetwork can be dismantled by greedily
removing nodes with the highest approximated
betweenness values. Upon the removal of each batch of
nodes, the approximated betweenness values of the
residual nodes are recalculated due to the structural
changes of the hypernetwork. Betweenness value
approximation and node removal are then conducted
repeatedly until the scale of GCC in the hypernetwork
decreases to a threshold value or when all nodes are
removed.

4.4　Optimization

To optimize the betweenness approximation model,
node ranking samples generated in Section 4.2 are
utilized to update all trainable parameters in the model.
Thus, we build the pairwise ranking loss as follows.

S G

(vG
i , vG

j , lGvi, v j
)

lossG
vi,v j

For each samples set , the Bayesian Personalized
Ranking (BPR)[34] loss of each instance ,
denoted as , is calculated,

l̂Gvi, v j
= sigmoid

(
B̂G

vi
− B̂G

v j

)
(13)

lossG
vi, v j
= −lGvi, v j

log
(
l̂Gvi, v j

)
−
(
1− lGvi, v j

)
log
(
l̂−G

vi, v j

)
(14)

B̂G
vi

B̂G
v j

vi v j

G l̂Gvi, v j

sigmoid

Ω

where and denote the approximated
betweenness values of node and node in
hypernetwork , respectively, denotes the value
calculated by . In accordance with the pairwise
loss of a single instance, the total loss of the whole
sample can be obtained as below.

loss =
1
|Ω|
∑

S G∈Ω

1
|S G |

∑
(
vG

i , v
G
j , l

G
vi , v j

)
∈ S G

lossG
vi, v j

(15)

 336 Tsinghua Science and Technology, February 2025, 30(1): 331−344

Next, we use gradient decrease[35] to update all
trainable parameters in our model. Through multiple
iterations of parameter updating, the loss of the model
will converge. Then, the model can be used to
approximate nodes’ betweenness in real-world
hypernetworks.

4.5　Time complexity

O (M×D)
O (N ×D)

O ((N +2×M)×L×D)
O (N ×D)

O ((N +2×M)×L×D+N ×D)

O (N ×M) L
D≪ N M

In the process of inference, the time complexity of
HND is mainly due to hypernetwork embedding (i.e.,
HyperSAGE) and the approximation function (i.e., the
fully connected neural network). For the former part,
there are two steps in each layer of HyperSAGE. (1) In
hyperedge level aggregation, the time complexities of
attention mechanism and information propagation are
both ; (2) In node-level aggregation, the time
complexity of information propagation is .
Therefore, the time complexity of HyperSAGE is

. For the latter part, the time
complexity of the fully connected layer is .
Thus, the inference complexity of HND is

. While for exact
betweenness centrality calculation, its time complexity
for unweighted networks is . Given that
and and in most real-world scenarios, our
proposed HND has a linear time complexity and is
more practically applicable than exact betweenness
centrality calculation, which is showed in Algorithm 1.

5　Experiment

In this section, we conduct extensive experiments to
verify the effectiveness of our proposed method.

5.1　Experimental datasets and settings

5.1.1　Experimental datasets
We collect five real-world hypernetworks to evaluate
our proposed method. Brief introductions about these
datasets are listed below.

● Cora-co-authorship[27] This dataset contains
scientific papers published in the field of machine
learning. We construct a hypernetwork by taking
authors as nodes and co-author relations as hyperedges.

● Citeseer[27] This dataset contains scientific papers
in six fields, along with their citation relations. To
construct the hypernetwork, we map the papers and
citation relations as nodes and hyperedges,
respectively.

● MAG[36] This dataset contains scientific papers
and authors from the field of history in Microsoft

Academic Graph. Similar to the Cora-co-authorship
dataset, we map papers as nodes and co-author
relations as hyperedges.

● Pubmed[27] This dataset contains scientific papers
from the field of diabetes, along with their citation
relations. Given that Pubmed is the same as Citeseer,
the method of constructing hypernetworks in Citeseer
is also suitable for Pubmed.

● NDC[37] This dataset contains information about
many kinds of drugs, each consisting of multiple
substances. The hypernetwork can be constructed by
considering substances and drugs as nodes and
hyperedges, respectively.

For these datasets, we conducted some preprocessing
steps. Due to the dismantling problem being
concentrated on the connectivity of the network, a
disconnected network is likely to disturb the
experimental results. Therefore, for each original
hypernetwork, we only select their GCCs as the initial

Algorithm 1　Training process of HND
(Nmin, Nmax)

(pmin, pmax)
(qmin, qmax)

J I L
D r

Require: Scale range of synthetic hypernetworks ,
burning propabality range in HyperFF, expanding
propabality range in HyperFF, synthetic hypernetwork
number , max iteration number , HyperSAGE layer number ,
embedding dimension , and node pairs sample ratio

ΘEnsure: Betweenness approximation model parameter
Θ 1: Initialize model parameter randomly;

Ω = { } 2: Initialize sample set
n J 3: for = 1 to do

p, q, N [pmin, pmax] [qmin,

qmax] [Nmin, Nmax]
 4:　Take random values in range ,
 　　 , and , respectively;

G N
p q

 5:　Generate a hypernetwork which has nodes by HyperFF
　　 with hyperparameters and ;

B̂G G 6:　Calculate the exact betweenness values of ’s
　 　corresponding 2-section network;

⌈rN⌉ 7:　Sample node pairs randomly;
S G 8:　Generate ranking samples according to Eqs. (5) and (6);

S G Ω 9:　Add into sample set ;
10: end for

i I11: for = 1 to do
S G ∈ Ω12:　for do

G13:　　Embed nodes in hypernetwork according to Eqs. (8)–(11);
14:　　Calculate nodes’ approximated betweenness values
　 　　according to Eq. (12);
15:　　Calculate pairwise loss according to Eq. (14);

Θ16:　　Update model parameters through gradient decrease;
17:　end for
18: end for

Θ19: return model parameter

 Yaguang Guo et al.: Betweenness Approximation for Edge Computing with Hypergraph Neural Networks 337

hypernetwork waiting to be dismantled. Some statistics
of hypernetworks after preprocessing are summarized
in Table 1.
5.1.2　Baselines
We select various baselines to evaluate the dismantling
performance of our method, and their introductions are
presented below:

● Highest Degree Adaptive (HDA) This method
dismantles a network according to degree. Nodes with
the highest degree will be removed in each removal
step. After each removal step, the nodes’ degrees will
be recalculated due to the changes in network structure.

● Highest HyperDegree Adaptive (HHDA) This
method dismantles a hypernetwork according to
hyperdegree. Similar to HDA, nodes with the highest
hyperdegree will be removed in each step, and their
hyperdegrees will be updated upon removal.

● Collective Influence (CI)[12] This method
removes nodes according to their CI values, and the
way of calculating the CI value for each node is given
below:

CIvi = (deg (vi)−1)
∑

v j ∈ Neik(vi)

(deg (v j)−1) (16)

Neik (vi) k vi

k
where denotes the -hop neighbors of node ,
and in this paper, we set to be 2. The node with the
highest CI value will be removed in each step, and the
CI values of residual nodes will also be recalculated.

● GND[7] GND first computes the network’s
weighted Laplacian matrix, which is utilized to obtain
nodes’ eigenvector through spectrum approximation.
Then, we split the nodes into two groups according to
their eigenvector. Finally, we used the weighted vertex
cover algorithm to select the nodes to be removed.

● FINDER[8] This method is based on deep
reinforcement learning. It builds an agent and makes it
to perform dismantling exercises on many small-scale
synthetic networks to optimize the agent’s dismantling
strategy. Once its strategy converges, the agent can be
used to dismantle real-world networks.

● SubTSSH[38] This method is designed to solve the

problem of selecting target nodes set in hypernetworks.
By iteratively conducting node removal and influence
propagation, this can be used for hypernetwork
dismantling.

● HITTER[16] This method is specifically designed
for hypernetwork dismantling based on deep
reinforcement learning. First, it builds an agent to do
trial-and-error on many small-scale synthetic
hypernetworks. After the agent’s dismantling strategy
is well optimized, it can be utilized to dismantle real-
world hypernetworks.

In the abovementioned baselines, HDA, HHDA, CI,
and SubTSSH are methods based on centrality
measures. GND is a recently proposed heuristic
method, while FINDER and HITTER are methods
based on deep learning. Generally, these baselines
cover several commonly used dismantling methods.
Moreover, some of these baselines (HDA, CI, GND,
and FINDER) cannot be directly applied to
hypernetworks. Therefore, we transform the
hypernetworks into their corresponding 2-section
networks when applying these methods.
5.1.3　Metrics
We adopt Accumulated Normalized Connectivity
(ANC)[39] to evaluate the performance of hypernetwork
dismantling. The calculation of ANC is given below:

ANC(κ) =
1
K

K∑
k=1

connectivity (G\{v1, v2, . . . , vk})
connectivity (G)

(17)

κ = {v1, v2, . . . , vK}

G\{v1, v2, . . . , vk}
{v1, v2, . . . , vk} G
κ

where is the node removal sequence
obtained by various dismantling methods, and

 denotes the residual hypernetwork
after removing nodes from . Given a
node removal sequence , a low ANC value means this
sequence can dismantle the network effectively.
5.1.4　Experimental settings

Nmin

Nmax

(pmin, pmax)
(qmin, qmax) (0.1, 0.4)

In the step of sample generation, the minimal scale of
synthetic hypernetwork is set to 100, and the
maximal scale is set to 150. The burning
probability range and expanding
probability range are all fixed to .

Table 1 Statistics of datasets.
Dataset Number of nodes Number of hyperedges Average node hyperdegree Average hyperedge size

Cora-co-authorship 1676 463 1.66 6.00
Citeseer 1019 626 2.23 3.63
MAG 1669 784 1.59 3.38
NDC 3065 4533 13.57 9.17

Pubmed 3825 5432 7.45 5.25

 338 Tsinghua Science and Technology, February 2025, 30(1): 331−344

J

⌈0.9N⌉

The number of synthetic hypernetworks is set to
1000, and for each hypernetwork we randomly sample

 node pairs as training samples. In the
betweenness approximation model, the number of
layers of HyperSAGE is set to 4, and the embedding
dimension is set to 32. In the training process, the
learning rate of the model is set to 0.005. Furthermore,
we generate 50 synthetic hypernetworks as a validation
dataset to verify the model training. We also adopt an
early stopping mechanism to avoid model over-fitting,
and its patience is fixed at 100.

5.2　Experimental results and analyses

5.2.1　Overall performance
We apply the proposed HND and baselines to
dismantle those real-world hypernetworks in datasets,
and their performance is summarized in Table 2. As
shown in the results, we can easily conclude that our
proposed HND approach has a significant dismantling
performance than the baselines in the majority of
datasets. This finding indicates the effectiveness of the
HND in approximating betweenness for hypernetwork
dismantling with the advantage of reducing
computational complexity. We present further details
of the dismantling process in Fig. 3. The detailed ANC
curves in Fig. 3 show that, for most hypernetworks, the
removal of only a small portion of nodes will
significantly destroy their connectivity. Under the same
removal budget (i.e., removing fraction), our proposed
HND often fragments the hypernetwork into the
smallest connected components.

Notably, the overall performance of the dismantling
methods designed for traditional simple networks, i.e.,
HDA, CI, GND, and FINDER, is generally poorer than
those designed specifically for hypernetworks, i.e.,
HHDA, SubTSSH, and HITTER. This is because
hypernetworks must be transformed to their 2-section
forms before applying dismantling methods designed
for traditional simple networks, and this kind of
transformation introduces some noisy structures, such

as dense cliques. Moreover, to our best knowledge,
using FINDER as the state-of-the-art method for
traditional ND performs even worse than the other
traditional simple ND methods. This could be due to
the fact that it utilizes the BA model[40] for synthetic
network generation in the training process. However,
the BA model is a generative model for traditional
simple networks, and it cannot model the structure of
hypernetwork.
5.2.2　Impact of the number of embedding layers

L

L

HND relies on a multiple-layer HNN to extract
structural information into node embeddings, which are
then utilized for betweenness approximation. Different
numbers of layers indicate different levels of awareness
abilities of global hypernetwork structure; thus, the
number of layers has a vital influence on
hypernetwork dismantling performance. The impact of
the number of embedding layers on each dataset is
shown in Fig. 4. From this figure, we can conclude that
an excessively small or large value will reduce the
hypernetwork dismantling performance. The reason
may be that too few layers will limit the information
propagation of HNN. In turn, this phenomenon would
prevent the node embeddings from preserving enough
global structure information, while too many layers
will excessively smoothen the node embeddings and
make nodes less distinguishable. In addition, too many
layers can bring extra computational costs. Thus,
taking both effectiveness and efficiency into account, it
is necessary to choose a proper number of embedding
layers in real-world applications.
5.2.3　Analysis of model efficiency
The motivation for proposing HND is to reduce the
high computational complexity of global structure-
based centrality (such as betweenness) while
preserving its effectiveness in hypernetwork
dismantling.

First, the inference efficiency of HND is compared
against HITTER. The exact betweenness centralities
under different hypernetwork scales and the time

Table 2 Overall performance in terms of ANC.

Dataset
Method

HDA CI GND FINDER HHDA SubTSSH HITTER HND
Cora-co-authorship 0.1564 0.1181 0.1111 0.4068 0.0977 0.1267 0.0792 0.0713

Citeseer 0.0930 0.0915 0.2528 0.1109 0.0788 0.0965 0.0607 0.0592
MAG 0.0261 0.0238 0.0335 0.0410 0.0195 0.0226 0.0130 0.0161

Pubmed 0.3933 0.3930 0.3606 0.4809 0.3831 0.4038 0.3529 0.3344
NDC 0.2608 0.2623 0.4372 0.4804 0.2374 0.2666 0.2209 0.2144

 Yaguang Guo et al.: Betweenness Approximation for Edge Computing with Hypergraph Neural Networks 339

consumption of each calculation in these methods are
shown in Fig. 5. As shown in Fig. 5, the inference
times of HND and HITTER increase linearly with the
hypernetwork scale, while the inference time of the
exact betweenness centrality grows quadratically. This
indicates a potential application of our proposed HND
to large-scale hypernetworks.

Moreover, given that HND and HITTER are deep
learning based hypernetwork dismantling methods, we
also compare their training efficiencies. From the
results shown in Table 3, we can see that the training of
HITTER usually needs tens of thousands of iterations,
while that of HND only needs hundreds of iterations.
The training time of HND is also obviously less than
that of HITTER. The core reason behind this is the

difference in training mode. In particular, the
reinforcement learning adopted by HITTER trains the
model with exploration and exploitation, and a huge
amount of time is needed to explore effective
dismantling actions. In comparison, the supervised
learning adopted by our HND directly guides the
model training with effective dismantling actions.
Thus, HND can significantly decrease the training time
than HITTER.

6　Conclusion

In this paper, we propose a betweenness approximation
method based on hypernetwork dismantling called
HND. To achieve betweenness approximation in a
supervised manner, we utilize an HNN to preserve

(a) Cora-co-authorship (b) MAG

(c) Citeseer (d) NDC

(e) Pubmed
Fig. 3 Detailed dismantling curve.

 340 Tsinghua Science and Technology, February 2025, 30(1): 331−344

structure information in the node embeddings. Then,
we train the model based on a large number of
synthetic hypernetworks with the supervision of exact
betweenness value in order to achieve real-world
hypernetwork dismantling. Extensive experiments
conducted on five real-world hypernetworks
demonstrate that our proposed HND outperforms the
baselines in terms of effectiveness and time efficiency.
In our future work, we will consider the situation of
noisy hyperedges in hypernetworks and design robust
leaning-based hypernetwork dismantling methods
accordingly.

(a) Cora-co-authorship (b) MAG

(c) Citeseer (d) NDC

(e) Pubmed
Fig. 4 Impact of the number of embedding layers.

Table 3 Efficiency comparison between HITTER and HND.
Method Number of training iterations Training time (s)
HITTER ±84 766 (17 470) ±32 505.51 (2808.82)

HND ±101 (45) ±11 235.07 (4866.57)

In
fe

re
nc

e
tim

e
(m

s)

Hypernetwork scale
Fig. 5 Inference time under different hypernetwork scales.

 Yaguang Guo et al.: Betweenness Approximation for Edge Computing with Hypergraph Neural Networks 341

Acknowledgment

This work was supported by the Anhui Province
University Collaborative Innovation Project (No. GXXT-
2022-091), the National Natural Science Foundation of
China (No. 62006003), the Natural Science Foundation of
Anhui Province (No. 2208085QF197), the Key Project of
Nature Science Research for Universities of Anhui
Province of China (Nos. 2022AH040019 and
2022AH05008637), the Hefei Key Common Technology
Project (No. GJ2022GX15). The author is grateful to the
Institute of Data Intelligence and Social Computing at
Anhui University for funding this research.

References

 L. Qi, Y. Liu, Y. Zhang, X. Zhang, M. Bilal, and H. Song,
Privacy-aware point-of-interest category recommendation
in internet of things, IEEE Internet of Things Journal, vol.
9, no. 21, pp. 21398–21408, 2022.

[1]

 Y. Liu, D. Li, S. Wan, F. Wang, W. Dou, X. Xu, S. Li, R.
Ma, and L. Qi, A long short-term memory-based model
for greenhouse climate prediction, International Journal of
Intelligent Systems, vol. 37, no. 1, pp. 135–151, 2022.

[2]

 Q. Wang, C. Zhu, Y. Zhang, H. Zhong, J. Zhong, V. S.
Sheng, Short text topic learning using heterogeneous
information network, IEEE Transactions on Knowledge
and Data Engineering, vol. 35, no. 5, pp. 5269–5281,
2023.

[3]

 A. Braunstein, L. Dall’Asta, G. Semerjian, and L.
Zdeborová, Network dismantling, Proceedings of the
National Academy of Sciences, vol. 113, no. 44, pp.
12368–12373, 2016.

[4]

 M. Doostmohammadian, H. R. Rabiee, and U. A. Khan,
Centrality-based epidemic control in complex social
networks, Social Network Analysis and Mining, vol. 10,
no. 1, pp. 32:1–32:11, 2020.

[5]

 D. Kempe, J. Kleinberg, and E. Tardos, Maximizing the
spread of influence through a social network, in
Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, 2003, pp. 137–146.

[6]

 X.-L. Ren, N. Gleinig, D. Helbing, and N. Antulov-
Fantulin, Generalized network dismantling, Proceedings
of the National Academy of Sciences, vol. 116, no. 14, pp.
6554–6559, 2019.

[7]

 C. Fan, L. Zeng, Y. Sun, and Y.-Y. Liu, Finding key
players in complex networks through deep reinforcement
learning, Nature Machine Intelligence, vol. 2, pp.
317–324, 2020.

[8]

 F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas,
A. Patania, J.-G. Young, and G. Petri, Networks beyond
pairwise interactions: Structure and dynamics, Physics
Reports, vol. 874, pp. 1–92, 2020.

[9]

 C. Fan, L. Zeng, Y. Ding, M. Chen, Y. Sun, and Z. Liu,
Learning to identify high betweenness centrality nodes
from scratch: A novel graph neural network approach, in

[10]

Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, New York, NY,
USA, 2019, pp. 559−568.
 S. K. Maurya, X. Liu, and T. Murata, Graph neural
networks for fast node ranking approximation, ACM
Transactions on Knowledge Discovery from Data, vol. 15,
no. 5, pp. 1556–4681, 2021.

[11]

 F. Morone and H. A. Makse, Influence maximization in
complex networks through optimal percolation, Nature,
vol. 524, pp. 65–68, 2015.

[12]

 L. Zdeborova, P. Zhang, and H.-J. Zhou, Fast and simple
decycling and dismantling of networks, Scientific Reports,
vol. 6, no. 1, p. 37954, 2016.

[13]

 S. Mugisha and H.-J. Zhou, Identifying optimal targets of
network attack by belief propagation, Physical Review E,
vol. 94, no. 1, p. 012305, 2016.

[14]

 M. Grassia, M. De Domenico, and G. Mangioni, Machine
learning dismantling and early-warning signals of
disintegration in complex systems, Nature
Communications, vol. 12, no. 1, p. 5190, 2021.

[15]

 D. Yan, W. Xie, Y. Zhang, Q. He, and Y. Yang,
Hypernetwork dismantling via deep reinforcement
learning, IEEE Transactions on Network Science and
Engineering, vol. 9, no. 5, pp. 3302–3315, 2022.

[16]

 T. N. Kipf and M. Welling, Semi-supervised classification
with graph convolutional networks, in Proc. 5th
International Conference on Learning Representations,
Toulon, France, 2017, pp. 1−14.

[17]

 Y. Liu, H. Wu, K. Rezaee, M. R. Rezaee, O. I. Khalaf, A.
A. Khan, D. Ramesh, and L. Qi, Interaction-enhanced and
time-aware graph convolutional network for successive
point-of-interest recommendation in traveling enterprises,
IEEE Transactions on Industrial Informatics, vol. 19, no.
1, pp. 635–643, 2023.

[18]

 P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P.
Liò, and Y. Bengio, Graph attention networks, in Proc. 6th
International Conference on Learning Representations,
Vancouver, Canada, pp. 1−12, 2018.

[19]

 W. Hamilton, Z. Ying, and J. Leskovec, Inductive
representation learning on large graphs, in Proc. Advances
in Neural Information Processing Systems, Long Beach,
CA, USA, 2017, pp. 1024–1034.

[20]

 X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua,
Neural graph collaborative filtering, in Proceedings of the
42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, Paris, France,
2019, pp. 165−174.

[21]

 X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang,
Lightgcn: Simplifying and powering graph convolution
network for recommendation, in Proceedings of the 43rd
International ACM SIGIR Conference on Research and
Development in Information Retrieval, Virtual Event,
2020, pp. 639−648.

[22]

 T. Chen and R. C.-W. Wong, Handling information loss of
graph neural networks for session-based recommendation,
in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Virtual Event, 2020, pp. 1172−1180.

[23]

 342 Tsinghua Science and Technology, February 2025, 30(1): 331−344

 W. Chen, Y. Gu, Z. Ren, X. He, H. Xie, T. Guo, D. Yin,
and Y. Zhang, Semi-supervised user profiling with
heterogeneous graph attention networks, in Proceedings of
the 28th International Joint Conference on Artificial
Intelligence, Macao, China, 2019, pp. 2116–2122.

[24]

 D. Wang, P. Wang, K. Liu, Y. Zhou, C. E. Hughes, and Y.
Fu, Reinforced imitative graph representation learning for
mobile user profiling: An adversarial training perspective,
in Proceedings of the AAAI Conference on Artificial
Intelligence, Virtual Event, 2021, pp. 4410–4417.

[25]

 Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, Hypergraph
neural networks, in Proceedings of the AAAI Conference
on Artificial Intelligence, Honolulu, HI, USA, 2019, pp.
3558–3565.

[26]

 N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis,
and P. Talukdar, HyperGCN: A new method for training
graph convolutional networks on hypergraphs, in Proc.
Advances in Neural Information Processing Systems,
Vancouver, Canada, 2019, pp. 1511–1522.

[27]

 J. Huang and J. Yang, Unignn: A unified framework for
graph and hypergraph neural networks, in Proceedings of
the Thirtieth International Joint Conference on Artificial
Intelligence, Virtual Event, 2021, pp. 2563–2569.

[28]

 K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How powerful
are graph neural networks? in Proc. 7th International
Conference on Learning Representations, New Orleans,
LA, USA, 2019, pp. 1−17.

[29]

 A. Bretto, Hypergraph Theory: An Introduction.
Switzerland: Springer International Publishing, 2013.

[30]

 C. Berge, Hypergraphs: Combinatorics of Finite Sets.
North Holland, Holland: Elsevier, 1989.

[31]

 M. T. Do, S.-E. Yoon, B. Hooi, and K. Shin, Structural
patterns and generative models of real-world hypergraphs,
in Proceedings of the 26th ACM SIGKDD International

[32]

Conference on Knowledge Discovery and Data Mining,
Virtual Event, 2020, pp. 176−186.
 Y. Kook, J. Ko, and K. Shin, Evolution of real-world
hypergraphs: Patterns and models without oracles, in Proc.
IEEE International Conference on Data Mining, Sorrento,
Italy, 2020, pp. 272–281.

[33]

 S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
Thieme, BPR: Bayesian personalized ranking from
implicit feedback, in Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence, Montreal,
Canada, 2009, pp. 452−461.

[34]

 D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, in Proc. 3rd International Conference on
Learning Representations, San Diego, CA, USA, 2015,
pp. 1−15.

[35]

 A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. P. Hsu,
and K. Wang, An overview of microsoft academic service
(MAS) and applications, in Proceedings of the 24th
International Conference on World Wide Web, Florence,
Italy, 2015, pp. 243−246.

[36]

 A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, and
J. Kleinberg, Simplicial closure and higher-order link
prediction, Proceedings of the National Academy of
Sciences, vol. 115, no. 48, pp. E11221–E11230, 2018.

[37]

 A. Antelmi, G. Cordasco, C. Spagnuolo, and P. Szufel,
Social influence maximization in hypergraphs, Entropy,
vol. 23, no. 7, p. 796, 2021.

[38]

 C. M. Schneider, A. A. Moreira, J. S. Andrade, S. Havlin,
and H. J. Herrmann, Mitigation of malicious attacks on
networks, Proceedings of the National Academy of
Sciences, vol. 108, no. 10, pp. 3838–3841, 2011.

[39]

 A.-L. Barabási and R. Albert, Emergence of scaling in
random networks, Science, vol. 286, no. 5439, pp.
509–512, 1999.

[40]

Yaguang Guo is the deputy director and
associate researcher at E-government
Research Institute, at School of
Management, Hefei University of
Technology, China. He received the BEng
degree from Anhui University, China in
2000, and the MEng degree from Hefei
University of Technology, China in 2005.

He is currently a PhD candidate at School of Management, Hefei
University of Technology, China. His current research interests
include data governance, administrative approval reform, and
Internet plus government services.

Wenxin Xie received the BEng degree
from Liaoning Petrochemical University,
China in 2018. He is currently a master
student in computer science and
technology at Anhui University, China.
His main research interest is graph
combinatorial optimization.

Qingren Wang is an associate professor at
Global Cognition and International
Communication Laboratory, Anhui
University, China. He received the PhD
degree from Hefei University of
Technology, China. His current research
interests include natural language
processing, service computing,

crowdsourcing, and data mining.

Dengcheng Yan received the BEng and
PhD degrees from University of Science
and Technology of China, China in 2011
and 2017, respectively. From 2017 to
2018, he was a core big data engineer at
Research Institute of Big Data, iFlytek Co.
Ltd., Hefei, China. He is currently a
lecturer at Anhui University, China. His

research interests include software engineering, recommendation
systems, and complex networks.

 Yaguang Guo et al.: Betweenness Approximation for Edge Computing with Hypergraph Neural Networks 343

Yiwen Zhang is a professor at School of
Computer Science and Technology, Anhui
University, China. He received the PhD
degree from Hefei University of
Technology, Hefei, China. His current
research interests include personalized
recommendation, edge computing, and
data mining.

 344 Tsinghua Science and Technology, February 2025, 30(1): 331−344

