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Abstract: Due to our increasing dependence on infrastructure networks, the attack and defense game in these

networks has draw great concerns from security agencies. Moreover, when it comes to evaluating the payoffs

in practical attack and defense games in infrastructure networks, the lack of consideration for the fuzziness and

uncertainty  of  subjective  human  judgment  brings  forth  significant  challenges  to  the  analysis  of  strategic

interactions among decision makers. This paper employs intuitionistic fuzzy sets (IFSs) to depict such uncertain

payoffs,  and  introduce  a  theoretical  framework  for  analyzing  the  attack  and  defense  game  in  infrastructure

networks  based  on  intuitionistic  fuzzy  theory.  We take  the  changes  in  three  complex  network  metrics  as  the

universe of discourse, and intuitionistic fuzzy sets are employed based on this universe of discourse to reflect

the  satisfaction  of  decision  makers.  We  employ  an  algorithm  based  on  intuitionistic  fuzzy  theory  to  find  the

Nash  equilibrium,  and  conduct  experiments  on  both  local  and  global  networks.  Results  show  that:  (1)  the

utilization of intuitionistic fuzzy sets to depict the payoffs of attack and defense games in infrastructure networks

can  reflect  the  unique  characteristics  of  decision  makers’ subjective  preferences.  (2)  the  use  of  differently

weighted  proportions  of  the  three  complex  network  metrics  has  little  impact  on  decision  makers’ choices  of

different strategies.

Key words:  infrastructure networks; attack and defense game; intuitionistic fuzzy set; Nash equilibrium

1　Introduction

Infrastructure  networks  such  as  power  grids,
transportation  systems,  communication  networks,  and
water  supply  networks  play  a  vital  role  in  modern
society.  These  networks  consist  of  interconnected  and
interdependent  nodes,  ranging  in  number  from  a  few
dozen  to  several  thousand.  With  the  rapid  trend
towards  the  networking  of  human  society,  the
dysfunction  of  critical  infrastructure  networks  could

have  a  significant  negative  impact  on  people’s  lives
and  property[1].  Traditional  complex  network  theory
can  help  in  employing  attack  and  defense  strategies
from  the  perspective  of  network  topology,  such  as
network  disintegration[2−5] and  protection[6−8];
however,  it  is  difficult  to  use  these  conventional
methods when dealing with deliberate opponents.

Game  theory  offers  an  effective  framework  for
studying the optimal strategies for the players in these
interactions,  in  which  conflicts  are  represented  with
mathematical  methods[9−11].  Brown et  al.[12, 13] utilized
game  theory  to  analyze  military  strikes  and  homeland
defense.  Notably,  they  investigated  dynamic  game
models through bi-level and tri-level planning models,
and  examined  optimal  attack  strategies  under  three
different  defense  scenarios:  No  defense,  key  node
protection,  and  three-quarters  node  protection[14].  Li
et al.[15−17] applied the attack and defense game model
to  complex  networks,  studying  the  correlations
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between equilibrium strategies and cost sensitivity in a
scale-free  network  and  evaluating  the  effects  of  cost
constraints  and  sensitivity  on  the  equilibrium  results.
Fu  et  al.[18] developed  a  static  network  attack  and
defense  game  model  to  examine  the  impact  of
cascading  failures,  and  established  a  dynamic  game
model based on camouflage strategies. In addition, they
proposed  an  evolutionary  rule  to  optimize  camouflage
strategies  and  achieve  optimal  resource  allocation[19].
Gu  et  al.[20] analyzed  the  significance  of  the  Bayesian
Stackelberg  game  model  from  the  perspective  of
network  science.  Zeng  et  al.[21, 22] also  applied  the
Bayesian  Stackelberg  game  model,  and  proposed  a
false network construction method. In their study, they
focused  on  the  allocation  of  resources  for  defending
critical  infrastructure  networks  under  conditions  of
asymmetric  information.  Thompson  and  Tran[23, 24]

analyzed the potential impacts of intelligent attacks and
worst-case  interruptions  to  the  US  air  transportation
network;  they  then  established  a  defender-attacker-
defender  optimization  model  with  three  levels,  and
proceeded  to  solve  it.  Qi  et  al.[25, 26] proposed  a  link-
hiding  rule  and  analyzed  its  impact  in  terms  of
optimization within the context  of  dynamic attack and
defense  games  played  out  on  complex  networks.
Huang  et  al.[27] used  sequential  game theory  to  model
the  attack  and  defense  games  on  complex  networks,
and  proposed  a  strategy  optimization  method.  Tan
et  al.[28] innovate  a  moving  target  defense  decision
method based on evolutionary game and Wright-Fisher
process from the perspective of bounded rationality of
both attack-defense. Zhang et al.[29] introduced a novel
real-time defense decision method based on differential
game  theory  for  complex  networks,  demonstrating
improved  defense  performance  and  practicality
compared to existing approaches; they then proposed a
globally optimal defense decision method aligned with
the  overall  network  defense  objective  by  combining
differential  game  theory  with  complex  network
characteristics[30].

However,  there  are  two  main  challenges  on  the
research  studies  described  above.  Firstly,  there  are
several  qualitative,  uncertain,  and  imprecise  factors  in
attack and defense games, such as the decision makers’
preferences  and  willingness,  which  can  significantly
affect  their  behavior  and  satisfaction.  Hence,  when
considering  the  practical  attack  and  defense  games  in
infrastructure  networks,  a  more  appropriate  definition
for  the  payoff  would  be “satisfaction  with  the
achievement  of  the  goal”.  An  appropriate  method  is

required  to  construct  the  payoff  matrices  by  adopting
this  definition  and  to  obtain  the  Nash  equilibrium.
Secondly,  a  single  reference  metric  has  been  used  to
evaluate  network  performance,  as  the  majority  of
current  studies  on  attack  and  defense  games  in
infrastructure networks have employed only one metric
as  a  reference  for  calculating  payoffs.  In  most
instances,  the size of  the largest  connected component
is  selected.  However,  this  method  can  only  reflect
certain  aspects  of  the  characteristics  of  the  network,
and  does  not  encompass  the  multifaceted
considerations of decision makers in terms of network
performance.  Consequently,  it  becomes challenging to
reflect  the  comprehensive  network  performance  when
creating payoff matrices.

To  address  the  first  of  limitations,  we  define  the
payoffs based on the satisfaction with the achievement
of the goal in an attack and defense game. In regard to
the fuzziness and uncertainty of human judgment, it is
often  impossible  in  practice  to  model  these  using
probability  theory.  Fortunately,  the  fuzzy  set  theory
was  proposed  by  Zadeh[31] in  1965 provides  a  useful
tool  for  handling  such  problems.  The  notion  of  fuzzy
sets  was  further  extended  to  intuitionistic  fuzzy  sets
(IFS)  by  Atanassov[32, 33].  The  application  of  the
intuitionistic fuzzy theory is highly extensive[34−36], and
the major advantage of IFSs over fuzzy sets  is  that  an
IFS separates the degree of acceptance from the degree
of non-acceptance of a decision. Due to this advantage,
IFS theory can describe the preference and willingness
of decision makers in an attack and defense game more
comprehensively[37, 38]. In addition, when varying types
of  decision  makers  are  involved,  a  perspective  known
as  an  optimistic  and  pessimistic  approach  is  possible,
where  some  flexibility  is  allowed  through  the  use  of
elastic boundaries[39−43].

To deal with the second limitation, we consider three
network  performance  evaluation  metrics:  The  size  of
the  largest  connected  component[44],  the  network
efficiency[45],  and  the  clustering  coefficient[46].  These
metrics  are  used  to  measure  the  network  connectivity,
the  efficiency  of  information  transmission,  and  the
tightness of the node connections, respectively. We use
appropriate  membership/non-membership  functions
(MFs/NFs)  to  calculate  initial  IFS  payoff  matrices
based  on  these  three  distinct  metrics,  separately.  The
final IFS payoff matrix is then obtained by aggregating
these  initial  IFS  payoff  matrices  with  different  weight
distributions.  In  this  way,  the  structural  features  and
functional  effects  of  the  networks  can  be  described
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more comprehensively in terms of payoffs.
In  this  paper,  we propose a  model  for  an attack and

defense  game  with  intuitionistic  fuzzy  payoffs  in
infrastructure  networks.  Our  model  employs
appropriate  MFs/NFs  to  facilitate  the  decision-making
process,  and  enables  decision  makers  to  consider
multiple  metrics  for  a  comprehensive  evaluation.  In
addition, a method of constructing payoff matrices and
obtaining  the  Nash  equilibrium  is  presented.  In  our
experiments,  we explore two scenarios involving local
and  global  networks.  The  results  obtained  for  both
scenarios  indicate  that  these  complex  network  metrics
have  distinct  effects,  which  may  influence  the  Nash
equilibrium. Moreover, it is shown that IFS theory can
be effectively integrated with attack and defense games
in  infrastructure  networks  to  reflect  the  decision
makers’ subjective preferences.

The  rest  of  the  article  is  organized  as  follows.  In
Section 2, some definition and preliminaries related to
IFS  theory  are  reviewed.  Section  3 explains  the  cost
model, strategies, objective payoffs, and the conversion
of intuitive fuzzy preferences. The solution method for
the game is introduced in Section 4. Section 5 presents
some  experimental  equilibrium  results  for  local  and
global  networks.  Finally,  our  conclusions  are
summarized in Section 6.

2　Preliminary

Some  basic  concepts  relating  to  IFSs,  MFs/NFs,  and
the  optimistic/pessimistic  approach  are  introduced  in
this section.

2.1　Intuitionistic fuzzy sets

A U
(x,µA(x), νA(x))|x ∈ U

µA(x) : U → [0,1] νA(x) : U → [0,1]
∀x ∈ U 0 ⩽ µA(x)+ νA(x) ⩽ 1

µA x

νA x
(1−µA(x)− νA(x))

x ∈ U

An  IFS  in  a  universe  of  discourse  is  a  set  of
ordered  triplets[32]: ,  where

 (MF)  and  (NF)  are
functions such that , . It can
be  observed  that  the  membership  function  (MF)
demonstrates  the  relationship  between  membership
( ) and the variation of , while the non-membership
function (NF) illustrates the relationship between non-
membership  ( )  and  the  variation  of .  The
expression  represents  the  degree  of
hesitation of .

2.2　Hyperbolic  membership  and non-membership
functions

The shape of the hyperbolic MF has a concave segment
in one part, and is convex for the remainder. Marginal

αacc =
6

macc
H −nacc

H
macc

H

nacc
H

αrej =
6

mrej
H −nrej

H

mrej
H

nrej
H

rate  or  marginal  effect  refer  to  the  change  in  one
variable  resulting  from  a  unit  change  in  another
variable, and they often represent the slope or gradient
of  the  relationship  between two variables  at  a  specific
point. When decision makers are worse off with respect
to  a  goal,  they  tend  to  have  a  higher  marginal  rate  of
satisfaction  with  respect  to  that  goal,  and  the  convex
shape  captures  this  behavior  in  regard  to  the  MF.  On
the  other  hand,  when  decision  makers  are  better  off
with  respect  to  a  goal,  they  tend  to  have  a  smaller
marginal  rate  of  satisfaction,  and  this  behavior  is
modeled using the concave portion of the membership
function.  While the dissatisfaction of decision makers,
represented  by  NF,  is  conversely  expressed.  The
hyperbolic  MFs/NFs  are  given  by  Refs.  [47, 48]  as

Eqs.  (1)  and  (2),  where ; 
indicates maximum acceptable level;  indicates the

minimum  acceptable  level; ; 

indicates  the  maximum  rejectable  level;  and 
indicates the minimum rejectable level.
 

µH(x) =


0, if x < nacc

H ;
1
2

tanh
(
αacc

(
x−

macc
H +nacc

H

2

))
+

1
2
, if nacc

H ⩽ x ⩽ macc
H ;

1, if x > macc
H

(1)
 

νH(x) =


1, if x < nrej

H ;

1
2

tanh

αrej

mrej
H +nrej

H

2
− x


+ 1

2
, if nrej

H ⩽ x ⩽ mrej
H ;

0, if x > mrej
H

(2)

2.3　Exponential  membership  and  non-
membership functions

t
t > 0 µE(x)

t < 0
macc

E

An  exponential  MF  represents  the  situation  when
decision  makers  are  worse  off  with  respect  to  an
objective  and  opts  for  a  higher  marginal  rate  of
satisfaction.  When  choosing  an  exponential  MF,  a
decision maker can also choose to reduce duality gaps
by  selecting  appropriate  shape  parameters  for  the
construction  of  the  MF.  While  the  dissatisfaction  of
decision  makers,  represented  by  NF,  is  conversely
expressed. The exponential MFs/NFs can be defined as
Eqs.  (3)  and  (4),  where  is  a  parameter  set  by  the
decision maker. When ,  is a convex function
that  exhibits  a  monotonic  increasing  marginal  effect.
Conversely,  when ,  the  marginal  effect
monotonically  decreases.  indicates  the  highest
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nacc
E

mrej
E

nrej
E

acceptable  level;  indicates  the  lowest  acceptable
level;  indicates  the  highest  rejectable  level;  and

 indicates the lowest rejectable level.
 

µE(x) =



0, if x < nacc
E ;

e

−t(macc
E − x)

macc
E −nacc

E − e−t

1− e−t , if nacc
E ⩽ x ⩽ macc

E ;

1, if x > macc
E

(3)

 

νE(x) =



1, if x < nrej
E ;

1− e

−t(mrej
E − x)

mrej
E −nrej

E − e−t

1− e−t , if nrej
E ⩽ x ⩽ mrej

E ;

0, if x > mrej
E

(4)

2.4　Optimistic approach

ν(x) = 1

[nrej
H ,m

rej
H ]

ε > 0

αacc =
6

macc
H −macc

H
αrej =

6

mrej
H +ε−nrej

H

In an optimistic approach, the combination of MFs/NFs
is  perturbed  to  accommodate  more  or  reject  less  than
the normal approach. This can be done by reducing the
complete  rejection  range  (i.e., )  and  hence
displaying an optimistic trend. Here, an interval beyond

 is  obtained  in  which  the  acceptance  is  low
but  complete  rejection  is  avoided.  For  example,  a
combination with a tolerance of  under conditions
of  hyperbolic  MFs/NFs[41, 42] is  given  in  Eqs.  (5)  and

(6),  where ; .  We

illustrate them in Fig. 1.
 

µopt(x) =


0, if x < nacc

H ;
1
2

tanh
(
αacc

(
x−

macc
H +nacc

H

2

))
+

1
2
, if nacc

H ⩽ x ⩽ macc
H ;

1, if x > macc
H

(5)
 

νopt(x) =


1, if x < nrej

H −ε;
1
2

tanh

αrej

mrej
H +nrej

H −ε
2

− x


+ 1

2
, if nrej

H −ε ⩽ x ⩽ mrej
H ;

0, if x > mrej
H

(6)
 

µpes(x) =


0, if x ⩽ nacc

H +ε
′;

1
2

tanh
(
αacc

(
x−

macc
H +nacc

H +ε
′

2

))
+

1
2
, if nacc

H +ε
′ < x ⩽ macc

H ;

1, if x >macc
H

(7)
 

νpes(x) =


1, if x ⩽ nrej

H ;

1
2

tanh

αrej

mrej
H +nrej

H

2
− x


+ 1

2
, if nrej

H < x ⩽ mrej
H ;

0, if x >mrej
H

(8)

2.5　Pessimistic approach

µ(x) , 0
ε′

0 < ε′ < (macc
H −nacc

H )

αacc =
6

macc
H −nacc

H −ε′
αrej =

6

mrej
H −nrej

H

In a pessimistic approach, the combination of MFs/NFs
is  modified in  order  to  accept  less  or  reject  more than
the normal approach. This can be done by reducing the
range of acceptance (i.e., ).  Hence, a proposed
possible  combination  with  a  tolerance  of ,  where

, for hyperbolic MFs/NFs[49] can be
expressed  as  Eqs.  (7)  and  (8),  where

; .  We  illustrate

them in Fig. 2.

2.6　Intuitionistic  fuzzy  weighted  arithmetic
average operator

A1,A2, . . . ,An n A j =

{⟨x,µA j (x),vA j (x)⟩ | x ∈ U} ( j = 1,2, . . . ,n) ω = (ω1,ω2, . . . ,

ωn)T A j( j = 1,2, . . . ,n)

ω j ⩾ 0
n∑

j=1
ω j = 1

Let  represent  IFSs,  where 
 . 

 is  the  weight  vector  of ,  where

, .  The  intuitionistic  fuzzy  weighted
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Fig. 1    Hyperbolic MF/NF in optimistic sense.
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Fig. 2    Hyperbolic MF/NF in pessimistic sense.

  Yibo Dong et al.:  Attack and Defense Game with Intuitionistic Fuzzy Payoffs in Infrastructure Networks 387

 



average aggregation (IFWAA) operator is then defined
as follows[50, 51]:
 

IFWAAω (A1,A2, . . . ,An) =
ω1A1⊕ω2A2⊕ . . .⊕ωnAn =

n∑
j=1

ω jA j

(9)

 

IFWAAω (A1,A2, . . . ,An) ={
⟨x,1−

n∏
j=1

(
1−µA j (x)

)ω j
,

n∏
j=1

(
vA j (x)

)ω j⟩ | x ∈ U
} (10)

We can rewrite Eq. (9) as Eq. (10).

3　Attack  and  Defense  Game  Model  Based
on Intuitionistic Fuzzy Theory

Based  on  intuitionistic  fuzzy  theory,  we  construct  an
attack  and  defense  game  model  for  infrastructure
networks.  Before  constructing  this  models,  the
corresponding notations are illustrated as Table 1.

3.1　Basic assumptions

The following assumptions are made in this model:
(1)  There  is  only  one  attacker,  who  aims  to  attack

some  nodes  in  the  target  network  to  degrade  the
performance  of  the  system,  and  one  defender,  who
aims  to  maintain  the  functionality  of  the  network  by
protecting  a  subset  of  nodes.  The  attached  edges  will

be removed if one node fails.
(2)  Both  players  can  obtain  complete  information

about  the  target  network  and  have  full  knowledge  of
the opponent, meaning that they are perfectly informed
of  all  the  possible  strategies  that  the  opponent  may
adopt  and the  payoffs  to  each player  for  each strategy
profile.

(3)  As  the  game  is  a  simultaneous  one,  both  the
attacker  and  the  defender  move  without  knowing
exactly which strategy the opponent will choose.

(4)  The game is  played in  a  single  round and is  not
repeated over multiple rounds.

3.2　Strategies

G (V,E) V = {v1,v2, ...,vN}
E ⊆ V ×V

N = |V |
A(G) = (ai j)N×N

G ai j = a ji = 1 vi v j

ai j = a ji = 0

Consider  a  target  network,  such as  a  railway network,
that is formalized in terms of a simple undirected graph

, where  is the set of nodes and
 is  the  set  of  edges  (i.e.,  the  railway stations

and  the  railway  lines  in  the  railway  network,
respectively). Let  be the number of nodes in the
network.  We  define  as  the  adjacency
matrix  of ,  where  if  nodes  and  are
adjacent, and  otherwise.

vi cA
i cD

i
cA

i cD
i

ri ⩾ 0
vi

For  node ,  let  and  be  the  attack  cost  and
defense  cost,  respectively.  The  cost  or  is  a
function of a certain referential property  of node

, which can be expressed as
 

cA
i = rqA

i (11)
 

cD
i = rqD

i (12)

qA ⩾ 0
qD ⩾ 0

qA qD

ri

qA = qD = 0

where  is  the  attack  cost  sensitivity  parameter,
and  is  the  defense  cost  sensitivity  parameter.
The  parameters  and  can  be  obtained  based  on
expert  experience  and  historical  information.  In  this
paper, the referential property  is set as the degree of
the nodes. In particular, when , the resource
consumption  for  the  attack  or  defense  of  different
nodes is the same.

The  available  resources  of  both  the  attacker  and  the
defender are defined as
 

CA = θA

N∑
i=1

cA
i = θA

N∑
i=1

rqA
i (13)

 

CD = θD

N∑
i=1

cD
i = θD

N∑
i=1

rqD
i (14)

θA ∈ [0,1] θD ∈ [0,1]
The attack and defense cost constraint parameters are

denoted by  and ,  respectively.  The

 

Table 1    Main notations used in this model.
Notation Description

V Set of nodes

E Set of edges

cA
i ,c

D
i Attack and defense cost

ri viReferential property of node , such as node degree
qA,qD Attack and defense cost sensitivity parameters

θA, θD Attack and defense cost constraint paremeters

CA,CD Available resources of the attacker and defender

xi,yi vi

Parameters that determine the state of
node  being attacked or defended

CS Aĩ
,CS D j̃

S Aĩ
S D j̃

Total cost of attack strategy  and
defense strategy 

ωA,ωD
Minimum utilization rates of the available cost

resources for the attacker and defender

UA
k ,U

D
k

Objective payoff matrices of the attacker and
defender under the metric k

UIA
k ,U

ID
k IFS payoff matrices of the attacker and defender
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θA θDvalues  of  and  represent  the  attacker’s  and
defender’s  respective  cost  budgets  for  attacking  or
defending.

Based  on  the  cost  model  presented  above  and
existing  studies[21, 25, 51] of  the  definitions  of  feasible
strategies  under  non-uniform  cost  constraints,  it  is
apparent  that  existing  definitions  of  feasible  strategies
can  only  be  applied  to  some  typical  strategies,  rather
than to all feasible strategies. Taking the attacker as an
example,  the  feasible  strategies  in  former  studies  are
defined as follows.

S Aĩ = [x1, x2, ..., xN] ∈ S A

S A

VA ⊆ V
xi = 1 vi vi ∈ VA

xi = 0 S Aĩ

Suppose  is an attack strategy
vector,  where  represents  the  strategy  set  of  the
attacker. We define  as the set of attacked nodes,
and let  if node  is attacked ( ); otherwise,

.  The  total  cost  of  an  attack  strategy  is
denoted by
 

CS Aĩ
=

∑
vi∈VA

cA
i =

N∑
i=1

xicA
i =

N∑
i=1

xir
qA
i (15)

The cost constraint on the attacker is
 

CS Aĩ
=

N∑
i=1

xir
qA
i ⩽CA = θA

N∑
i=1

rqA
i (16)

ωA ωD

To obtain  feasible  strategies  based  on  the  constraint
described  above,  we  could  select  the  fewest  possible
attack  nodes  to  satisfy  the  constraint.  However,  in
practical situations, there will be a lower bound on the
attacker’s  resources  for  attacking  nodes.  This  lower
bound is essential to enable the attacker to achieve the
goal.  To address  this  conflict,  we propose  the  concept
of  a  minimum  resource  utilization  rate.  and 
represent the minimum utilization rates of the available
cost  resources  for  the  attacker  and  defender,
respectively. For the attacker, the overall constraint can
be expressed as follows:
 

ωAθA

N∑
i=1

rqA
i ⩽CS Aĩ

=

N∑
i=1

xir
qA
i ⩽CA = θA

N∑
i=1

rqA
i (17)

S D j̃ = [y1,y2, ...,yN] ∈ S D

Similarly, the defense strategy vector is expressed by
,  and  the  constraint  on  the

defender is
 

ωDθD

N∑
i=1

rqD
i ⩽CS D j̃

=

N∑
i=1

yir
qD
i ⩽CD = θD

N∑
i=1

rqD
i (18)

vi

xi = 1 yi = 0
We  assume  that  node  is  removed  only  if  it  is

attacked without being protected, i.e.,  and .

yi = 1
Conversely,  the  node  will  not  be  removed  if  it  is
defended ( ).

The  attack  and  defense  strategies  defined  in
Formulas  (17)  and  (18)  refer  to  a  vast  strategy  space,
particularly  for  a  large  network  size N.  In  real-world
scenarios,  it  can  be  intuitively  seen  that  the  attacker
and  defender  generally  consider  three  types  of
strategy[2]:

(1)  High  degree  strategy  (HS). In  this  case,  the
attacker and defender allocate all their resources to the
nodes with the highest degree. Although the number of
nodes  selected  is  small,  they  have  a  relatively  high
importance.

(2) Random strategy (RS). In this case, the attacker
and  defender  allocate  all  their  resources  to  nodes  in  a
random manner.

(3)  Low degree  strategy  (LS). In  this  scenario,  the
attacker  and  defender  allocate  all  their  resources  to
nodes  with  the  lowest  degree.  Although  the  selected
nodes  may  have  a  lower  importance,  their  quantity  is
greater.

3.3　Payoffs

In this paper, we consider three metrics, the size of the
largest  connected  component,  the  network  efficiency,
and  the  clustering  coefficient,  to  evaluate  the
performance of complex networks.

(1)  The  size  of  the  largest  connected  component  is
used  to  measure  the  connectivity  of  the  network,  and
can be expressed as
 

Γ =max(|C1| , |C2| , ..., |Ct |) (19)

Ci (i = 1,2, . . . , t)where  represents  the  connected
subgraphs.

(2)  The  network  efficiency  measures  the  speed  of
transmission  of  network  information,  and  can  be
calculated as follows:
 

E =
2

N(N −1)

∑
1⩽i⩽ j⩽N

1
Di j

(20)

Di j

vi v j

where  represents the shortest path between a pair of
nodes  and .

(3)  The  clustering  coefficient  is  adopted  to  measure
the  degree  of  node  clustering  in  the  network,  and  can
be expressed as Ref. [52],
 

H =
1
N

N∑
i=1

K
|Ni| × (|Ni| −1)

2

(21)
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Ni vi K
Ni

where  is the set of nodes adjacent to , and  is the
actual  number  of  edges  formed  by  the  set  in  the
network.

V̂ ⊆ V Ê

Ĝ = (V,E− Ê)
UA

k : |S A| × |S D|

S A S D

UD
k (S A,S D)

Let  be  the  set  of  failing  nodes,  and  be  the
corresponding  set  of  removed  edges.  After  a  round  of
the game, the network can be denoted by .
We  define  as  the  objective  payoff
matrix of the attacker when the attacker adopts strategy

 and  the  defender  adopts  strategy  under  the
metric k.  Similarly,  the  objective  payoff  matrix  of  the
defender is defined as . We then have
 

UA
k (S A,S D) =

Mk(G)−Mk(Ĝ)
Mk(G)

∈ [0,1] (22)

 

UD
k (S A,S D) =

Mk(Ĝ)−Mk(G)
Mk(G)

∈ [−1,0] (23)

M1,M2 M3where ,  and  denote  the  size  of  the  largest
connected  component,  the  network  efficiency,  and  the
clustering coefficient for the network, respectively.

uk
ĩ j̃
= UA

k

(
S Aĩ,S D j̃

)
m = |S A| n = |S D| 1 ⩽ ĩ ⩽ m

1 ⩽ j̃ ⩽ n UA
k

Let ; ; ; ;
, where  is expressed as follows:

 

UA
k =

S D1 S D2 · · · S Dn

S A1
S A2
...

S Am



uk
11 uk

12 . . . uk
1n

uk
21 uk

22 . . . uk
2n

...
...

...

uk
m1 uk

m2 · · · uk
mn


(24)

UA
k (S A,S D)+UD

k (S A,S D) = 0
UD

k
−UA

k

We  note  that ,  as  the
game  is  a  two-player  zero-sum game.  Hence,  can
be expressed as .

uk
ĩ j̃

X
X

⟨µk
ĩ j̃
, νk

ĩ j̃
⟩

uk
ĩ j̃

⟨µk
ĩ j̃
, νk

ĩ j̃
⟩

⟨µk
ĩ j̃
, νk

ĩ j̃
⟩

Due  to  the  fuzziness  and  uncertainty  arising  from
subjective  factors  and  human  judgments,  it  is  more
appropriate to define the payoff to a decision maker as
“satisfaction with the achievement of the goal”. In this
paper,  intuitionistic  fuzzy  theory  is  used  to  reflect  the
decision  makers’ preferences.  We  assume  that  the
change in the complex network metrics ( ) represents
the universe of discourse ,  and “satisfaction with the
achievement  of  the  goal” is  an  IFS  on ,  denoted  by

.  For  the  attacker,  we  transform  the  change  in
complex  network  metrics  ( )  into  an  IFS 
using an appropriate MF/NF, as described in Section 2.
We then construct the initial IFS payoff matrices based
on  different  metrics.  As  this  is  a  zero-sum  game,  the
defender’s  loss  can  be  represented  by  the  same  IFS

.  The initial  IFS payoff  matrix  for  the  attacker
can then be represented as follows:

 

UIA
k =

S D1 S D2 · · · S Dn

S A1
S A2
...

S Am


< µk

11,v
k
11 > < µk

12,v
k
12 > · · · < µk

1n,v
k
1n >

< µk
21,v

k
21 > < µk

22,v
k
22 > · · · < µk

2n,v
k
2n >

...
...

...

< µk
m1,v

k
m1 > < µk

m2,v
k
m2 > · · · < µk

mn,v
k
mn >


(25)

vi

S Aĩ,S D j̃
xi = 1 S Aĩ vi

yi = 1 S D j̃ vi

S Aĩ,S D j̃

UA
k (S Aĩ,S D j̃)

µopt,νopt

−−−−−−→ UIA
k (S Aĩ,S D j̃)

As  decision  makers  of  different  types  tend  to  show
varying  degrees  of  subjective  preference,  we  consider
both optimistic and pessimistic approaches in Section 2
to  describe  these  subjective  preferences  for  specific
strategies  and  incorporate  them  into  specific  strategy
profiles.  For  example,  the  attacker  may  have  a
preference for strategies that involve attacking node .
From the  perspective  of  the  game,  this  preference  can
be expressed as follows. The attacker believes that the
payoff under the strategy profile ( )  will  not be
too low,  where  in  (node  is  attacked)  and

 in  (node  is  defended).  Consequently,
under  the  specific  strategy  profile  ( ),  we  have

.
To  comprehensively  evaluate  the  changes  in  the

overall performance of the target network after a round
of  the  game,  the  initial  IFS  payoff  matrices  based  on
three  metrics  are  aggregated  using  certain  weight
distributions through the IFWAA operator  (Eq.  (9))  to
obtain the finial IFS payoff matrix as follows:
 

UIA (S A,S D) =

ω1UIA
1 (S A,S D)⊕ω2UIA

2 (S A,S D)⊕ω3UIA
3 (S A,S D)

(26)

 

UID (S A,S D) =

ω1UID
1 (S A,S D)⊕ω2UID

2 (S A,S D)⊕ω3UID
3 (S A,S D)

(27)

The process of generating the final IFS payoff matrix
under this model is shown in Fig. 3, and a network with
10 nodes  is  shown  as  an  example.  In  this  figure,  we
only  focus  on  one  game result  where  the  attacker  and
defender  choose  strategies  involving  red  and  blue
nodes,  respectively.  An  appropriate  MF/NF  is  used  to
calculate the initial IFS payoff matrices based on three
distinct single metrics, and the final IFS payoff matrix
is then obtained by aggregating these initial IFS payoff
matrices under different weight distributions.

4　Solution Method

In this  section,  we will  derive the solution method for
the  model  proposed  in  Section  3.  To  ensure  a
standardized  and  clear  process  for  generating  the  IFS
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payoff matrix, we first present an algorithm to obtain it.
Subsequently, based on the IFS payoff matrices of both
the attacker and defender, we introduce a methodology
to  determine  the  Nash  equilibrium  in  this  scenario.
Furthermore,  we  also  provide  the  method  for
calculating the equilibrium payoff value.

Pseudocode  for  obtaining  the  IFS  payoff  matrix  of
the attack and defense game in infrastructure networks
is shown in Algorithm 1.

It should be noted that in Algorithm 1, when an RS is
incorporated, it is imperative to use the average values
for  the  payoffs,  which  means  repeating  Steps  6−7
many  times  to  obtain  the  initial  payoff  matrices[15].
Nash  equilibrium  is  a  concept  in  game  theory  where
each player in a strategic setting has chosen a strategy

that  no  player  can  benefit  by  changing  their  strategy
unilaterally,  assuming  that  all  other  players’ strategies
remain  constant.  When  the  final  IFS  payoff  matrix  is
obtained,  a methodology is  applied to obtain the Nash
equilibrium  of  this  zero-sum  game  based  on  a  pair  of
nonlinear  programming  models[53],  which  are  defined
as Eqs. (28) and (29):
 

min{(1−µ)λν1−λ};

s.t.



|S A |∏
i=1

[(1−µi j)λνi j
1−λ]pi ⩽ (1−µ)λv1−λ;

p1+ p2+ · · ·+ p|S A | = 1;
pi ⩾ 0;

µ ⩾ 0, ν ⩾ 0;
0 ⩽ µ+ ν ⩽ 1;

i = 1,2, . . . , |S A|, j = 1,2, . . . , |S D|

(28)

 

 
Fig. 3    Process used to generate the final IFS payoff matrix in the proposed game model.
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max{(1−α)λβ1−λ};

s.t.



|S D |∏
j=1

[(1−µi j)λνi j
1−λ]qi ⩽ (1−α)λβ1−λ;

q1+q2+ · · ·+q|S D | = 1;
q j ⩾ 0;

α ⩾ 0,β ⩾ 0;
0 ⩽ α+β ⩽ 1;

i = 1,2, . . . , |S A|, j = 1,2, . . . , |S D|

(29)

λ ∈ [0,1]
λ

(σA,σD, ⟨µ,ν⟩, ⟨α,β⟩)

where  represents  the  relative  weights  of  the
constraints  of  the  MF/NF.  When  has  been
determined,  the  Nash  equilibrium 

σA =
(
p1, p2, . . . , p|S A |

)T

σD =
(
q1,q2, . . . ,q|S D |

)T

⟨µ,ν⟩
⟨α,β⟩

can  be  obtained.  The  probability  vector  for  the
attacker’s  mixed-strategy  Nash  equilibrium  is  denoted
by , while that of the defender is

denoted  by .  In  addition,  let
 denote  the  equilibrium  payoff  value  for  the

attacker in the game, while  represents that of the
defender.  Both  the  equilibrium  payoff  values  can  be
expressed as IFSs. The equilibrium payoff value for the
attacker is defined as
 

E(σA,σD) = σA
TUAσD =

p1
p2
...

p|S A |


T 

⟨µ11, ν11⟩ ⟨µ12, ν12⟩ · · · ⟨µ1|S D |, ν1|S D |⟩
⟨µ21, ν21⟩ ⟨µ22, ν22⟩ · · · ⟨µ2|S D |, ν2|S D |⟩
...

...
...

⟨µ|S A |1, ν|S A |1⟩ ⟨ν|S A |2, ν|S A |2⟩ · · · ⟨ν|S A ||S D |, ν|S A ||S D |⟩




q1
q2
...

q|S D |

 =

⟨ 1−
|S D |∏
j=1

|S A |∏
i=1

(1−µi j)piq j ,

|S D |∏
j=1

|S A |∏
i=1

νi j
piq j ⟩ = ⟨µ,ν⟩

(30)

−E(σA,σD)

Since  we  are  dealing  with  a  zero-sum  game,  the
equilibrium  payoff  value  for  the  defender  can  be
defined as .

5　Experiment

N

N
N = 100

1060 θA = θD = 1 ωA = ωD = 0

In  our  experiments,  we consider  both local  and global
networks.  A local  network (such as a railway network
between cities in a province) often has a small network
size ,  meaning  that  the  number  of  strategy  profiles
needed  for  decision  makers  to  compute  the  Nash
equilibrium is not large. In the experiment, we focus on
the  probability  distributions  over  each  node  and  the
equilibrium payoff values to decision makers based on
intuitionistic fuzzy theory. We also explore the degree
of  the  decision  makers’ subjective  preferences  for
specific strategies. A global network often has a larger
network  size  (such  as  an  airline  network  with

),  and  the  total  number  of  strategy  profiles  is
then more than  when , . In
this case, the payoff matrix is too large to construct, let
alone  solve[15],  and  we  therefore  use  the  typical
strategies  in  Section  3.2.  In  the  experiment,  we  focus
on  the  probability  distributions  over  typical  strategies
and  the  equilibrium  payoff  values  to  decision  makers
based  on  intuitionistic  fuzzy  theory.  The  variation  in
the  Nash  equilibrium  for  typical  decision-making
strategies in an optimistic scenario is presented. In this
paper,  we  report  the  results  of  experiments  on  a  local
network  with  10 nodes  and  a  global  network  with
300 nodes.

 

Algorithm 1　Pseudocode for obtaining the IFS payoff
matrix

N = |V | qA,qD, θA, θD,

ωA,ωD µk(x) νk(x) µ
opt
k (x) νopt

k (x) µpes
k (x) νpes

k (x)
S spe

A ,S
spe
D

Input: A target network G(V, E) with , 
; , , , , , , specific

strategy set .
UIAOutput: The attacker’s final IFS payoff matrix .

ri vi
G(V,E)
1 Calculate the degree  for each node  in the network

;

cA
i = rqA

i cD
i = rqD

i

2 Calculate the cost of each node in terms of attacking and
defending: , ;

CA = θA

N∑
i=1

cA
i ,C

D = θD

N∑
i=1

cD
i

3 Calculate the available resources for the attacker and defender:

;

4 Calculate the minimum resource utilization values for the
attacker and the defender:

CA
min = ωAθA

N∑
i=1

rqA
i ,C

D
min = ωDθD

N∑
i=1

rqD
i ;

S Aĩ ∈ S A5 Enumerate all the attack strategies 

CA
min eqslant CS Aĩ

⩽CA S D j̃ ∈ S D
CD

min ⩽CS D j̃
⩽CD

θA θD

ωA ωD θA θD

( ) and defense strategies 
( ); The strategies are determined by , ,

,  (for typical strategies HS, RS, LS, only ,  are
considered);

UA
k ← zeros(|S A|, |S D|) ;6 

UA
k7 Calculate the initial payoff matrices  under each metric:

UA
k (|S A|, |S D|) = Mk(G)−Mk(Ĝ)

Mk(G) ∈ [0,1](k = 1,2,3);

U IA
k
µk(x),νk(x)
←−−−−−−−− UA

k8 ;

i← 1 |S A|9 for  to  do
j← 1 |S D|10　　for  to  do

S Aĩ ∈ S spe
A

S D j̃ ∈ S spe
D11　　　if  and  then

UIA
k (S Aĩ,S D j̃)

µ
opt
k (x),νopt

k (x)(µpes
k (x),νpes

k (x))
←−−−−−−−−−−−−−−−−−−−−−− UA

k (S Aĩ,S D j̃)

12　　　　

13　　　end
14　　end
15 end

UIA(S A,S D)
16 Aggregate the initial IFS payoff matrices to obtain a final IFS
payoff matrix  using Eq. (26).
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5.1　Local network experiment

5.1.1　Experiment setting
We carried out experiments on a local network with the
topological  structure  shown in Fig.  4.  In  this  network,
decision  makers  are  fully  capable  of  considering  all
strategies  and  obtaining  the  mixed-strategy  Nash
equilibrium.  From  both  the  perspective  of  the  support
set  in  mathematics  and  the  perspective  of  the
simultaneous game in experiments[16], it can be proven
that  a  mixed  strategy  is  more  efficient  in  the  Nash
equilibrium than the typical strategies (HS, LS, RS).

qA = qD = 0.8
ωA ∈ [0.5,1]

θA

To  investigate  the  effects  of  the  cost  coefficient
parameter and minimum resource utilization rate on the
number of optional strategies in the target network, we
take  the  attacker  as  an  example.  We  set 
and  to  reflect  the  actual  situation.  The
possible values of  range from 1/16 to 1,  which can
be  seen  from  analyzing  the  network  in Fig.  4.  The
results are illustrated in Fig. 5.

θA

From Fig.  5,  we  see  that  there  are  more  available
strategies  when  is  moderate,  and  the  number  of

ωA

macc
H = 0.35

nacc
H = 0.2 mrej

H = 0.35 nrej
H = 0.1

macc
H = 0.5 nacc

H = 0.3 mrej
H = 0.5 nrej

H = 0.15
macc

E = 0.6 nacc
E = 0.3

mrej
E = 0.55 nrej

E = 0.1

available  strategies  gradually  decreases  as 
increases.  Based  on  the  principle  of  maximizing
resource  utilization  while  simulating  a  more  typical
scenario, we set the cost constraint parameters for both
the  attacker  and  defender  in Fig.  5 to  0.75 and  the
minimum  resource  utilization  rate  to  0.9 for  the
following  analysis.  To  consider  the  decision  makers’
preferences,  we  set  the  corresponding  MF/NF  to  the
size  of  the  largest  connected  component  ( ,

, , ),  network  efficiency
( , , , ),  and
clustering  coefficient  (t=2, , ,

, ) in Fig. 6, respectively.

λ

Finally,  we set  the relative weight  of  the constraints
of MF/NF, denoted by , to 0.5.
5.1.2　Probability distributions over each node
We assign different  weight  proportions  to  the  metrics,
i.e.,  the  size  of  the  largest  connected  component,  the
network  efficiency,  and  the  clustering  coefficient.  By
aggregating these metrics using Eq. (10), we can obtain
different IFS payoff matrices. The solution process for
the model presented in Section 4 allows us to calculate
the  mixed-strategy  Nash  equilibrium.  To  identify  the
nodes  that  are  preferred  by  the  attacker  and  the
defender, we map the probabilities over pure strategies
to those over each node in the following manner[16]:
 

ρA =
1

nA

m∑
i=1

pi ·S Aĩ =
1

nA
σA · [S A1,S A2, ...,S Am]T (31)

 

ρD =
1

nD

n∑
j=1

q j ·S D j̃ =
1

nD
σD · [S D1,S D2, . . . ,S Dn]T

(32)
m = |S A| n = |S D| ρA = [ p̃1, p̃2, . . . , p̃N]

ρD = [q̃1, q̃2, . . . , q̃N]

σA = [p1, p2, . . . , pm] σD =

[q1,q2, . . . ,qn]

where , .  and
 are  the  probability  distributions

over individual nodes of the attacker and the defender,
respectively,  and  and 

 are  the  probability  distributions  over  all
possible strategies for the two players.

λ = 0.5

We analyzed the probability distributions over nodes
in  games  with  payoffs  of  IFSs. Figure  7 present  a
comparison of  the  probability  distributions  over  nodes
before and after applying intuitionistic fuzzy theory for
different weight allocations of the metrics. The relative
weight  of  the  constraints  on  MF/NF  is  set  to  0.5
( ),  and the size of  each circle is  proportional  to
the corresponding node degree.

When  attacking  or  defending  nodes,  there  are  three
factors  that  may  affect  the  outcome:  (1)  the  resources

 

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

 
Fig. 4    Topological  structure  of  the  target  network  with
10 nodes and 21 edges.
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Fig. 5    Numbers of strategies under different constraints on
 and .
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necessary for attacking or defending each node; (2) the
individual  preferences  of  the  decision  makers,  as
reflected  by  the  MF/NF;  and  (3)  the  different  weight
proportions of the complex network metrics.

Figure  7a  shows  that  under  crisp  conditions,  the
attacker  is  more  inclined  to  attack  nodes  with  higher
importance;  however,  once  intuitionistic  fuzzy
preferences  are  incorporated,  the  attacker  becomes
more sensitive to the necessary resources for attacking
respective  nodes,  which  elevates  the  likelihood  of
attacking  moderately  important  nodes.  Furthermore,
our  findings  indicate  that  varying  the  weight
proportions  of  the  complex  network  metrics  does  not
significantly  modify  the  attacker’s  overall  probability
distribution for various nodes.

Figure  7b  shows  that  under  crisp  conditions,  the
defender  exhibits  a  greater  inclination  to  protect
moderately important nodes. Under intuitionistic fuzzy
preferences,  the  defender’s  probability  proportion  for
various  nodes  becomes  more  even,  but  a  notable
inclination toward protecting highly important nodes is
seen.  The  defender  believes  that  protecting  nodes  of
greater importance could lead to an acceptable level of

loss,  from  the  perspective  of  a  subjective  judgment
based  on  intuitionistic  fuzzy  theory.  In  addition,  for
different  weight  proportions  of  the  complex  network
metrics,  the  defender’s  overall  probability  distribution
for nodes exhibits minimal variation.
5.1.3　Changes in equilibrium payoff values for the

local network

µi j

νi j

µi j = 1 νi j = 0
µi j = 0.99 νi j = 0.01

After  aggregating  the  three  complex  network  metrics
with  different  weight  proportions,  we  can  obtain
equilibrium payoff values for the attacker and defender
using  the  method  presented  in  Section  4.  However,
when we calculate the equilibrium payoff values in an
IFS  using  Eq.  (10),  the  resulting  values  are  evidently
inconsistent  with reality.  It  can be observed that  when
one of the values of  equals  one,  the corresponding
membership  of  the  equilibrium  payoff  values  also
becomes  one;  likewise,  if  any  of  the  values  of  is
zero,  the  corresponding  non-membership  of  the
equilibrium  payoff  values  becomes  zero.  In  order  to
avoid such a predicament, we replace the circumstance
where  and  with  an  alternative  setting
where  and ,  respectively. Table  2
depicts the Nash equilibrium payoff values for the IFS
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Fig. 6    Parameter setting of MF/NF when considerate different complex network metrics.
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Fig. 7    Probabilities over each node of (a) the attacker and (b) the defender.
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for  differing  weight  proportions.  The  weights , ,
and  represent  the  size  of  the  largest  connected
component,  network  efficiency,  and  clustering
coefficient, respectively.

When  network  efficiency  is  emphasized,  the  Nash
equilibrium  payoff  value  for  the  attacker  obtained
under intuitionistic fuzzy conditions is maximal. When
the  size  of  the  largest  connected  component  is
emphasized,  the  payoff  value  ranks  second,  and  when
the  clustering  coefficient  is  emphasized,  the  payoff
value  is  minimal.  As  this  is  a  zero-sum  game,  the
defender’s  payoff  values  are  precisely  the  converse  of
those of the attacker.
5.1.4　Impact of subjective judgement on strategies

ε

λ = 0.5

ε

Decision makers of different types tend to demonstrate
varying  degrees  of  subjective  preference  for  certain
strategies.  We  combine  the  methods  described  in
Section 3.3 and introduce an optimistic  MF/NF with a
tolerance  parameter  to  simulate  the  case  where  the
attacker  is  particularly  inclined  to  attack  node  6  (i.e.,
the selected strategy includes node 6) when , for
example.  Using  the  MF/NF  in Fig.  6,  combined  with
the expressions in Sections 2.4 and 2.5, we investigate
the effect  of  varying  for  the NF from 0.05 to  0.2 on
three  equally  weighted  metrics.  Even  if  both  the
attacker  and  defender  choose  strategies  that  include
node 6, the degree of rejection in the IFS of payoffs as
perceived  by  the  attacker  is  not  expected  to  be
significantly high. Figure 8 was produced by applying
the mapping method described in Eqs. (31) and (32).

ε

The  attack  probability  distribution  for  node
6 gradually  rises  as  increases  under  the  Nash
equilibrium,  when  the  attacker  has  a  predisposition  to
attack  node  6,  which  is  consistent  with  the  expected
result.

In  this  case,  we  employ  only  an  optimistic  MF/NF
for  the  attacker  while  keeping  the  payoff  matrix
unaltered  for  the  defender.  As  a  result,  the  mixed-
strategy  Nash  equilibrium  and  probability  distribution
among  various  nodes  remain  consistent  with  previous
scenarios from the defender’s perspective.

5.2　Global network

5.2.1　Experiment setting

p(k) ∼ (η−1)mη−1k−η

N = 300,η = 3 m = 2

λ

As  scale-free  networks  with  considerable  numbers  of
nodes  are  widespread  in  the  real  world,  we  model  the
global  network  as  a  scale-free  network  with  a  power-
law  degree  distribution  ( ).  We  set

, and . For the MF/NF in the global
network, we adopt the settings described in Section 5.1,
whereby  the  relative  weight  of  the  constraints  on  the
weight  of the MF/NF is established as 0.5. Unlike the
local  network,  we  do  not  apply  all  the  available
strategies  to  the  global  network[54];  instead,  we  utilize
the  typical  strategies  (HS,  LS,  and  RS)  described  in
Section 3.2.
5.2.2　Nash equilibrium for the global network

θA θD

θA ∈ [0.8, 0.9]

θA ∈ [0.1, 0.7]

θA ∈ [0.1, 0.5] , θD ∈ [0.1, 0.5]

First, we analyze the Nash equilibrium for the attacker
and  defender,  assuming  the  same  weight  for  the  three
metrics under crisp conditions, as shown in Fig. 9. The
first and second rows show the probabilities adopted by
the attacker and defender,  respectively, while the first,
second, and third columns show the results for HS, RS,
and  LS.  The  cost  constraint  parameters  and 
reflect  the  different  amounts  of  resources  available  to
the  attacker  and  defender,  and  range  from  0.1 to  0.9.
We also hypothesize an equiprobable weighting for the
three complex network metrics. It seems that when the
attacker  has  abundant  resources  (i.e., ),
his  probability  of  adopting  RS  is  high.  Conversely,
when  the  attacker  has  limited  resources  (i.e.,

),  his  probability  of  adopting LS is  high.
When  both  the  attacker  and  defender  have  limited
resources  (i.e., ),  the
defender is more likely to adopt HS or LS. Otherwise,
the  defender  is  more  likely  to  adopt  RS.  We  then

 

Table 2    Nash  equilibrium  payoff  values  in  membership
function and non-membership function degree.

Weight proportion MF degree NF degree
ω1 = 0.6,ω2 = 0.2,ω2 = 0.2 0.48 0.31
ω1 = 0.2,ω2 = 0.6,ω2 = 0.2 0.65 0.18
ω1 = 0.2,ω2 = 0.2,ω2 = 0.6 0.40 0.41
ω1 = 0.33,ω2 = 0.33,ω2 = 0.33 0.52 0.28
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Fig. 8    Probabilities over each node of the attacker based on
an intuitionistic fuzzy method.
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ω1 ω2 ω3

examine  the  Nash  equilibrium  under  different
combinations  of  and  for  the  attacker  and
defender  when  intuitionistic  fuzzy  theory  is  applied,
and  consider  the  three  typical  strategies  with  different
weights for the aggregated metrics. In Fig. 10, different
weight  proportions  are  assigned  to  the  size  of  the
largest  connected  component,  the  network  efficiency,
and  the  clustering  coefficient  in  each  subgraph.  The
mixed  Nash  equilibrium  strategies  of  the  attacker  and
defender are obtained for different weight proportions.
The  weights , ,  and  represent  the  size  of  the
largest  connected  component,  the  network  efficiency,
and the clustering coefficient, respectively.

We observe from Fig. 10 that there are three notable
traits:

θD ∈ [0.1,0.4]
θA ∈ [0.8,0.9]

(1) When the defender has limited resources and the
attacker  has  abundant  resources  (i.e., ,

),  the  attacker  is  likely  to  choose  RS  for
all weight proportions.

θA ∈ [0.6,0.9] θD ∈ [0.8,0.9]
(2)  When  both  the  attacker  and  defender  have

abundant  resources  (i.e., , ),
the attacker prefers LS for all weight proportions.

θA θD

(3)  For  the  defender,  there  is  generally  a  higher
probability  of  selecting  RS  for  most  combinations  of

 and , particularly when the clustering coefficient
weight is higher.

By combining Figs. 9 and 10d, we see that the Nash
equilibrium  for  both  the  attacker  and  defender  is
impacted  by  the  application  of  an  intuitionistic  fuzzy

method as compared to the crisp situation.

θD ∈ [0.6,0.9] , θA ∈ [0.1,0.2]

θA ∈ [0.6,0.9] , θD ∈ [0.8,0.9]

For  the  attacker,  when  the  defender  has  abundant
resources  but  the  attacker  has  limited  resources  (i.e.,

),  the  tendency  of  the
attacker  to  adopt  HS  is  significantly  increased.  When
both the attacker and defender have abundant resources
(i.e., ),  the  tendency  of  the
attacker to adopt LS is significantly increased.

θD ∈ [0.2,0.7] , θA ∈ [0.6,0.9]

For  the  defender,  when  the  defender’s  available
resources are moderate and the attacker’s resources are
rich ( ), the tendency for the
defender  to  adopt  RS is  significantly  decreased,  while
the tendency to adopt HS or LS is increased.
5.2.3　Changes  in  the  equilibrium payoff  value  for

the global network

θA θD [0.1,0.9]

Figure  11 displays  the  changes  in  the  equilibrium
intuitionistic  fuzzy  payoff  value  for  the  attacker  when

 and  vary within the interval . Equations
(26)  and  (27)  show  that  the  defender’s  equilibrium
payoff  value  is  the  inverse  of  the  attacker’s,  meaning
that  it  is  sufficient  to  analyze  only  the  equilibrium
payoff  value  for  the  attacker.  The  weights  assigned to
the  metrics  in Fig. 11 are  derived  from  the
corresponding  weights  presented  in Fig.  10.  The
equilibrium  payoff  values  for  a  game  based  on  IFSs
can  be  illustrated  using  two  scales,  relating  to
membership  and  non-membership  values.  In Fig. 11,
these  two  scales  are  shown  in  yellow  and  green,
respectively.
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Fig. 9    Equilibrium strategies for the two players under crisp conditions.
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In  general,  the  trends  in  the  membership  and  non-
membership  equilibrium  payoff  values  of  the  attacker
stay  consistent  when  the  weight  proportions  of  the
metrics are varied. Despite minor changes in the value
of  the  attacker’s  equilibrium  payoff  across  the  four
subplots  for  different  combinations  of  and ,  two
distinct  features  can  be  observed  from  all  of  the
subplots:

(1)  In Fig. 11,  the  change  in  the  membership
equilibrium  payoff  value  is  relatively  smooth  when  it
approaches one or zero. However, around 0.5, the value
changes rapidly. This phenomenon can be attributed to
the  MF  presented  in Fig.  6.  With  this  MF,  when  the
payoff  based  on  the  metrics  of  the  size  of  the  largest
connected  component  and  network  efficiency  is
moderately  valued,  the  attacker’s  marginal  payoff
increases significantly. As a result, the attacker tends to
increase  the  payoff.  Conversely,  when  the  payoff  is
high,  the  attacker  has  mostly  achieved  the  expected
objectives,  so  the  inclination  to  further  increase  the

payoff is not strong. The non-membership equilibrium
payoff value exhibits the same pattern.

θD θA

(2) Figure  11 illustrates  that  when  the  attacker  has
abundant  resources  while  the  defender  has  few,  the
attacker’s  equilibrium  payoff  value  achieves  the
highest degree of membership and the lowest degree of
non-membership.  Conversely,  when  the  attacker  has
limited  resources  but  the  defender  has  plenty,  the
situation  is  reversed,  which  is  intuitively  obvious.
Regardless  of  the  abundance  of  the  attacker’s
resources,  when  the  defender  has  adequate  resources,
the  equilibrium  payoff  for  the  attacker  is  the  lowest.
Meanwhile,  as  decreases  for  each  fixed ,  the
degree of membership in the equilibrium payoff for the
attacker increases while the degree of non-membership
decreases.
5.2.4　Impact  of  subjective  judgment  on  typical

strategies
In  an  actual  game  of  attack  and  defense  in
infrastructure  networks,  decision  makers  of  different
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Fig. 10    Equilibrium strategies for the two players based on intuitionistic fuzzy theory.
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ε

types tend to demonstrate varying degrees of subjective
preference  for  certain  typical  strategies.  Using  the
method  in  Section  3.3,  we  introduce  an  optimistic
approach to simulate the situation where the attacker is
more  inclined  towards  HS.  The  tolerance  parameters
for the optimistic MF/NF are set in the same way as in
Fig.  8.  Even  if  both  the  attacker  and  defender  choose
RS,  the  attacker  does  not  perceive  a  high  level  of
rejection in the rejection degree in  the IFS of  payoffs,
which  reflects  the  attacker’s  preference  for  RS.
Figure  12 shows  the  increase  in  the  attacker’s
probability  of  choosing  HS  under  Nash  equilibrium,
with  the  tolerance  varying  from  0.05 to  0.2.  This  is
calculated  by  subtracting  the  new  probability  of
choosing RS from the original one, taking into account
the attacker’s various tolerance parameter settings.

From  the  results  presented  in Fig. 12,  two
observations can be made:

(1)  Overall,  the  attacker  has  a  higher  probability  of

θA θD

choosing RS when optimistic preferences are taken into
consideration.  This  increase  is  particularly  noticeable
for certain combinations of  and .

(2)  For  a  combination  of  three  metrics  with  equal
weights,  it  is  noticeable  that  the  overall  probability  of
choosing  RS  increases  as  the  tolerance  parameter
setting  rises.  This  trend  can  be  observed  from  the
magnitude of increase in the probability.

These  results  demonstrate  the  effectiveness  of
applying  intuitionistic  fuzzy  MFs/NFs  to  describe  the
subjective  preferences  of  different  types  of  decision
makers in game strategies.

6　Conclusion

In  this  paper,  we  use  intuitionistic  fuzzy  theory  to
develop  a  feasible  method  of  explaining  the  fuzziness
of  the  payoffs  in  attack  and  defense  games.  We
conduct  experiments  on  both  local  and  global
networks,  where  we  study  the  Nash  equilibrium,
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equilibrium payoff values and the impact of subjective
judgment.

First,  we  construct  the  attack  and  defense  game
model  based  on  intuitionistic  fuzzy  theory.  For  local
and global networks, we propose two different strategy
selection approaches. To assess the IFS payoffs in this
model,  we  apply  three  distinct  complex  network
metrics  and  design  MFs/NFs  base  on  the  decision
makers’ subjective preferences. Second, we propose an
algorithm  to  obtain  the  IFS  payoff  matrix.  We  then
introduce  a  pair  of  nonlinear  programming  models  to
obtain  the  Nash  equilibrium  in  a  IFS  zero-sum  game
for  the  attacker  and  defender.  The  attacker  and
defender’s  IFS  equilibrium  payoff  values  are  also
defined. Finally, to represent the network performance
more  comprehensively,  we  combine  the  payoff
matrices obtained from the three metrics based on their
respective weights, as per practical considerations. Our
experimental  results  show  that  incorporating
intuitionistic  fuzzy  theory  lead  to  different  Nash
equilibrium  values  compared  to  crisp  situations,  and
the  equilibrium  payoff  values  have  some  distinct
features.  In  addition,  differences  in  emphasis  on  the
complex  network  metrics  are  not  shown  to  affect  the
node  probability  distributions  and  Nash  equilibria.

Moreover,  different  tolerance  parameters  are  found  to
have  varying  degrees  of  influence  on  the  decision
makers’ equilibrium strategies.
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