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Abstract: Workload  prediction  is  critical  in  enabling  proactive  resource  management  of  cloud  applications.

Accurate  workload  prediction  is  valuable  for  cloud  users  and  providers  as  it  can  effectively  guide  many

practices,  such  as  performance  assurance,  cost  reduction,  and  energy  consumption  optimization.  However,

cloud workload prediction is highly challenging due to the complexity and dynamics of workloads, and various

solutions  have  been  proposed  to  enhance  the  prediction  behavior.  This  paper  aims  to  provide  an  in-depth

understanding  and  categorization  of  existing  solutions  through  extensive  literature  reviews.  Unlike  existing

surveys,  for  the first  time,  we comprehensively  sort  out  and analyze the development  landscape of  workload

prediction  from  a  new  perspective,  i.e.,  application-oriented  rather  than  prediction  methodologies  per  se.

Specifically,  we  first  introduce  the  basic  features  of  workload  prediction,  and  then  analyze  and  categorize

existing  efforts  based  on  two  significant  characteristics  of  cloud  applications:  variability  and  heterogeneity.

Furthermore,  we  also  investigate  how workload  prediction  is  applied  to  resource  management.  Finally,  open

research opportunities in workload prediction are highlighted to foster further advancements.

Key words:  cloud computing; workload prediction; resource management; artificial  intelligence for  IT  operations

(AIOps)

1　Introduction

With the rapid development of cloud computing, more
and more applications have migrated or will migrate to
cloud  platforms[1].  Cloud  platforms  provide
applications  with  powerful  computing  capabilities,

flexible  resource  allocation,  and  a  high  degree  of
scalability[2],  which  ensure  that  applications  can
achieve  better  performance,  cost,  and  energy
efficiency[3]. In addition, cloud computing brings other
advantages  to  applications,  such  as  globalized
deployment,  high  availability,  and  powerful  data
processing capabilities[4],  which enable  applications  to
meet  user  needs  ably,  provide  faster  and  more  stable
services,  and  deliver  seamless  experiences  to  users
across the globe[5].

To provide cloud applications and services that meet
service  level  agreements  (SLAs)  to  cloud  subscribers,
robust  resource  management  methods  must
comprehensively  optimize  cloud  applications’
performance, cost,  and energy consumption. However,
resource  management  faces  significant  challenges  due
to the dynamics of cloud environments, the diversity of
user requests and services, and the elastic provisioning
of  cloud  resources[6].  These  challenges  are  mainly
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reflected in the following aspects:
(1) Long  queuing  time:  Due  to  improper  resource

allocation or traffic scheduling, user requests may have
to wait in the queue for a more extended period before
processing.

(2) Performance unstable: Due to the dynamics and
resource  sharing  in  cloud  environments,  the
applications’ performance may be unstable, resulting in
a degraded user experience.

(3) Resource  competition:  Multiple  applications  or
services may compete for the same resource, leading to
resource  bottlenecks,  performance  degradation,  and
service crashes.

(4) Resource  idle:  Due  to  rough  or  improper
resource  allocation  strategy  or  inaccurate  prediction,
some resources may remain unused for longer, wasting
resources.

(5) High  energy  consumption:  Irrational  resource
management  strategies  may  increase  energy
consumption and operational costs.

To solve the above problems, Fig. 1 shows a proactive
framework  for  implementing  artificial  intelligence  for
IT operations (AIOps)[6, 7]. Specifically, Monitoring is
to  collect  metrics,  such  as  historical  request  and

resource  workloads,  and  quality  of  service  (QoS)  of
cloud  applications; Analysis is  to  predict  future
workloads  and  analyze  in  real-time  whether  SLAs  are
met; Planning is  to  make  appropriate  management
decisions  to  avoid  degradation  of  QoS,  cost,  and
energy  inefficiencies,  etc.;  and  lastly, Execution is  to
realize  specific  operations  based  on  methods  such  as
capacity  planning,  deployment,  scaling,  scheduling,
and  migration  with  corresponding  system  tools.  This
framework  serves  the  entire  life  cycle  of  applications.
It is worth noting that workload prediction plays a vital
role in this framework[8, 9].

However,  there  are  still  many  challenges  to
achieving  accurate  workload  prediction.  From  a
general  point  of  view,  due  to  the  dynamics  of
applications,  cloud  workloads  are  highly  volatile  and
have  variable  patterns,  which  makes  it  difficult  for
traditional  forecasting  methods  to  predict  workloads
accurately.  In  addition,  due  to  the  diversity  of
applications,  workload  prediction  needs  to  consider
different  applications’ specific  needs  and  features.
Researchers  have  proposed  many  prediction  solutions
based  on  statistics,  machine  learning,  deep  learning,
and  reinforcement  learning  to  solve  the  above

 

Executor

Cloud
application

Cloud
platform

Cloud
infrastructure

Monitor center

Workload predictor

Gateway

Monitoring

Analysis

Planning

Execution

QoS
Request
arrivals

Resource
utilizationDecision maker

SLA analyzer

Request invocations

A
IO

ps

User and
client

 
Fig. 1    Proactive application AIOps framework.
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challenges.
This  paper  analyzes  the  latest  workload  prediction

efforts  and their  techniques  and motivations.  Our  core
basis for categorization is “application-oriented”, which
means  how  application-specific  (business  software)
characteristics  affect  workload  changes  of  cloud
applications.  Therefore,  we  categorize  these  efforts
from an  application-oriented  perspective.  We  describe
how  each  attempts  to  predict  workload  changes  and
apply these results to the AIOps of applications. Based
on  an  in-depth  literature  analysis,  we  propose  open
research  opportunities  to  set  the  stage  for  future
research.  Specifically,  the  main  contributions  of  this
paper are as follows:

(1)  We  provide  an  overview  of  the  basic  features
related  to  workload  prediction  research,  including
predicted  targets,  modeling  techniques,  evaluation
metrics, and datasets.

(2)  We  analyze  two  characteristics  of  cloud
applications,  including  variability  and  heterogeneity,
and how application-specific characteristics affect their

workload changes.
(3)  We  categorize  recently  published  work  on

workload  prediction  based  on  the  characteristics  of
cloud  applications  in  conjunction  with  the  research
ideas,  summarizing  the  research  motivation,  primary
contributions, and core ideas.

(4)  We  present  remaining  research  challenges  and
open  opportunities  to  be  addressed  in  workload
prediction.

2　Basic Characteristic

This  section  introduces  the  basic  features  of  workload
prediction.  It  shows  the  predicted  targets,  modeling
technologies,  evaluation  metrics,  and  datasets,  as
shown in Fig. 2, to give readers basic knowledge.

2.1　Predicted targets

Application  prediction  consists  of  many  aspects,
mainly  including  the  business  aspect  and  the  resource
aspect;  the  former  mainly  includes  the  request  size,
functional needs, QoS level, price, and SLA parameters
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Fig. 2    Basic features of workload prediction.
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related  to  the  application  business  services,  and  the
latter mainly includes the resource size, utilization rate,
cost, and energy consumption related to the application
resources.  To  deeply  understand  and  optimize  the
runtime  behavior  of  cloud  applications,  researchers
usually carry out workload modeling and analysis from
two  dimensions,  namely,  request  and  resource
workloads, to comprehensively depict the application’s
business and resource needs.

Figure 3 shows the predicted targets and distribution
of the existing work investigated.
2.1.1　Request workloads
The  request  workload  usually  consists  of  two  main
types  of  access  requests:  one  is  external  access
requests,  which  are  requests  initiated  directly  by  end-
users outside the cloud (e.g.,  through web browsers or
mobile  applications),  including  HTTP  requests,  API
calls,  etc.  The  second  is  internal  system  calls,  which
are  requests  generated  by  different  components  or
services  within  the  application  system  calling  each
other.  For  example,  one  may  issue  a  call  request  to
another microservice in a microservice application.
2.1.2　Resource workloads
General  applications  usually  use  only  regular
resources,  including CPU, memory,  disk,  and network
bandwidth.  CPU  is  the  core  component  that  executes
the  application’s  instructions.  Memory  is  temporary
storage  used to  store  data  and code with  the  ability  to
read  and  write  data  quickly.  The  disk  is  a  long-term
storage device,  including datasets,  files,  and user data.
The  network  is  a  component  used  for  application
communication, supporting data receiving and sending
between applications and enabling internal and external
communication.

Besides these regular resources, some specialized tasks
require new types of  heterogeneous resources,  such as
GPUs,  FPGAs,  etc.  GPUs  are  processors  dedicated  to

graphics  rendering  for  accelerating  compute-intensive
tasks such as deep learning. FPGAs are programmable
logic  devices  for  accelerating  compute-intensive  tasks
like encryption and decryption.

2.2　Modeling technologies

The  basic  techniques  used  in  existing  prediction
solutions  mainly  include  statistical  methods,  machine
learning  methods  (ML),  deep  learning  methods  (DL),
and reinforcement learning methods (RL).

Figure  4 shows  the  modeling  technologies  and
distribution of the existing work investigated.

(1) Statistical methods: They use statistical principles
and  techniques  to  collect,  analyze,  and  interpret  data.
General  statistical  methods  for  workload  prediction
include  moving  average  (MA),  autoregressive  (AR),
exponential  smoothing  (ES),  autoregressive  integrated
moving  average  (ARIMA),  seasonal  autoregressive
integrated moving average (SARIMA) methods, etc.

(2) ML:  They  automatically  learn  and  improve
methods  from  workload  data,  which  include  linear
regression  (LR),  logistic  regression  (LoR),  support
vector  machine  (SVM), K-nearest  neighbor  (KNN),
naive  Bayes  (NB),  decision  tree  (DT),  random  forest
(RF), etc.

(3) DL:  They  employ  deep  neural  networks  to
automatically  learn  and  extract  features  from  large-
scale, high-dimensional data, including artificial neural
network  (ANN),  extreme  learning  machine  (ELM),
recurrent  neural  network  (RNN),  long  short-term
memory network (LSTM), gated recurrent unit network
(GRU),  convolutional  neural  network  (CNN),  and
temporal convolutional neural network (TCN), etc.

(4) RL:  They  find  the  best  prediction  strategy  by
letting  the  model  interact  with  the  environment  and
continuously trial  and error and learning, including Q-
Learning, deep Q networks (DQN), etc.
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Fig. 3    Number of the schemes which predicted each target.
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Fig. 4    Distribution  of  the  schemes  which  employ  each
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2.3　Evaluation metrics

Figure  5 shows  the  main  evaluation  metrics  and
distribution of the existing work investigated.
2.3.1　Direct metrics

m
ŷt yt

(1) Model quality evaluation: Suppose there are a total
of  samples,  where  the  estimated  result  of  each
sample is  and the actual result of each sample is .
Regression-based workload prediction models:

(a) Mean absolute error (MAE): It is the average of
the  absolute  value  of  the  prediction  error,  which  can
accurately reflect the size of the actual prediction error.
The  smaller  the  MAE  is,  the  better  the  quality  of  the
model and the more accurate the prediction.
 

MAE =
∑m

t=1 |yt − ŷt |
m

(1)

(b) Mean  square  error  (MSE):  It  is  the  average
deviation  between  the  predicted  value  and  the  true
value.  The  smaller  the  MSE,  the  better  the  quality  of
the model and the more accurate the prediction.
 

MSE =
∑m

t=1 |yt − ŷt |2

m
(2)

(c) Root  mean  square  error  (RMSE):  It  is  the
arithmetic square root of MSE. As with MSE, a smaller
RMSE  indicates  better  model  quality  and  more
accurate predictions.
 

RMSE =
√

MSE =

√∑m
t=1 |yt − ŷt |2

m
(3)

(d) Mean absolute percentage error (MAPE): It is
a  relative  error  measure  that  uses  absolute  values  to
keep  the  positive  and  negative  errors  from  canceling
one another out.
 

MAPE =
1
m

m∑
t=1

|yt − ŷt

yt
| (4)

(e) Coefficient of determination (R2): It is the ratio

of  the  residual  sum  of  squares  to  the  total  sum  of
squares. The closer R2 is to 1, the better the model fit.
 

R2 =

∑m
t=1 |ŷt − ȳt |2∑m
t=1 |yt − ȳt |2

(5)

Classification-based workload prediction models: Let
us  first  define  the  following  four  basic  classification
metrics:

(a) True  positive  (TP):  The  number  of  samples
whose  truth  is  positive  and  whose  prediction  is  also
positive.

(b) False  positive  (FP):  The  number  of  samples
whose  truth  is  negative  and  whose  prediction  is
positive.

(c) True  negative  (TN):  The  number  of  samples
whose  truth  is  negative  and  whose  prediction  is  also
negative.

(d) False  negative  (FN):  The  number  of  samples
whose  truth  is  positive  and  whose  prediction  is
negative.

We can obtain the following evaluation metrics:
(a) Accuracy: It is the ratio of the number of samples

correctly  predicted  to  the  number  of  all  samples.  The
higher the Accuracy, the better the overall ability of the
model.
 

Accuracy =
TP+TN

TP+TN+FP+FN
(6)

(b) Precision: It is the ratio of the number of samples
correctly  predicted  as  positive  to  the  number  of  all
samples predicted as positive. The higher the Precision,
the  better  the  model’s  reliability  in  predicting  positive
classes.
 

Precision =
TP

TP+FP
(7)

(c) Recall:  It  is  the  ratio  of  the  number  of  samples
correctly predicted as positive to the number of all true
positive  samples.  The higher  the  Recall,  the  better  the
model  recognizes  the  positive  class,  and  the  fewer
positive samples are missed.
 

Recall =
TP

TP+FN
(8)

(d) F1  score:  It  is  the  reconciled  mean  of  precision
and recall.  A higher F1 Score indicates that the model
has better-balanced precision and recall.
 

F1 Score =
2×Precision×Recall

Precision+Recall
(9)

(2) Model overhead evaluation:
(a) Resource  overhead:  It  includes  the  resource
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Fig. 5    Number  of  the  schemes  which  employed  each
evaluation metric.
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consumption  during  the  model  generation,  the  storage
management  resource  consumption  after  generation,
and the resource consumption during the online model
inference.

(b) Time overhead:  It  includes the time cost during
the  model  generation  and  the  time  cost  during  the
online model inference.
2.3.2　Indirect metrics
Since  workload  prediction  models  are  often  used  for
application  resource  management,  related  work  also
often uses some application AIOps metrics to indirectly
reflect the effect of workload prediction, specifically:

(1) Execution  time:  It  is  also  known  as  response
time,  which  refers  to  the  total  time  taken  by  a  task  or
job to complete its execution.

(2) Throughput:  It  reflects  the  number  of  tasks
processed successfully within a given period.

(3) Success  rate:  It  reflects  the  percentage  of  tasks
processed successfully within a given period.

(4) SLA violation rate:  It  reflects the percentage of
tasks performed in violation of SLA requirements.

(5) Resource  utilization:  It  reflects  the  allocated
resource usage of applications.

(6) Number  of  workers:  It  reflects  the  number  of
active workers during application execution.

(7) Cost:  It  includes  resource  costs,  violation  costs,
management  costs,  etc.,  reflecting  the  various  costs
involved in the running process of applications.

(8) Profit:  It  reflects  the  profit  that  the  cloud
provider earns by providing services to its subscribers.

(9) Energy  consumption:  It  reflects  the  energy
consumption generated during the application lifecycle,
including static and dynamic energy consumption.

These  metrics  help  us  evaluate  the  effect  of
prediction  models  and  optimize  the  AIOps  of
applications.

2.4　Datasets

Figure 6 shows the experiment ways and distribution of
the  existing  work  investigated.  The  following  are  the
main public datasets:

(1) Google  cluster  data[10]:  It  traces  data  from
Google’s  cluster  management  system  (also  known  as
Borg).

(2) Alibaba  cluster  data[11]:  It  traces  data  from the
Alibaba  production  cluster  and  contains  detailed
information about the job/application.

(3) Microsoft  Azure  traces[12]:  It  traces  data  for
Microsoft  Azure  systems,  including  virtual  machine

(VM) traces and Azure Function traces.
(4) WS-DREAM[13]:  It  maintains  three datasets:  (1)

the QoS dataset, (2) the log dataset, and (3) the review
dataset.

(5) Wikipedia  pagecounts-raw[14]:  It  is  a  trace  of
web requests  made to  Wikipedia  servers,  outages,  and
server issues that might affect the traces.

(6) Docker  registry  trace  player[15]:  It  is  used  to
replay  anonymized  production-level  traces  for  a
registry. The traces are from the IBM docker registry.

(7) Grid workloads archive[16]: It is a repository of
utilization traces of several grids.

(8) Failure  trace  archive[17]:  It  is  a  repository  of
parallel and distributed system availability traces.

(9) PlanetLab  workload  traces[18]:  It  is  a  set  of
CPU  utilization  traces  from  PlanetLab  VMs  collected
during 10 random days.

(10) Parallel workloads archive[19]: It is a collection
of  traces  and  models  of  workloads  for  high-
performance computing (HPC) machines.

(11) Lublin-Feitelson[20]:  It  is  a  model  for  parallel
tasks in supercomputers.

(12) Pegasus  synthetic  workflows[21]:  It  is  the
profiling  data  of  20  synthetic  workflow  applications,
each with different size options.

(13) Fisher[22]:  It  is  a  collection  of  resource  and
performance  metrics  from  a  real  Kubernetes  system,
recorded for 10 containers over 30 days.

3　Application-Oriented  Workload
Prediction

With  the  development  of  cloud  computing,  software
engineering,  big  data,  and  AI,  applications  show
profound  evolutionary  features  in  cloud  platforms,
including user behavior, software architecture, function,
runtime,  and  system.  Two  major  characteristics  of
cloud applications affect their workload changes:

(1) Workload variability: Due to the dynamic cloud
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environments  and  elastic  provisioning  and  sharing  of
application  resources,  the  workloads  of  cloud
applications  exhibit  significant  volatility  and  pattern
variability.  The  former  refers  to  the  fact  that  the
inherent  variance  instability  and  noise  perturbation  of
workloads,  and  the  latter  refers  to  the  tendency  of
workloads  to  switch  between  different  patterns  over
time.

(2) Workload  heterogeneity:  Due  to  the  diversity
and dynamics of applications and user behavior, which
is  mainly  manifested  in  the  heterogeneity  of  four
aspects: workload type, software architecture, runtime,
and  function  type.  The  design  and  implementation  of
workload prediction models must cater to these specific
demands.

Based  on  these  two  significant  features,  in
conjunction  with  the  evolution  of  applications,
researchers have conducted a series of explorations, as
shown in Fig. 7.

3.1　Workload variability

3.1.1　High fluctuations
Unlike  HPC  systems  and  grid  computing,  cloud
applications  are  more  interactive  and  have  a  higher
variance  of  workloads.  Their  average  noise  is  almost
20 times that of grid computing[7]. As a result, workload
variations  of  cloud applications  are  characterized  by  a
high degree of volatility.

On the one hand, researchers have been dedicated to
optimizing  the  models  to  enhance  their  robustness  in
modeling and prediction capabilities. This ensures that

the  models  remain  effective  and  reliable  even  when
dealing with highly volatile workload sequences.

(1)  Linear  analysis:  Researchers  have  proposed
solutions  with  MA,  AR,  ES,  ARIMA,  and  SARIMA
based  on  a  statistical  analysis  of  historical  data  to  fit
statistical  models.  ARIMA  combines  the  features  of
AR and MA to capture the autoregressive and moving
average  effects  in  the  time  series.  SARIMA  adds  a
seasonal  factor  to  ARIMA,  which  can  be  adapted  to
more  scenarios.  Calheiros  et  al.[23] developed  a  cloud
workload  prediction  module  with  ARIMA,  enabling
the  prediction  of  application  resource  needs  and
allowing  for  proactive  allocation  and  release  of
resources. Dhib et al.[24] presented a proactive dynamic
VM  allocation  and  deployment  algorithm,  which
estimates  the  resource  needs  of  requests  by SARIMA,
converts  the  deployment  problem  into  a
multidimensional  knapsack  problem,  and  derives  the
optimal  mapping  of  allocated  resources.  Gupta  and
Kumar[25] demonstrated the effectiveness of ARIMA in
forecasting  the  workloads  of  mid-term  daily  power
systems. El-Kassabi et al.[26] proposed a multi-strategy
framework  that  monitors,  predicts,  and  adjusts
workflows  with  ARIMA  in  dynamic  cloud
environments.

(2) Nonlinear analysis: With the development of AI
technology,  machine  learning  and  deep  learning
methods  with  more  robust  modeling  capabilities  are
applied to workload prediction. Liu et al.[27] proposed a
cascaded  shallow  model  based  on  SVM  for  workload
prediction  of  network  devices.  Bala  and  Chana[28]
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Fig. 7    Classification and taxonomy of application-oriented workload prediction.
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tested  machine  learning  algorithms  such  as  KNN,
ANN, RF, and SVM, which confirmed that RF has the
highest  prediction  accuracy.  Baig[29] introduced  an
adaptive  model  selector  method  that  dynamically
identifies  the  most  suitable  prediction  method  from  a
set  of  trained  models.  Through  validation  on  three
publicly available datasets, the authors determined that
the  RF  exhibited  superior  performance  as  a  workload
predictor.  The  RF’s  exceptional  performance  can  be
attributed  to  two  key  properties:  its  capability  to
capture  nonlinear  relationships  within  the  data  and  its
ability  to  handle  datasets  with  a  large  number  of
features. Lu et al.[30] proposed a rand variable learning
rate backpropagation neural network to predict request
arrivals in large-scale data centers. Li et al.[31] proposed
a  workload  prediction  method  based  on  improved
LSTM,  which  generates  a  new  RNN  architecture  by
splicing  BiLSTM  and  GridLSTM,  which  can  extract
more  intricate  and  evolving  features.  Yadav  et  al.[32]

proposed  a  deep  learning  method  based  on  LSTM  to
efficiently  extract  nonlinear  features  of  workload
variations  to  predict  server  workloads.  In  addition,
reinforcement  learning  techniques  have  also  been
introduced  into  workload  prediction.  Ahamed
et  al.[33] utilized  deep  Q-learning  for  federated  cloud
workload  prediction,  which  is  a  model  that  extracts
latent patterns and optimizes VM resource allocation.

On  the  other  hand,  researchers  have  explored  the
optimization  of  workload  prediction  solutions  with
significant  data  noise  in  workload  characterization.
These  studies  focus  on  data  preprocessing  techniques,
such as time series decomposition and period detection,
to  eliminate  high-frequency  noise  from workload  data
or  extract  regular  features  of  workload  variations.  By
building  models  based  on  preprocessed  data,  the
adverse effects of data noise and high heteroskedasticity
on model accuracy are mitigated, resulting in improved
prediction  performance.  Tian  et  al.[34] proposed  a
prediction  method  using  least  squares  support  vector
machine  (LSSVM)  for  the  trend  component  and
ARIMA for the stochastic component, which achieved
better  prediction  results.  Jeddi  and  Sharifian[35]

decomposed  the  workload  sequence  into  three  layers
based on wavelet transform and predicted the different
components  separately  using  grouping  methods  for
data handling (GMDH). Kumar and Singh[36] proposed
an  ELM-based  workload  prediction  model  for  the
trend,  seasonal,  and  stochastic  components  obtained
from  the  seasonal  additive  decomposition  method.

Yazdanian and  Sharifian[37] proposed  an  integrated
workload prediction model with generative adversarial
network  (GAN)  and  LSTM,  which  decomposes  the
original  sequence  into  constituent  components  with
different frequency bands and then learns and predicts
each component separately.
3.1.2　Diverse patterns
New  workload  patterns  always  emerge  with  the
evolution  of  user  behavior,  applications,  and
environments.  In  addition,  non-stationary  workloads
present  different  patterns  that  change  over  time,
regenerating  models  more  frequently  and  increasing
overhead accordingly.

Therefore,  integrated  prediction  methods  have  been
gradually applied to cloud workload prediction, mainly
because  cloud  workload  patterns  are  usually  diverse
and irregular, and no single predictor can perform well
in  all  workload  patterns[38].  Cao  et  al.[39] proposed  a
two-layer  model  structure  comprising  an  optimizer
layer  responsible  for  the  ongoing  merging  and
elimination  of  predictors  and  an  integration  layer
responsible for generating final prediction results. Kaur
et  al.[40] proposed  a  prediction  method  REAP  that
integrates feature selection and eight machine learning
methods  to  attain  superior  prediction  accuracy.  Von
Krannichfeldt  et  al.[41] proposed  an  online  integrated
learning  approach  for  workload  prediction,  which
merges batch learning with online learning. Each batch
comprises  12  local  models,  and  their  outputs  are
synthesized  by  an  online  regression  model.  Kim  et
al.[38] built  an  integrated  model  for  workload
forecasting  consisting  of  21  local  predictors  and
determined  their  weights  using  a  support  vector
regression model. Lalitha Devi and Valli[42] proposed a
hybrid  model  based  on  ARIMA  and  ANN  to  predict
CPU  and  memory  utilization.  ARIMA  detects  the
linear  component,  and  ANN  analyzes  the  nonlinear
component  using  the  residuals  derived  from  ARIMA.
The  predicted  values  are  combined  with  the  previous
data  to  generate  a  new  time  series,  which  is  then  fed
into  a  Savitzky-Golay  filter  to  remove  any
inaccuracies.  Bao  et  al.[43] proposed  an  integrated
framework  for  cloud  workload  prediction  based  on
adaptive  pattern  mining,  which  employs  a  clustering-
based  sampling  method  to  generate  training  samples
for  various  patterns,  each  of  which  generates  a
dedicated prediction model based on LSTM. An error-
based weight aggregation method is further proposed to
predict future workloads.
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3.2　Workload heterogeneity

3.2.1　Predicted targets
(1)  Request  workloads:  The  attributes  and  size  of
request  workloads  are  significantly  heterogeneous,
varying  by  function  type,  user  behavior,  and  other
factors.  Li  et  al.[44] proposed  a  workload  forecasting
model  based  on  ANN.  Based  on  analyzing  the
statistical  features  of  request  workloads,  on  the  one
hand,  the  domain  knowledge  providing  the  extended
structural  information  of  workload  changes  is
embedded into ANN for linear regression; on the other
hand,  the  regularization  with  noise  is  combined  to
improve  the  generalization  ability.  Gandhi  et  al.[45]

correctly  allocated  data  center  resources  by  analyzing
historical request traces to identify long-term workload
patterns. It then dynamically allocates capacity through
two strategies: proactive resource provisioning handles
estimated base workloads on a coarse time scale, while
reactive  resource  provisioning  handles  excess
workloads on a finer time scale.

(2)  Resource  workloads:  Resource  workloads
exhibit diversity, encompassing various aspects such as
CPU,  memory,  disk,  network  bandwidth,  GPU,  and
more.  These  workloads  are  affected  by  the  request
workloads  and  the  complex  dynamics  of  the  cloud
environment.  Desire  et  al.[46] investigated the  resource
workload  prediction  for  cloud  games.  Each  resource
workload  is  computed  based  on  the  proposed
Fractional Rider Deep LSTM network, which is used to
achieve  proactive  resource  allocation.  Ullah  et  al.[47]

proposed  a  multivariate  time  series-based  workload
prediction  framework  for  multi-attribute  resource
allocation and established a BiLSTM model to predict
the  supply  and  utilization  of  multiple  resources.  Kaim
et  al.[48] developed  a  deep  learning-based  workload
prediction  model  that  applies  an  attention  mechanism
with BiLSTM and CNN to learn multivariate resource
workload  variations  through  the  designed  input  block,
feature selection block, and sequence learning block.
3.2.2　Organizational structures
With  the  evolution  of  applications  from  monolithic
architecture to service-oriented architecture and further
to  microservice  architecture,  researchers  explore  how
workload  prediction  models  can  incorporate  the
structural characteristics of applications.

(1)  Independent  analysis:  Researchers  focus  only
on  the  workload  variation  of  the  application  itself  for
modeling.  An  and  Zhou[49] proposed  a  resource  need

prediction  method  with  the  generic  application  and
workload  models,  which  takes  parameterized  cloud
applications,  workload variation,  and resource  profiles
as  inputs  to  derive  the  corresponding  resource
demands.  Wang  et  al.[50] proposed  an  online  resource
prediction model  for  clouds  that  uses  the  trend degree
to  categorize  workload  waveforms  and  samples  based
on  scalable  windows.  A  best  error  gradient-boosted
regression  algorithm  is  presented  for  generating  the
prediction  model  to  predict  resource  usage  based  on
request workloads. Feng et al.[6] proposed an ensemble
workload  prediction  model  considering  adaptive
sliding  window and  temporal  locality  integration.  The
former  considers  the  workload  trend  correlation,
temporal  correlation,  and  random  fluctuations  to
maximize  the  prediction  accuracy  with  low  overhead.
The latter proposes the concept of temporal locality for
local  predictor  behavior,  and  model  integration  is
achieved  by  designing  a  multi-class  regression
weighting  algorithm.  Matoussi  and  Hamrouni[51]

proposed  a  workload  prediction  method  considering
temporal  locality  to  predict  request  arrivals,  which
controls  the  computation  time  by  dynamically  setting
the  window  size  and  achieves  the  prediction  by
dynamically assigning weights to different data points.

(2)  Dependent  analysis:  Facing  distributed  or
hierarchical  applications,  researchers  design  the
prediction  methods  by  analyzing  workload  changes  of
different  components  in  one  application.  Khorsand
et  al.[52] proposed a hybrid resource allocation method
for multi-tier applications. Based on the MAPE-k loop,
SVR is used to predict the number of requests per tier,
and the planner determines when and how much VMs
are  allocated  to  a  specific  layer,  thus  realizing  the
proactive  resource  allocation.  Ding  et  al.[53] proposed
an  integrated  prediction  model  based  on  transfer
learning  and  online  learning.  Container-oriented
predictors  for  common  and  individual  changes  are
constructed,  respectively,  and  the  integrated  model  is
obtained  based  on  a  dynamic  weighting  strategy,
ensuring  the  model’s  availability,  adaptability,  and
versatility.  Feng  and  Ding[54] proposed  an  end-to-end
workload  prediction  method  based  on  deep  learning
and  creatively  put  forward  the  concept  of  workload
group behavior. It also proposes a container correlation
calculation  algorithm  to  guide  the  representation  of
workload group behavior and to model the relationship
between the evolution of workload group behavior and
future  workload  changes  through  a  custom  deep
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network.  Li  et  al.[55] proposed  a  multi-view  edge
workload  prediction  method  ELASTIC  based  on  a
cloud-edge  collaboration  paradigm.  A  learnable
aggregation layer captures the correlation between sites
at  the  global  phase  to  reduce  the  time  overhead.  A
disaggregation layer combines the intra-site correlation
and  inter-site  correlation  to  optimize  the  forecasting
accuracy at the local stage.

(3)  Large-scale  analysis:  Large-scale  cloud
applications  may  have  thousands  of  instances.
Balancing prediction accuracy and model overhead has
become  a  serious  challenge  for  large-scale  workload
prediction.  Lee  et  al.[56] proposed  a  feature  selection
method  to  reduce  the  inference  time  of  the  prediction
model.  12  features  were  filtered  out  from  87  features
by  statistical  techniques,  and  it  was  proved  that  the
model  trained  with  12  features  had  high  accuracy  and
low  time  overhead  than  the  model  trained  with  87
features. To meet the real-time demands of large-scale
application  resource  management,  Tang[57] proposed  a
parallel improved LSTM algorithm, which analyzes the
correlation and dependence of historical workload data,
constructs  a  two-dimensional  LSTM  model,  and
achieves  dependency  and  weight  parallelization.  Chen
et  al.[58] proposed  a  periodicity-based  parallel  time
series  prediction  algorithm,  which  designs  a  data
compression  and  abstraction  algorithm  to  handle
massive  datasets.  The  periodic  pattern  recognition  of
multi-layer  time  series  is  realized  based  on  Fourier
spectrum  analysis.  Huang  et  al.[59] proposed  a  multi-
scale attention-based deep clustering method for large-
scale  workloads,  which  can  cluster  workloads  with
pattern  changes  and  amplitude  differences  by
extracting  workload  features  at  different  time  scales
based  on  a  multi-scale  attention  mechanism.  Ruta
et  al.[60] proposed  a  three-layer  BiLSTM  model  for
large-scale  workload  forecasting  of  network  devices,
which  establishes  a  single  model  to  cover  all  devices
and takes their historical workloads as input.
3.2.3　Runtime types
(1)  Cluster/Data  center  granularity:  Researchers
collect workload data with coarse-grained management
and  subsequently  conduct  workload  prediction  for
clusters/data centers. Kumar and Singh[61] developed a
request  workload  forecasting  model  for  data  centers
based  on  ANN  and  an  adaptive  differential  evolution
method.  It  learns  and  extracts  workload  patterns  from
historical  data  and  uses  evolutionary  methods  to  train
the  model  to  minimize  the  impact  of  initial  scheme

selection.  Kumar  et  al.[62] proposed  a  workload
forecasting  framework  for  data  centers.  The  biphasic
adaptive  differential  evolution  learning  algorithm  is
introduced  to  improve  the  network  learning  process,
allowing  adaptive  and  enhanced  pattern  learning  and
improving  the  model’s  prediction  accuracy  and
convergence  speed.  Saxena  and  Singh[63] proposed  an
improved  adaptive  differential  evolution  (AADE)
learning  algorithm  with  three-dimensional  adaptive
ability  and  applied  it  to  train  the  neural  network  for
data  center  workload  prediction.  The  AADE  training
algorithm  adaptively  improves  neuronal  connections
and  helps  learn  traces  of  workloads  by  correlating
patterns  extracted  from  historical  data.  Singh  et  al.[64]

proposed  a  data  center  workload  prediction  model
based  on  an  evolutionary  quantum neural  network  for
the first  time, which uses the computational efficiency
of quantum computing to encode workload information
into  qubits  and  spread  the  information  through  the
network  to  improve  the  prediction  accuracy.  It  also
uses  an  adaptive  differential  evolution  algorithm  to
optimize  the  weights  of  qubit  networks.  Patel  and
Bedi[65] proposed  a  multivariable  deep  learning
framework for workload prediction in data centers and
designed  a  deep  learning  method  based  on  multiple
attention and GRU to improve prediction accuracy and
reduce  complexity.  Karthikeyan  et  al.[66] proposed  a
tree  hierarchical  deep  convolution  neural  network
based  on  the  herd  optimization  algorithm  used  for
cloud  data  center  workload  forecasting.  It  uses  the
kernel correlation method to preprocess historical data,
then  carries  on  workload  prediction,  and  uses  a  herd
optimization  algorithm  to  optimize  the  model
parameters.

(2)  PM/VM  granularity:  With  the  improvement  of
AIOps  technology,  the  granularity  of  application
management  becomes  finer,  and  researchers  begin  to
pay  attention  to  the  workload  prediction  of PM/VM
granularity.  Nashold  and  Krishnan[67] proposed  a
neural  network  to  predict  VM’s  CPU  usage,
considering  two  distinct  models  on  short-term  and
long-term  time  scales:  SARIMA  and  LSTM.  It  is
verified  that  SARIMA  performs  better  than  LSTM  in
long-term tasks but  worse in short-term tasks,  proving
that LSTM is more robust. Kumar et al.[68] proposed an
independent cloud server workload prediction method,
which proposes prediction error feedback to enable the
prediction  model  to  learn  from  its  recent  prediction
pattern  and  to  better  learn  network  weights  based  on
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the  blackhole  algorithm.  Ouhame  et  al.[69] proposed  a
CNN-LSTM model  for  predicting the measurement  of
VM  resource  usage,  including  CPU,  memory,  and
network  usage.  The  linear  correlation  among  the
multivariable  data  is  filtered  by  the  vector
autoregression  method,  then  the  residual  data  are
entered  into  the  CNN  layer  to  extract  the  complex
features  of  each  VM  usage  metric,  and  then  the  time
information  is  modeled  and  predicted  by  LSTM.
Dogani et al.[70] proposed a multi-step hybrid prediction
method  for  VM  workload  forecasting,  which  uses
statistical analysis to build training sets, then uses CNN
to  extract  hidden  spatial  features  among  all  related
variables,  and finally uses GRU network and attention
mechanism to extract time correlation features.

(3)  Container  granularity:  With  the  continuous
improvement  of  virtualization  technology,  many
applications  have  changed  from  the  traditional
PM/VM-based  deployment  to  the  serverful  container-
based deployment, so researchers began to promote the
workload  prediction  problem  of  container  granularity.
Zhang et al.[71] proposed a hybrid model based on triple
exponential  smoothing  and  LSTM  for  Docker
container  workload  forecasting,  which  can  capture
short-term  and  long-term  dependencies  in  resource
series and smooth resource utilization data. Two single
models are combined based on MAPE error to improve
the  prediction  accuracy.  Chen  and  Wang[72] proposed
an adaptive short-term workload forecasting algorithm,
using principal component analysis to extract the main
types  of  container  demands  and  perform  outlier
detection  and  replacement  to  generate  a  more
stationary  sequence.  Then,  the  short-term  prediction
method  is  used  to  select  the  prediction  method  with
higher accuracy adaptively, and the weighting factor is
adjusted  dynamically.  Xie  et  al.[73] proposed  a  hybrid
model  of  ARIMA  and  triple  exponential  smoothing,
which  is  responsible  for  mining  and  predicting  linear
and  nonlinear  relationships  in  container  resource
workload series, respectively. Tang et al.[22] designed a
container  workload  prediction  model  in  which  the
metric  selection  module  provides  effective  input
features  for  the  prediction  model,  and  the  neural
network training module uses BiLSTM to generate the
prediction model to predict workloads.

(4)  Serverless  instance  granularity:  Serverless
computing  promotes  the  development  of  application
features,  whose  features  such  as  function  granularity,
event trigger, and support for scaling to 0 and keeping

alive,  bringing  new  research  challenges  to  workload
prediction.  Roy  et  al.[74] proposed  a  probability-based
workload prediction and warm-up model for serverless
applications, which predicts whether a function will be
called  and  concurrency  within  a  specific  time  interval
based  on  Fast  Fourier  transform  and  guides  function
warm-up  and  preservation.  Bhattacharjee  et  al.[75]

proposed a deep learning prediction service system for
serverless  applications,  which  quickly  predicts
workloads  by  identifying  different  trends,  then
formulates  an  optimization  problem,  and  heuristically
allocates  computing  resources  through  horizontal  and
vertical scaling. Zhao et al.[76] proposed an incremental
learning  predictor,  which  uses  the  function’s  spatial-
temporal  overlap  codes  and  profiles  to  improve
prediction  accuracy  through  the  end-to-end  call  path.
Wei  and  Gao[77] studied  the  serverless  workload
prediction  problem.  The  optimal  characterization  is
carried out from the perspective of the characterization
process  to  improve  the  prediction  accuracy,  and  then
the  results  and  complexity  of  different  prediction
models  are  compared  to  explore  the  comparative
advantages  between  the  different  methods,  which
provides  a  reference  for  the  AIOps  of  serverless
applications.  Roy  et  al.[78] proposed  a  framework  that
employs  the  hot  start  mechanism  for  warming  up  the
components  of  the  workflows  by  decoupling  the
runtime  environment  from  the  component  function
code  to  mitigate  cold  start  overhead  and  optimize  the
service  time  and  service  cost  jointly.  Poppe  et  al.[79]

focused  on  reducing  resource  availability  latency  by
predicting  suspend/resume  patterns  and  proactively
resuming  resources  for  each  database  in  a  serverless
computing  model.  In  addition,  avoid  resources  that
occupy  short  idle  times  to  free  the  backend  from
ineffective suspend/resume workflow applications.
3.2.4　Function types
In  addition  to  general  applications,  there  are  some
types of applications that have special requirements.

(1)  Scientific/High-performance  computing
application:  It  usually  needs  to  deal  with  large
amounts  of  data  and  complex  computational  tasks.
Therefore,  workload  prediction  and  AIOps  techniques
pay more attention to the amount of general resources,
such  as  CPU,  memory,  disk,  and  network  and  task
computing.  da  Silva  et  al.[80] proposed  a  prediction
method that automatically characterizes workflow task
requirements,  estimates  task  runtime,  disk  space,  and
peak  memory  consumption  based  on  the  input  data
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size,  and  finds  correlations  between  these  parameters.
Tanash  et  al.[81] created  a  supervised  ML-based
workload  prediction  model,  which  adopts  different
typical  ML  algorithms  to  develop  predictive  analytic
functions  for  Slurm  to  predict  the  amount  of  memory
resources  and  the  running  time  of  each  job.  Newaz
and  Molla[82] studied  the  memory  need  prediction  of
various  applications  in  a  Titan  supercomputer  system.
The  maximum  memory  usage  of  jobs  is  predicted  by
identifying  specific  features  of  users  and  applications.
Finally, a comprehensive resource workload prediction
model is constructed based on RF and XGBoost.

(2)  Big  data  computing  application:  It  is  data-
oriented  and  mainly  processes  and  analyzes  large
amounts  of  data,  such  as  IoT,  social  media,  and  e-
commerce  data.  Therefore,  workload  prediction  and
AIOps techniques pay more attention to the amount of
resources,  such  as  disk  IO,  network  bandwidth,  and
data  processing  and  transmission.  Burrell  et  al.[83]

proposed  a  workload  prediction  method  to  avoid
unnecessary  transmission  of  workload  metrics.  In
addition,  ML-based  algorithms,  including  LR  and
LSTM, predict CPU, memory, and network utilization.
Ruan et  al.[84] presented a  DL-based storage workload
prediction  method  for  data-intensive  applications,
which  consists  of  four  phases:  workload  acquisition,
data  pre-processing,  time-series  prediction,  and  data
post-processing.  Among  them,  the  time  series
prediction stage is implemented based on LSTM.

(3)  Artificial  intelligence  applications:  It  usually
deals  with  large  amounts  of  data  and  complex  AI
models.  It  is  diverse  and  complex,  which  requires
heterogeneous  resource  support,  such  as  GPUs.  Li
et  al.[85] proposed  a  cluster  scheduler  to  solve  the
imbalanced resource  utilization  between inference  and
training  clusters,  which  introduces  capacity  lending,
where  idle  inference  servers  are  lent  to  the  training
cluster,  and  uses  LSTM  to  predict  the  usage  of
inference  resources  and  can  proactively  recycle
resources.  Gu  et  al.[86] proposed  a  GPU  resource
management  platform  for  DL  jobs  with  intelligent
resource  estimation  and  scheduling,  in  which  the
proposed  resource  estimation  method  analyzes  the
model’s  hyperparameters  and  the  job’s  parameters
based on RF.

4　Integration with Resource Management

Figure  8 illustrates  the  main  aspects  of  workload
forecasting  that  serve  resource  management.  On  the

one  hand,  it  supports  long-term  decisions,  including
capacity  planning,  application  deployment,  and
dynamic  migration;  on  the  other  hand,  it  supports
short-term  decisions,  including  request  scheduling,
resource allocation, and elastic scaling.

4.1　Proactive capacity planning

Planning  cloud  infrastructure  capacity  for  applications
is  a  critical  problem  that  could  lead  to  significant
service improvements, cost savings, and environmental
sustainability.  Capacity  planning  is  usually  long-term,
which  is  the  process  of  procuring  machines  that  form
the  data  center  or  cluster  capacity.  Liu  et  al.[87]

introduced a workload-based model to characterize the
diversified  application  scenarios  and  plan  geo-
distributed  data  centers  in  fast-developing  economies,
which  transforms  the  problem  into  a  quadratic
programming  problem  and  better  captures  the  quickly
changing  nature  of  demand  composition.  Andreadis
et al.[88] presented a capacity planning system for cloud
data  centers  that  introduces  the  notion of  portfolios  of
scenarios,  allowing  the  exploration  of  heterogeneous
possible topologies and resources, as well as horizontal
and vertical resource scaling. Newell et al.[89] presented
a  region-scale  resource  allowance  system,  which
introduces the concept of reservation, i.e., a guaranteed
amount  of  server  capacity  that  functions  as  a  logical
cluster  and  abstracts  away  the  complexity  of  data
centers,  hardware  heterogeneity,  and  workload
characteristics  and  takes  a  two-level  approach  to  plan
resource  capacity  for  all  data  centers  in  a  region.  Le
et  al.[90] proposed  a  framework  that  deals  with  the
inter-dependency of  capacity  planning and operational
management  for  sustainable  data  centers,  which
provides  a  capacity  planning  decision  to  construct,
expand, and operate the data center annually.
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Fig. 8    Workload prediction for resource management.
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4.2　Proactive application deployment

Application  deployment  enables  application  instances
to be placed on the cloud infrastructure, which usually
determines  the  initial  location  of  applications.
Proactive  deployment  helps  to  prevent  co-located
applications  from  entering  undesirable  states,  such  as
resource  contention  and  waste.  Zhong  et  al.[91]

proposed  a  containerized  task  deployment  algorithm
that  deploys  co-location  containers  to  optimize  server
resource  utilization.  It  adopts  the  K-means  algorithm
for task classification among the historical traces, with
reference to workload dimensions such as CPU usage,
memory  consumption,  disk  storage,  and  network
bandwidth.  Ray  et  al.[92] presented  a  reinforcement
learning-based  proactive  mechanism  for  microservice
placement  and migration,  which can prefetch and pre-
provision microservices to be used in the near future by
considering  the  microservice  dependency  structure
while  meeting  the  needs  of  previously  invoked
services.  Li  et  al.[93] proposed  an  energy-efficient
proactive  caching  solution  for  video  streaming
applications,  which  takes  advantage  of  the  available
historical data to estimate the actual distribution of user
requests  and  forms  a  stochastic  mixed-integer
programming  scheme  for  caching  and  delivery
scheduling.  Bae  and  Park[94] introduced  a  framework
for proactive service caching by taking a deep learning
approach,  which  utilizes  the  ConvLSTM  model  for
accurately  predicting  service  popularity  over  time  to
guide  the  service  caching  on  the  distributed
infrastructure.

4.3　Proactive request scheduling

Widespread cloud infrastructure allows applications to
serve user requests from all  over the globe. Combined
with  user  behavior,  request  workloads  exhibit
significant  daily  cycles,  holiday  cycles,  and
intermittent surges. If the traffic spikes or plummets in
a  short  period,  it  may  have  a  considerable  impact  on
the  application  service.  Therefore,  effective  traffic
sensing  can  guide  the  proactive  scheduling  of  user
requests.  Kumar  et  al.[95] proposed  an  autonomous
workload  prediction  and  resource  scheduling
framework  for  industrial  IoT  requests.  Based  on  the
MAPE  loop,  an  autoencoder-based  deep  learning
model  is  used  to  predict  the  workloads,  and  the  crow
search  optimization  algorithm  is  used  to  schedule
workloads  to  the  best  fog  nodes.  Tang  et  al.[96]

proposed a  parallel  job scheduling algorithm based on
workload  prediction,  which  realizes  the  parallelism  of
the  workload  prediction  model  through  2DLSTM  and
implements  the  workload-aware  job  scheduling  to
balance  computational  demands  and  compute  nodes.
Niknafs  et  al.[97] proposed  a  resource  manager
incorporating  multi-step  workload  prediction  for
heterogeneous  embedded  platforms.  Mixed  integer
linear  programming  and  heuristic  scheduling  are
employed to meet task deadlines and minimize energy
usage.  Das  et  al.[98] proposed  a  spatio-temporal  query
framework  for  scheduling  spatio-temporal  query
requests within user-supplied deadlines and budgets. It
generates  query  parse  trees,  identifies  geospatial
services,  constructs  service  chains,  and  predicts
resource  demands.  Finally,  cooperative  game  theory
selects  an  appropriate  query  execution  scheme.  Fei
et  al.[99] proposed  a  method  to  achieve  elastic  task
scheduling  using  data  clustering.  The  number  of  tasks
in  each  class  cluster  is  predicted  using  ARIMA  to
provide  a  reference  for  resource  provisioning.  Then,
the  proposed  energy-efficient  resource  allocation
method dynamically provides resources for the tasks in
each cluster. Genez et al.[100] proposed a mechanism to
deal  with  uncertainty  in  available  cloud  bandwidth
values  to  minimize  underestimating  performance  and
cost.  A  multiple  linear  regression  method  is  used  to
compute  a  reduction  factor  as  input  to  the  hybrid
scheduling program to guide decisions.

4.4　Proactive resource allocation

Resource  allocation  is  essentially  short-term  capacity
planning,  which  is  the  process  of  provisioning  and
allocating resources from the capacity already installed.
Allocating  the  proper  resources  for  applications  in
runtime  is  a  key  issue  as  cloud  computing  is  an  on-
demand  allocation  and  pay-as-you-go  model.  Wang
et  al.[101] presented  a  microservice  elastic  scheduling
approach  ESMS  that  integrates  task  scheduling  with
the  instance  and  VM  auto-scaling.  It  uses  a
statistically-based  policy  to  allocate  resources  for
streaming  workloads  and  heuristically  evaluates  the
workflow  performance  of  different  configurations.
Wen  et  al.[102] proposed  a  fine-grained  dynamic
resource  allocation  method  for  workflow applications,
which  allocates  resources  for  functions  at  runtime  by
analyzing  the  memory  size  of  each  function  step  in  a
workflow  and  considering  inter- and  intra-function
parallelism.  Safaryan  et  al.[103] designed  a  memory
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allocation  optimization  model  SLAM  for  serverless
workflow  applications.  It  uses  distributed  tracing  to
identify  relationships  between  functions  and  estimate
the  workflow  execution  time  for  different  memory
configurations.  Based  on  cost  or  time  objectives,
SLAM  quickly  searches  the  optimal  memory
configuration  for  each  application.  Feng  et  al. [104]

proposed  a  resource  configuration  estimation  method
for  heterogeneous  workflow  applications,  which
creates  an  integrated  multi-task  expert  classifier  to
analyze  individual  and  common  resource  usage
patterns, optimizing allocation accuracy and efficiency.

4.5　Proactive elastic scaling

Elasticity  is  a  key  feature  provided  by  the  cloud
computing model for applications[105], where horizontal
and vertical  scaling and variants of their  combinations
are  common  implementation  operations.  Proactive
elastic  scaling  enables  increasing  and  decreasing
resources  in  advance,  reducing  the  impact  of  resource
scaling time and ensuring a high quality of service and
cost  efficiency.  Singh  et  al.[106] proposed  a  workload
prediction  model  for  automatically  scaling  application
resources.  Multi-class  classification  based  on  support
vector machines is used to predict future workloads so
that  sufficient  VMs  can  be  booted  in  advance.
Abdullah et al.[107] proposed a burst-aware auto-scaling
approach that uses workload prediction to detect bursts
in  dynamic  workloads  and  automatically  allocate
resources  to  microservices,  reducing  response  time  to
avoid  violating  service  goals.  Razzaq  et  al.[108]

proposed a hybrid auto-scaled service cloud model for
the smart campus system that automatically detects and
manages  service  bursts  and  carries  out  the  workload
prediction  and  auto-scaling  employing  an  ensemble
algorithm.  Zhao  et  al.[109] proposed  a  proactive
optimization method based on Kubernetes auto-scaling
strategy,  which  combines  empirical  modal
decomposition  and  ARIMA  to  predict  workloads  and
elastically  scale  the  Pod  instances  ahead  of  time  to
reduce  the  response  delay.  Yan  et  al.[110] proposed  a
Kubernetes-based  scaling  system,  which  includes  a
workload  prediction  algorithm  with  an  attention
mechanism  based  on  BiLSTM  and  a  reinforcement
learning  method  to  achieve  reactive  and  proactive
scaling.  Iqbal  et  al.[111] propose  a  proactive  web
application scaling method, where the web application
access  logs  are  analyzed  by  an  unsupervised  learning
approach  to  capture  workload  characteristics,  and  the

proactive resource auto-scaling is realized based on the
predicted workload patterns.

4.6　Proactive dynamic migration

Application  migration  is  essentially  dynamic
application deployment, which dynamically adjusts the
mapping  between  application  instances  and  the
infrastructure.  Therefore,  it  needs  to  implement  the
transition of the application from the source location to
the  target  location.  Ali  Khan  et  al.[112] proposed  a
platform-independent,  centralized,  workload-aware
resource manager that supports multiple resource types
with  predictors  guiding  the  scheduler  and  coordinator
to  achieve  workload-aware  resource  allocation  and
migration  decisions.  Liu  et  al.[113] developed  a
container  consolidation  solution  that  jointly  exploits
current  and  predicted  CPU  utilization  based  on  LR.
The  solution  is  divided  into  three  phases:  1)
overutilized  or  underutilized  physical  machine
detection,  2)  selecting containers  as  migration objects,
and  3)  determining  migration  destinations.  Both
Tamilarasi  and  Akila[114] and  Biswas  et  al.[115]

investigated  VM  migration  methods  based  on  load
balancing, which estimates server workloads. Once the
estimated workloads  are  unbalanced,  VM migration  is
triggered.  Zeng  et  al.[116] proposed  an  energy-efficient
VM  consolidation  framework  for  cloud  data  centers.
Based  on  the  RL  algorithm,  it  selects  the  most
influential  VMs  to  alleviate  the  workloads  of  the
overloaded hosts and then uses predictive-aware RL to
find suitable target hosts.  Pushpalatha and Ramesh[117]

proposed  a  workload  prediction-based  VM  migration
strategy to improve energy efficiency. Neural Network
is  utilized for  workload prediction,  and VM migration
is  performed  based  on  the  proposed  Harris  Hawks
Spider  Monkey  Optimization,  where  the  decision-
making  process  considers  power,  workload,  and
resource parameters.

5　Future Direction

5.1　Large-scale workload prediction

Figure  9  illustrates  six  future  directions  of  workload
prediction  research.  With  the  popularity  of  cloud
computing, the size and complexity of applications are
increasing  dramatically.  Large-scale  workload
prediction  focuses  on  designing  workload  prediction
models  and  mechanisms  to  balance  workload
prediction  accuracy  and  overhead  for  large-scale

  Binbin Feng et al.:  Application-Oriented Cloud Workload Prediction: A Survey and New Perspectives 47

 



applications. The main difficulties faced by large-scale
workload  prediction  are  reflected  in  (1)  more
prediction  objects,  large-scale  application  instances
bring  about  large-scale  workload  prediction  objects,
resulting  in  the  need  for  a  large  number  of  prediction
models,  huge  computation  and  storage  overheads,
which  greatly  increase  the  management  costs;  (2)  the
contradiction  between  prediction  accuracy  and  model
overheads,  where  the  pursuit  of  accuracy  leads  to  an
increase in model parameters, complexity, and number,
which  leads  to  a  huge  overhead,  while  the  pursuit  of
overhead implies  the  adoption of  simpler,  lightweight,
and parallelized models, which often makes it difficult
to guarantee accuracy.

The  research  on  large-scale  workload  prediction  is
still  in  development,  and  there  is  still  much  room  for
optimization.  How  to  optimize  the  model  number,
complexity,  and  accuracy  to  improve  the  applicability
of  models  to  large-scale  scenarios  and  have  strong
scalability is still an issue worth exploring further.

5.2　Workload prediction for serverless instances

Serverless  computing  provides  developers  with  a
platform  without  managing  the  underlying
infrastructure. However, due to its event-driven nature,
the  workloads  of  serverless  applications  are  highly
dynamic and uncertain,  which is  mainly manifested in

the  fact  that  the  workload  data  is  discrete  or  even
sparse,  and the  workload data  may not  be  collected  at
equal  intervals,  which  poses  a  tougher  challenge  for
workload prediction.

Facing  these  challenges,  simple  analysis  based  only
on  historical  workload  values  may  be  difficult.
Therefore,  how  to  effectively  characterize  and  extract
the  workload  patterns  of  serverless  applications  and
enable  the  prediction  models  to  achieve  accurate
awareness of uncertainty is an issue worthy of research.

5.3　Multi-topology guides workload prediction

With  the  development  of  cloud-native  technologies,
applications  developed  in  a  microservice  architecture
and  deployed  in  a  containerized  distributed  manner
have specific business function topologies and resource
topologies.  In addition,  the role of  data as a driver for
applications is becoming more significant. Therefore, a
complex  application  may  be  influenced  by  a
combination  of  business  function  topology,  resource
topology,  and  data  topology  rather  than  just  the
individual behavior of each object.

Therefore, how to achieve the effective perception of
heterogeneous topologies to guide workload prediction
for complex applications is also a worthwhile research
question. Notably, graph neural networks (GNNs) have
shown  strong  performance  in  several  domains,
especially when dealing with complex structured data.
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Considering  the  topological  dependencies  of  complex
applications,  modeling  techniques  such  as  GNN  can
provide new perspectives for workload prediction.

5.4　Large models applied to workload prediction

Recently,  large  language  models  (LLMs)  have  come
into practical  use due to their  powerful generative and
inference  capabilities.  They  are  built  using  self-
attention  mechanisms  and  deep  learning  techniques
such  as  Transformer,  allowing  the  models  to  learn
more  complex  linguistic  features  and  patterns.
Although  generative  large  models  have  been  widely
used in the natural language domain, it is worth noting
that workload prediction, one of the key inference tasks
in the AIOps of cloud applications, has not yet yielded
a large model that addresses this specific task.

It  is  also  worth  studying  how  to  extend  generative
large  models  to  workload  prediction  scenarios  by
leveraging  their  powerful  inference  capabilities  to
enhance  the  AIOps  level  of  application  services  in
small and medium-sized enterprises.

5.5　Model interpretability

More  and  more  machine  learning  models  are  being
applied  to  workload  prediction  solutions.  However,  as
machine  learning  models  become more  complex,  they
are  often  viewed  as “black  boxes”.  This  makes  it
difficult  to  understand  and  interpret  their  predictions.
Lack  of  model  interpretability  can  lead  to  poor
decision-making  and  resource  allocation,  affecting
system  performance  and  stability.  Therefore,  cloud
providers  and  subscribers  expect  predictions  to  be
interpretable  to  better  understand,  optimize,  and
leverage models.

How  to  utilize  diverse  means  to  enhance  the
interpretability  of  the  results  of  complex  workload
prediction  models  is  still  an  issue  worthy  of  research.
Future research could explore how to combine different
interpretation  methods  and  how  to  leverage  new
techniques,  such  as  visualization  and  interactive
analytics, to improve the interpretability of models.

5.6　Model unreliability

Due to the complexity of the cloud workload prediction
problem,  even  the  state-of-the-art  prediction  models
cannot guarantee that the prediction results will always
be reliable.  In such cases,  workload prediction models
can  cause  unacceptably  severe  problems,  leading  to
application  degradation  in  terms  of  performance,  cost,

and  energy  consumption  metrics,  or  even  system
crashes and security issues.

Therefore,  it  is  necessary  to  consider  how  feedback
and  adaptive  methods  can  be  utilized  to  evaluate  the
effectiveness of workload prediction models and make
timely  adjustments  and  updates.  Moreover,  while
continuously  optimizing  the  prediction  capacity  of
models,  it  becomes  crucial  to  take  measures  to  ensure
the acceptability of resource management in the worst-
case  scenario.  A robust  resource  management  strategy
should  consider  alternative  or  redundant  solutions  so
that  the  resource  management  system  avoids  being
overly  sensitive  to  the  workload  prediction  results  as
much as possible and has contingency capabilities.

6　Conclusion

This  paper  comprehensively  reviews  workload
prediction  solutions  and  proactive  resource
management solutions for cloud applications. The basic
features  of  workload  prediction  are  discussed,
including  predicted  targets,  modeling  techniques,
evaluation  metrics,  and  datasets.  Further,  a
classification  and  taxonomy  methodology  for
application-oriented  workload  prediction  solutions  is
proposed,  considering  the  characteristics  of  cloud
applications. In addition, a classification and taxonomy
methodology  of  proactive  resource  management
solutions  for  cloud  applications  is  presented.  Finally,
we  extensively  analyze  six  directions  related  to
workload  prediction  for  cloud  applications  to  develop
more research ideas for readers.
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