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Abstract: The rise of innovative applications, like online gaming, smart healthcare, and Internet of Things (IoT)

services, has increased demand for high data rates and seamless connectivity, posing challenges for Beyond

5G  (B5G)  networks.  There  is  a  need  for  cost-effective  solutions  to  enhance  spectral  efficiency  in  densely

populated areas, ensuring higher data rates and uninterrupted connectivity while minimizing costs. Unmanned

Aerial  Vehicles  (UAVs)  as  Aerial  Base Stations  (ABSs)  offer  a  promising  and cost-effective  solution  to  boost

network capacity, especially during emergencies and high-data-rate demands. Nevertheless, integrating UAVs

into  the  B5G  networks  presents  new  challenges,  including  resource  scarcity,  energy  efficiency,  resource

allocation, optimal power transmission control, and maximizing overall throughput. This paper presents a UAV-

assisted  B5G  communication  system  where  UAVs  act  as  ABSs,  and  introduces  the  Deep  Reinforcement

Learning (DRL) based Energy Efficient Resource Allocation (Deep-EERA) mechanism. An efficient DRL-based

Deep Deterministic  Policy Gradient  (DDPG) mechanism is introduced for  optimal  resource allocation with the

twin  goals  of  energy  efficiency  and  average  throughput  maximization.  The  proposed  Deep-EERA  method

learns  optimal  policies  to  conserve  energy  and  enhance  throughput  within  the  dynamic  and  complex  UAV-

empowered  B5G  environment.  Through  extensive  simulations,  we  validate  the  performance  of  the  proposed

approach,  demonstrating  that  it  outperforms  other  baseline  methods  in  energy  efficiency  and  throughput

maximization.
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1　Introduction

The  emergence  of  novel  and  interactive  applications,
like  online  video  streaming,  Augmented  Reality  (AR)
or  Virtual  Reality  (VR),  Internet  of  Things  (IoT),
digital  twins,  online  gaming,  smart  health  care,  and

various  industrial  verticals,  require  high  data  rate,
uninterrupted connection,  and low latency.  At present,
mobile  networks  face  a  significant  challenge  in
accommodating a wide range of applications, each with
distinct  Quality  of  Service  (QoS)  needs[1–3].  Due  to
that,  a  cost-effective  deployment  solution is  needed to 
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enhance  the  spectral  efficiency  of  Fifth-Generation
(5G) networks in highly dense areas by increasing high
data rates with minimum cost.  Conversely,  Unmanned
Aerial  Vehicles  (UAVs)  have  emerged  as  viable  and
mostly  adopted  in  performing  search  and  rescue
operations,  emergency  scenarios,  efficient  real-time
monitoring,  agriculture  field  monitoring  and
control,  goods  delivery,  military  operations,  and
communication networks. More specifically, UAVs are
the best and most cost-effective solution to increase the
communication  network  capacity  and  handle  various
scenarios,  such  as  network  devices  malfunctioning,
network  failure  due  to  natural  distastes,  abrupt  surges
in  data  rate  demands  due  to  a  growing  user  base,  as
well  as  deployments  in  densely  populated  regions  to
enhance  QoS  and  expand  coverage  in  marine
networks[4].  UAVs  are  most  effective  as  Aerial  Base
Stations  (ABSs),  that  can  be  deployed  rapidly  at  low
cost  and fly anywhere without  human involvement.  In
the  beginning,  UAVs  were  launched  in  military
services.  After  that,  they have been widely  adopted in
various  civilian  fields,  such  as  agriculture,  cargo,  and
wireless  communications.  UAVs  provide  essential
features,  like  low  cost,  rapid  deployment,  adaptive
communication,  high  mobility,  Line  of  Sight  (LoS)
communication,  and  many  more[5–7].  Due  to  the
innovative  features  of  UAVs,  they  have  become  an
important  part  of  Beyond  5G  (B5G)  wireless  systems
to ensure seamless connectivity and high throughput in
a  heterogeneous  network  context.  The  Third-
Generation Partnership Project (3GPP) presents the use
of  UAVs  with  existing  Long-Term  Evolution  (LTE)
networks  for  enhancing  network  coverage  and  data
rates[8].  UAVs can be used in wireless communication
systems  in  various  use  cases:  flying  relay  nodes  or
intermediate  nodes  for  providing  connectivity  among
two nodes  such as  source  and destination,  flying  User
Equipment  (UE)  for  data  collection  purposes  and
remote  sensing,  and  ABS,  which  can  be  deployed  in
infrastructure  malfunction  cases,  to  provide
connectivity in natural disaster areas or the areas where
it is hard to deploy 5G infrastructure and highly dense
area to maintain service QoS. Moreover, UAVs can be
used in communication networks as caching and power
transmitters[9].

Integrating  UAVs as  ABS in  wireless  networks  is  a
promising  and  noteworthy  advancement,  garnering
considerable  attention  in  academic  and  industrial
circles.  UAVs  are  poised  to  enhance  system  energy

efficiency  and  user  experiences  in  various  settings,
such as schools, shopping malls, and other high-traffic
areas.  They  can  serve  as  ABSs  to  bolster  network
capacity,  coverage,  reliability,  and  energy  efficiency,
while  operating  as  mobile  terminals  within  cellular
networks.  The  resource  allocation  and  power
management  research  for  UAV-supported  5G
emergency  wireless  communications  offers  solutions
for  resource  scarcity  in  disaster-stricken  regions,
extending  communication  endurance  and  improving
user satisfaction[10,11].

As  a  supporting  component  of  B5G systems,  UAVs
demonstrate  impressive  gains  in  expanding  network
coverage  and  enhancing  overall  network  performance.
However,  several  complex  challenges  remain  to  be
addressed.  In  the  context  of  UAVs  as  communication
equipment,  existing  research  has  concentrated  mainly
on  interference  management,  energy  limitations,  and
trajectory designing and optimization. While trajectory
optimization primarily  aims to  maximize  their  impact,
it  is  vital  to  consider  UAV  stability  and  energy
consumption  as  communication  devices.  Moreover,
most  of  these  studies  have  yet  to  account  for  5G
application  scenarios,  making  them  less  applicable  to
existing 5G networks[12].  An exception is  the work by
Gao  et  al.[13],  which  introduces  a  5G  network  system
for  emergency  scenarios  by  integrating  UAVs  with  a
5G  system,  offering  greater  flexibility  and  quicker
response  time  than  traditional  emergency  networks.
The  fusion  of  UAV  and  B5G  networks  offers  the
potential  to  create  a  more  flexible  communication
system  (for  emergency  cases)  with  promising
development  prospects.  However,  this  integration
introduces various new challenges of resource scarcity,
energy  efficiency,  resource  allocation,  Base  Station
(BS) selection, optimal power control, and maximizing
overall  throughput.  More  specifically,  the  extensive
deployment  of  densely  packed  BSs  poses  an  energy
consumption  challenge,  necessitating  innovative
approaches  to  increase  energy  efficiency  while
maintaining  better  Quality  of  Experience  (QoE)  to
customers[14–16].

Moreover,  Deep  Reinforcement  Learning  (DRL)
demonstrates  remarkable  adaptability  in  managing
dynamic  and  intricate  settings,  making  it  a  valuable
tool  for  intelligent  UAV  control  to  enhance
communication  network  performance[17].  Recently,
DRL has emerged as a prominent research trend within
Artificial  Intelligence  (AI).  DRL  has  proven  valuable
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for  addressing  resource  allocation  challenges  in
heterogeneous networks[18–20].  In  this  work[21],  a  Deep
Q-Network (DQN) based resource allocation approach
is  introduced.  This  framework  handles  complex  real-
time  control  issues  and  leverages  energy  harvesting
within  Ultra-Dense  Networks  (UDNs)  without
requiring  prior  knowledge  of  Channel  State
Information (CSI), energy arrivals, and data rates. This
innovative  methodology  mirrors  human  learning
through extensive data training, a feat beyond the reach
of  conventional  methods.  It  utilizes  a  dynamic  trial-
and-error  exploration  approach  to  engage  with  the
environment.  This  leads  to  unparalleled  levels  of
resource  allocation  automation  and  optimization,
particularly  for  handling  resource  optimization  with
multiple  purposes  problems,  involving  energy,
incomplete  CSI,  and  data  rates,  which  are  typically
insurmountable  challenges  using  traditional  convex
optimization techniques.

1.1　Research motivation and contributions

AI  approaches,  particularly  DRL  methods,  have
emerged  as  promising  solutions  to  effectively  address
the  challenges  associated  with  the  UAVs  as  an  ABS,
including spectrum sharing, scheduling, optimal power
control,  resource  allocation,  link  selection,  energy
efficiency,  trajectory  planning  and  management,  QoS
assurance,  and  throughput  maximization.  However,
conventional Reinforcement Learning (RL) algorithms,
such  as  Q-Learning  (QL)  and  DQN,  encounter
limitations  in  handling  the  large  continuous  state  and
action  spaces  characteristic  of  the  dynamic
environment. Consequently, there is a pressing need for
a  robust  and  efficient  DRL  mechanism  capable  of
effectively  handling  the  vast  amounts  of  data  inherent
in  UAV-assisted  B5G  network  environments  while
providing optimal decision-making capabilities.

To resolve the problems associated with UAVs used
as  ABSs  in  the  B5G  networks  for  increasing  network
coverage  and  capacity,  we  have  introduced  a  DRL-
based  Energy-Efficient  Resource  Allocation  (Deep-
EERA)  mechanism  for  maximizing  energy  efficiency
and  throughput.  We  transform  the  network  resource
allocation  problem,  like  power  allocation  and
throughput  maximization,  into  an  optimization
problem,  and  design  a  Deep  Deterministic  Policy
Gradient  (DDPG)  mechanism  for  optimal  decision-
making.  The  DDPG  algorithm  is  best  suited  for  our
UAVs-assisted wireless network environment, because

it  is  best  for  a  dynamic  environment  with  higher
dimensionality  of  data.  This  DDPG  agent  learns  from
the simulation environment, where UAVs and BSs are
used  to  serve  users  with  better  network  capacity  and
provide  seamless  connectivity.  The  DDPG  agent
controls  the  power  transmission  of  BSs,  and  UAVs,
and  maximizes  the  data  rate  by  minimizing  energy
consumption.  We  have  performed  various  energy
efficiency,  throughput,  and  energy  consumption
experiments  to  validate  our  Deep-EERA  mechanism.
The  simulation  outcomes  reveal  our  proposed
mechanism’s  superiority  over  traditional  approaches
and  achieve  higher  throughput  by  maximizing  energy
efficiency.

1.2　Paper organization

The  remaining  manuscript  is  organized  as  follows.
Section  2  explains  the  relevant  literature  on  using
UAVs in wireless  communication networks.  Section 3
presents  the  DRL  DDPG  resource  allocation
mechanism in UAVs-assisted wireless network systems
for  B5G  networks.  This  section  also  provides  the
architecture  of  the  proposed  system  with  the  help  of
formulation  and  modeling.  Section  4  explains  the
simulations  and  experimental  details  of  the
implemented  system.  It  also  explains  the  comparative
analysis  and  results  achieved  through  our  system.  In
the end, we have concluded the paper by summarizing
our achievements in this paper in Section 5.

2　Related Literature

This section extensively reviews the existing literature
on  integrating  UAVs  in  wireless  communication
networks.  It  delves  into  the  multifaceted challenges  in
this  context,  primarily  focusing  on  throughput
optimization,  energy  efficiency,  QoS  assurance,  and
the  pivotal  role  of  AI,  RL,  and  DRL  techniques  in
addressing these challenges.

Several noteworthy and significant studies[22, 23] have
assumed  either  statistical  or  complete  knowledge  of
environmental factors, including energy arrival patterns
and  real  channel  states.  However,  pinpointing  the
precise corresponding distribution for these factors can
be challenging. Researchers have increasingly turned to
RL  methods  as  a  practical  and  effective  solution  to
address  the  uncertainties  related  to  energy  harvesting
processes  and  channel  states.  Moreover,  RL  can  offer
flexibility  for  handling  topological  changes  while
demanding relatively low computational resources and
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implementation  efforts  compared  to  alternative
paradigms,  such  as  swarm  intelligence,  neural
networks, and software agents in the context of an AI-
enabled future[24].

In  addition  to  that,  we  delve  into  the  diverse  RL-
based  approaches  that  have  been  applied  in  recent
research  literature.  For  instance,  Savaglio  et  al.[25]

developed  an  intelligent  QL-enabled  MAC  protocol
(QL-MAC)  for  Wireless  Sensor  Networks  (WSNs).
The  QL-MAC protocol  empowers  individual  nodes  to
independently optimize wake-up schedules, conserving
energy  by  minimizing  radioactivity  through  trial-and-
error  learning.  However,  it  should  be  noted  that
applying  QL  to  large-scale  networks  can  introduce
dimensionality  problems  due  to  the  impracticality  of
constructing a comprehensive Q table.

Fadlullah  et  al.[26] demonstrated  the  suitability  of
Deep Learning (DL) technology for crafting model-free
network strategies capable of addressing the challenges
posed by the changing network environment driven by
significant  growing  traffic  demands  and  network
applications.  Mnih  et  al.[27] introduced  a  DRL
mechanism  which  combines  RL  with  DL,  offering
potential  solutions  for  tackling  complex  challenges.
Subsequently,  Li  et  al.[28] and  Du  et  al.[29] employed
DQN to address radio resource allocation challenges in
future  networks.  Their  implemented  DQN-based
method  integrates  Deep  Neural  Networks  (DNN)  as
function  approximation  into  the  QL  algorithm,
enabling  handling  large  state  spaces.  Chu  et  al.[30]

developed  a  scheduling  algorithm  using  Long  Short-
Term  Memory  (LSTM)  and  DQN  methods.  They
aimed to  develop strategies  to  maximize  and optimize
the uplink rate in IoT cellular systems. Mohammadi et
al.[31] ventured  into  extending  the  semi-supervised  RL
approach  using  DQN  to  address  indoor  localization
based  on  Bluetooth  with  low  power  consumption.
Their model incorporates a deep autoencoder model to
learn  optimal  agent  actions.  Omoniwa  et  al.[32]

implemented  a  multi-agent  Double  DQN  (DDQN)
framework  to  optimize  UAV  trajectory  design  while
enhancing energy efficiency,  particularly  in  mitigating
UAV  cell  interference.  Their  approach  demonstrates
superior  energy-saving  capabilities  through
comprehensive  simulations  compared  to  conventional
baseline  methods.  Reference  [33]  focuses  on  system
throughput  maximization  and  energy  efficiency  using
energy cooperation and harvesting technology in ultra-
dense  networks.  An  optimal  DRL  algorithm  is

designed  with  the  goal  of  throughput  maximization
within  a  limited  time  frame.  This  approach  is  devised
to address the challenge of not having prior knowledge
of  channel  conditions  and  energy  arrival  patterns.
Additionally,  they  have  developed  a  multiagent  DRL
method to tackle the dimensionality issue arising from
the  large  number  of  states  and  action  sets.  A
comparative  analysis  is  conducted  with  two
conventional algorithms: conservative and greedy. The
simulation  outcomes  show  the  effectiveness  of  the
multi-agent  DRL  mechanism  in  achieving  higher
average throughput.

Silver  et  al.[34] introduced  a  DDPG  method
recognized  for  its  effectiveness  in  managing  state
spaces with high dimensionality and continuous action
spaces. Similarly, Li et al.[21] proposed a DDPG-based
method  to  optimize  the  power  control  scheme  within
the context of UDN networks. The results of the DDPG
method  show  superior  performance  than  other  RL
mechanisms,  such  as  DQN  and  QL  mechanisms.
Nevertheless,  it  is  important  to  mention  that  these
DRL-based studies may not account for the increase in
system users, potentially leading to expanded state and
action  dimensions  and  resulting  in  dimensionality
challenges.

Li  et  al.[35] explored  a  novel  online  flight  resource
allocation  system,  called  the  DDPG-based  Flight
Resource  Allocation  Scheme  (DDPG-FRAS).  This
mechanism  has  been  developed  to  enhance  the  real-
time  optimization  of  UAV  flight  control  operations,
ensuring  efficient  scheduling  of  data  collection  tasks
throughout  its  trajectory.  The  primary  objective  is  the
minimization  of  packet  loss  in  the  sensor  network.
Through  empirical  findings,  it  becomes  evident  that
enlarging  the  buffer  size  can  significantly  reduce
packet loss, yielding an impressive enhancement of up
to 47.9%.

Peng and Shen[36] explored the combined challenges
of resource management and vehicle association within
the  MEC  and  UAVs-supported  vehicular  network.  A
multi-objective  resource  optimization  has  been
formulated  to  efficiently  manage  the  computational
capabilities, caching resources, and spectrum allocation
for  MEC-enabled  UAVs  serving  as  ABS.  To  address
the  issue  of  stringent  delay  requirements  of  vehicular
networks,  they  developed  a  DRL-based  DDPG  for
efficient resource management, which gives an optimal
decision on resource allocation and vehicle association.
The  experimental  outcomes  reveal  that  the  proposed
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mechanism  outperforms  a  random  allocation  scheme
regarding QoS and satisfying delay.

Nguyen  et  al.[37] combined  Reconfigurable
Intelligent  Surfaces  (RIS)  with  UAVs  to  improve
network  overall  performance  and  capacity.  The
primary aim of this study is to optimize the network’s
energy  efficiency.  To  accomplish  this  objective,  they
introduced  a  coordinated  optimization  process
involving  allocating  power  for  UAVs  and  the  phase
shift matrix for RIS. They introduced a DRL approach
to  address  this  continuous  optimization  challenge,
particularly  in  contexts  with  time-varying  channels.
This  DRL  technique  enables  centralized  decision-
making  while  adapting  to  dynamic  environmental
conditions.  Additionally,  they  introduced  a  parallel
learning approach to reduce the latency associated with
information  transmission  requirements  in  the
centralized  approach.  Numerical  results  demonstrate
the significant advantages of the implemented schemes
over  conventional  methods  regarding  energy
efficiency, flexibility, and processing time.

Cui  et  al.[38] introduced  a  Multi-Agent  RL  (MARL)
mechanism  to  attain  efficient  long-term  resource
allocation policies in a multi-UAV context. In MARL,
each UAV functions as an independent learning agent,
and  the  resource  allocation  decisions  are  treated  as
actions  taken  by  these  UAV  agents.  The  MARL
approach  allows  agents  to  learn  its  optimal  policy
based on local observations independently but employs
a  QL-based  common  structure.  The  implemented
mechanism  demonstrates  satisfactory  performance,
particularly  compared  to  scenarios  involving  the
complete information exchange among UAVs.

Chen  et  al.[39] took  on  the  complex  challenge  of
optimizing  caching  and  resource  allocation  in  a
network  where  cache-supported  UAVs  serve  Ground
Users  (GUs)  operating  across  Unlicensed  Long-Term
Evolution  (LTE-U)  and  licensed  LTE networks.  Their
proposed model  is  centred around GUs with  access  to
both types of bands and receiving content through both
links.  The  comprehensive  problem  of  spectrum
allocation,  content  caching,  and  user  association  is
structured as an optimization problem. To address this
multifaceted  challenge,  they  introduced  a  distributed
Machine  Learning  (ML)  based  algorithm,  called  the
Liquid  State  Machine  (LSM).  The  LSM  method
empowers the cloud to predict the distribution of users’
content  requests,  even  with  limited  users  and  network
information.  Furthermore,  it  enables  UAVs  to

autonomously  select  optimal  resource  allocation
policies based on the network’s current conditions.

In  Ref.  [40],  Seid  et  al.  introduced  a  novel  Multi-
Agent  Federated  RL  (MAFRL)  mechanism  for
efficiently  allocating  resources  in  a  UAV-assisted
healthcare  context.  The MAFRL algorithm tackles  the
issues  related  to  resource  allocation  and  computation
offloading  by  presenting  them  as  an  optimization
problem  within  the  realm  of  Federated  Learning  (FL)
that  involves  numerous  participants.  The  primary
objectives  of  MARFL  are  to  minimize  energy
consumption and maintain QoS. Simulation results are
performed on the heartbeat dataset,  demonstrating that
the  MAFRL  algorithm  offers  significant  advantages
over  baseline  learning  algorithms.  MAFRL  enhances
privacy,  reduces  cost,  and  enhances  accuracy,  making
it  a  promising  solution  for  resource  allocation  in
healthcare systems.

In Ref. [41], Li et al. introduced an efficient resource
allocation  through  DRL to  ensure  continuous  network
coverage.  It  has  the  unique  capability  to  dynamically
adjust neural network structures, making it effective in
meeting  coverage  needs  by  jointly  allocating  power
and  subchannels  to  GUs.  It  is  observed  from  the
experiments that the proposed mechanism reduced rate
variance by 66.7% and increased spectral efficiency by
34.7% as compared to benchmark algorithms.

In  Ref.  [42],  Du  et  al.  focused  on  a  UAV-assisted
MEC for  providing data  preprocessing services  to  IoT
devices. A single UAV as an edge is considered in this
context,  which hovers to different locations in varying
time  slots  for  data  collection  and  processing.  The
primary  aim  of  this  work  is  to  maximize  the  energy
efficiency  of  UAVs,  encompassing  the  energy  spent
while  hovering  and  during  computation.  This  is
achieved by optimizing several factors, including UAV
hovering  duration,  task  scheduling,  and  allocating
resources  for  the  IoT  devices  tasks  by  assuring  QoS
requirements.  They  introduced  an  iterative  method  to
achieve  more  accurate  sub-optimal  solutions  and
policies. Simulation results validate the effectiveness of
the  implemented  approach,  demonstrating  its
superiority to other benchmark approaches.

Peng and Shen[43] worked on multi-domain resource
management  within  UAVs-supported  vehicular
networks. The major objective is to support on-demand
service  provisioning  by  optimal  resource  allocation  to
vehicles  in  MEC-assisted  UAVs  and  BSs  context.
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Without  a  central  controller,  the optimization resource
allocation  problem  is  tackled  at  the  MEC  using  a
distributed  approach.  The  main  aim is  to  optimize  the
number  of  tasks  offloaded,  considering  their  varying
QoS  demands.  A  DRL-based  DDPG  mechanism  is
proposed  for  optimal  and  efficient  allocation  of
resources  and  intelligent  vehicle  association  decisions
by providing QoS assurance.

Wang et al.[44] employed UAVs as BSs for ensuring
MEC  capabilities  to  GUs.  A  DRL-based  multi-agent
method is proposed for optimal UAV path planning to
maximize overall energy efficiency. In addition, UAVs
load balancing and GUs task offloading load balancing.
Additionally,  fairness  is  considered  to  ensure  UAV
load  balancing  and  balance  in  UE  task  offloading.
Experimental results demonstrate superior performance
of  the  implemented  method  to  other  baseline  works,
offering  a  more  efficient  and  balanced  solution  for
UAV-based MEC services.

The literature review highlights the significant role of
UAVs  as  a  cost-effective  and  reliable  technology  in
B5G  communication  systems,  particularly  for
enhancing  network  capacity  and  coverage  in  densely
populated  areas  or  emergency  situations.  Despite  the
numerous  advantages  of  UAVs  as  ABS,  several
challenges  persist  in  optimizing  their  performance,
including  optimal  power  allocation,  resource
allocation,  link  selection,  energy  efficiency,  trajectory
planning  and  management,  QoS  assurance,  and
throughput maximization. To address these challenges,
researchers  have  turned  to  AI  approaches,  particularly
RL  methods,  which  hold  promise  for  tackling  these
complex problems. While some studies have employed
traditional  RL  algorithms,  such  as  QL  and  DQN,  for
tasks  like  optimal  trajectory  planning,  throughput
maximization,  resource  allocation,  and  link  selection,
these  approaches  face  limitations  in  handling  large
continuous  state  and  action  spaces,  particularly  in
dynamic  environments,  like  UAVs-assisted  B5G
networks.

In  contrast,  the  DDPG  method  has  emerged  as  a
promising  solution  due  to  its  ability  to  handle  high-
dimensional  state-action  spaces  and  complex
environments.  While  previous  studies  have  utilized
DDPG  for  tasks,  like  optimal  trajectory  planning  and
link  selection  in  static  environments,  optimal  resource
allocation in UAVs-assisted B5G networks remains an
area of ongoing research.

Building  upon  the  advantages  of  DDPG  over

traditional RL algorithms, like QL and DQN, we have
developed a novel DDPG-based mechanism to address
the multi-objective challenges of energy efficiency and
throughput  maximization  in  UAVs-assisted  B5G
networks.  By  leveraging  DDPG’s  capabilities  in
handling  complex  environments  and  high-dimensional
spaces,  our  proposed  approach  aims  to  overcome  the
limitations  of  existing  methods  and  pave  the  way  for
enhanced performance and efficiency in UAVs-assisted
B5G communication systems.

3　Proposed System

3.1　System overview

In  this  study,  we  propose  an  efficient  system utilizing
UAVs  to  enhance  network  capacity  and  improve  user
QoS. Our innovative UAV-assisted wireless network is
designed  to  accommodate  a  wide  range  of  emerging
5G  and  beyond  network  services. Figure  1 illustrates
the  overall  architecture  of  our  system,  which  includes
multiple  BSs,  UAVs  functioning  as  ABSs,  a  5G  core
network,  5G  users,  and  a  centralized  controller
responsible for managing both the BSs and UAVs. The
UAVs  establish  connectivity  in  densely  populated
areas  or  where  certain  BSs  experience  failures,
effectively  alleviating  the  strain  on  overloaded  BSs
resulting  from  a  surge  in  users  within  a  specific  area.
Thus,  UAVs  represent  an  optimal  solution  for
addressing  these  issues.  In  our  system,  we  have  used
UAVs to mitigate situations involving overloaded BSs
and malfunctions. Nonetheless, incorporating UAVs in
this context presents challenges, including maximizing
data  transmission  rates,  optimising  power  allocation,
and  enhancing  energy  efficiency.  To  address  these
challenges,  we  have  introduced  a  DDPG-based  model
to  achieve  higher  throughput  and  maximize  energy
efficiency, resulting in improved customer QoE.

3.2　System model and problem formulation

S UAV = UAV1, UAV2, UAV3, . . . , UAVn

S BS = BS1, BS2, . . . ,

BSm S GU = GU1, GU2,

GU3, . . . , GUk

The  system  model  consists  of  multiple  UAVs  serving
as  flying  BSs,  which  are  denoted  as

. It also includes
a  set  of  multiple  BSs  denoted  as 

,  and K GUs  denoted  as 
.  As  presented  in Fig.  1,  the  centralized

controller  is  responsible  for  controlling  the  deployed
UAVs  and  BSs.  The  GUs  are  randomly  distributed  to
UAVs  and  BSs.  In  our  approach,  we  suppose  the
centralized controller has all the information related to
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UAVi LocUAVn = (Xn, Yn, Zn)
Xn Yn Zn

LocBSm =

(Xm, Ym, Zm) Xm Ym Zm

LocGUk =

(Xk, Yk, Zk) Xk Yk Zk

the  UAVs,  BSs,  and  GUs,  such  as  GUs  location,
transmission  power,  and  Channel  Quality  Information
(CQI). Based on information from the environment, the
centralized  controller  can  perform  the  operations  of
optimal  BS  selection  for  each  user  and  control  the
resource  allocation  of  BSs.  In  our  setup,  suppose  that
the  UAVs  are  operating  in  the  air  and  BSs  are
operating  in  a  fixed  location.  For  example,  The
location  of  is  defined  as 
where , , and  are the coordinates of n-th UAV.
Similarly,  BS  location  is  defined  as 

 where , , and  are the coordinates
information  of m-th  BS.  Additionally,  GUs  are
distributed  randomly  at  the  location  of 

 where , ,  and  are  the  coordinate
information of k-th user.

In the B5G context,  the system’s real-time feedback
mechanism is solely influenced by the state and actions
taken  in  the  most  recent  time  slot.  It  does  not  depend
on  the  past  states,  aligning  with  the  fundamental
characteristics  of  a  Markov  Decision  Process  (MDP).
Leveraging this similarity to MDPs, we have employed
a  DRL-DDPG  algorithm  to  address  this  optimization
challenge  effectively.  The  system’s  state  and  action
spaces evolve through training and iterative processes,
enabling the generation of approximation functions. As
a  result,  we  can  reorganize  our  system  into  an  MDP,
which  includes  defining  the  state-action  pairs  and
reward function.

The global state space of k GUs is defined as follows:

 

S t = TRt
1, TRt

2, TRt
3, TRt

4, . . . , TRt
n, PCt

total (1)

TRt
n

PCt
total

PCt
total

where  shows each GU’s current data transmission
rate  at  timestamp t.  is  the  total  power
consumption  at  timestamp t by  the  UAVs  and  BSs.

 is described in the following:
 

PCt
total =

K∑
k

Ik(TPt
m)+

K∑
k

(1− Ik)(TPt
n) (2)

TPt
m

TPt
n

Ik

where  is  transmission  power  assigned  to  the k-th
GU  by  the m-th  BS  and  shows  assigned
transmission power by the n-th UAV to the R-th GU at
timestamp t.  Moreover,  is an indicator that presents
the connection status of GU to BS and UAV.

TRt
n

At

The main goal of the proposed DRL mechanism is to
maximize the data transmission rate  by controlling
the power allocation of UAVs and BSs to each GU. So,
our  action  space  is  to  achieve  optimal  power
distribution, as defined as follows:
 

At = TPt
1, TPt

2, TPt
3, . . . , TPt

n (3)

At

TPt
n

where  illustrates  the  action  in  time  slot t.  Eq.  (4)
illustrates transmission power  at time slot t,
 

TPt
n = TPMin

[
TPMax

TPMin

] g
l−1

(4)

TPMin TPMaxwhere  and  present  the  minimum  and
maximum  transmission  power,  respectively,  and l
shows the transmission power level.

Rt

TRt
n

We have formulated the reward function  based on
the  total  data  transmission  rate ,  which  is  a  very
important  parameter  to  maximize  the  performance  of

 

 
Fig. 1    Architecture of UAVs assisted B5G network for enhancing the network coverage and capacity in emergency cases
or supporting increasing users in highly dense areas to maintain QoS.
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Rtour system. The reward function  is as follows:
 

Rt =

K∑
k

Ik
t (TRt

m)+
K∑
k

(1− Ik
t )(TRt

n) (5)

TRt
m

TRt
n

where  illustrates  the  data  transmission  rate  of k
GU at timestamp t by the m-th BS and  presents the
data transmission rate of the k-th GU at timestamp t by
the n-th UAV.

3.3　Deep deterministic policy gradient for optimal
resource allocation

At

S ′

Rt

Rt

Π Π

Π′

RL  revolves  around  agents’ interaction,  environment,
and  the  reward  system.  Agents  operate  within  the
environment, taking various actions  that lead to the
generation  of  new  states .  In  response  to  these
evolving states, the learning agent obtains a response in
the  form  of  reward,  which  can  be  positive  or
negative.  This  reward  influences  the  agent’s
decision-making  process,  as  it  seeks  to  determine  the
optimal state-action pairs, essentially crafting a strategy
through  exploration  to  optimize  the  total  reward.
Within  the  MDP  framework,  the  agent  engages  with
the  environment  by  adhering  to  a  decision  strategy  or
policy  denoted  as .  This  policy  essentially  maps
states to the corresponding actions. We aim to ascertain
the  optimal  policy  to  maximize  the  Q-value
function as presented in the following[24]:
 

Π′(S ) = argmax (Q (S , A)) (6)
Q′The  optimal  function  is  presented  in  the

following[24]:
 

Q′(S , A) = α [Rt +γmaxA′Q (S ′, A′)] (7)
S ′ A′

α γ

where  and  represent  the  new  state  and  action
achieved after the agent’s action, denoted as A, in state
S.  Additionally,  and  are  the  Learning  Rate  (LR)
and discount factor, respectively.

The most common RL algorithms are QL and DQN,
but  they  suffer  from  high  dimensional  issues  while
training in a dynamic environment like our mechanism.
Due  to  that,  We  have  adopted  the  latest  DDPG
algorithm,  which  is  a  development  of  the  actor-critic
approach,  leveraging  DNNs  to  approximate  value
functions  and  policy[45].  DDPG  distinguishes  itself
from  traditional  RL  algorithms  by  its  capability  to
tackle  the  challenges  posed  by  high-dimensional
optimization problems characterized by extensive state
and action spaces.  Moreover,  DDPG excels in making
effective  decisions  when  dealing  with  continuous

θa θc

θa

θc

θa θc

θa θc

θc

action  spaces,  such  as  in  our  communication  system.
The  DDPG  algorithm  encompasses  actor,  critic,  actor
target ,  and  critic  target  models,  as  presented  in
Fig.  2.  The  actor-network  plays  a  crucial  role  in
selecting the  current  action on the  basis  of  the  current
state  while  also  handling  the  acquisition  of  the
subsequent  state  and  reward  information.  In  contrast,
the critic network  is tasked to compute the current Q
value.  We maintain  actor  target  and critic-target 
networks,  replicas  of  the  actor  and  critic 
networks,  respectively.  Their  network  parameters  are
updated  using  a  soft  update  technique  to  enhance
training stability. The critic network  is optimized in
each iteration by minimizing the loss function followed
by  temporal  difference  error,  as  defined  in  the
following:
 

Lossθc = α [(Zt −Q (S t, At; θc))2] (8)
 

At+1

At

 
Fig. 2    Architecture  of  DRL-based  DDPG  mechanism  for
energy-efficient  resource  allocation  in  UAVs  assisted  future
network.

  Shabeer Ahmad et al.:  Deep-EERA: DRL-Based Energy-Efficient Resource Allocation in UAV-Empowered Beyond... 425

 



θa
On the other side, during training, the actor-network
 has  to  maximize  the  objective  function,  which

follows  a  policy  gradient  method[46, 47].  We  have
embraced the most recent DDPG algorithm, which is a
development  of  the  actor-critic  approach,  leveraging
DNNs to approximate value functions and policy[45].

Zt  is  the  expected  return  and  is  defined  in  the
following:
 

Zt = Rt +αQ
(
S ′, Π

(
S ′; θa

′)
; θc

′)
(9)

ZtWe  use  a  strategy  to  keep  stable  during  the
training  phase  by  slowly  updating  the  target  network
parameters.

S t

At Rt

S ′

(S t, At, Rt, S ′)

θa

θc

Algorithm  1 explains  the  process  of  the  proposed
DDPG-based  mechanism  for  achieving  energy-
efficient  optimal  resource  allocation  policies.  The
DDPG agent interacts with the communication system
environment  by  observing  state  at  time  step t and
takes an action , receiving reward  and moving to
new state . Every experience of an agent is stored in
a memory buffer . The memory buffer is
initialized  with  limited  memory,  and  in  case  memory
becomes  full,  the  oldest  experience  is  deleted  to  store
new  experiences.  We  randomly  select  mini-batches
from the memory buffer to train the actor  and critic

 networks.

4　Simulation Result and Analysis

4.1　System settings

The proposed UAVs-assisted energy-efficient resource
allocation  mechanism  is  implemented  through  the
DDPG  model  using  Python  and  TensorFlow. Table  1
presents the details of the experimental and simulation
parameters.  The  convergence  of  our  DDPG  algorithm
using various LR values, specifically 0.001, 0.003, and
0.01, is depicted in Fig. 3. It is evident that the average
cumulative  reward  exhibits  an  increasing  trend  and
tends  to  stabilize  after  approximately  150 episodes  for
all  three  LR  settings.  The  DDPG  algorithm  displays
slow convergence with a small LR but converges more
rapidly as the LR increases. However, it is important to
note  that  using  an  LR  of  0.1 may  lead  the  DDPG
algorithm  to  converge  to  sub-optimal  values,  and
further  increasing  the  LR  does  not  necessarily  yield
better  results.  In  our  experiments,  we  obtain  superior
results with an LR of 0.001.

4.2　Experimental results and discussion

We  have  performed  the  experimental  analysis  of
achieved  throughput,  energy  consumption,  and  energy

 

Algorithm 1    DDPG-based energy efficient dynamic resource
allocation

Mb Sizemax1: Initialize memory replay buffer  to ;
θa θa

′2: Initialize parameters of two actor networks  and ;
θc θc

′3: Initialize parameters of two critic networks  and ;
ep = 1: N4: for  do

Rep

5: 　Set initial state and the cumulative reward at each episode
          to zero
6: 　for step t do

At θa7: 　　Select action  by  actor online network;
At Rt

S ′
8: 　　Perform action , receive reward , and move to the
                new  state;

|Mb| < Sizemax9: 　　if  then
(S t, At, Rt, S ′) Mb10: 　　　Store transition experience  to ;

11: 　　else
(S t, At, Rt, S ′)

Mb

12: 　　　Remove oldest transition values  from
                      the memory buffer ;

Mb13: 　　　Randomly select mini_batch samples from  and
                       input to both networks;

θc

14: 　　　Update actor and critic online networks parameters
                       using loss function Loss  and policy gradient;

θa
′

θc
′15: 　　　Update target networks  and ;

Rep = Rep +Rt16: 　　　 ;
17: 　　end if
18: 　end for
19: end for
20: Final policy: Optimal resource allocation decision policy
that maximizes energy efficiency and throughput

 

Table 1    Experimental  parameters  and  specification  of
DDPG resource allocation mechanism.

Name of parameter Specification
Bandwidth of BS 10 MHz

Bandwidth of UAV 15 MHz
Gaussian noise −110 dBm
TPMax  of BS 20 dBM

TPMax  of UAV 20 dBM
Channel gain BS −60 dB

Channel gain UAV −50 dB
Path loss-index of BS 2

Path loss-index of UAV 2
Batch-size 256

Memory buffer size 5000
αInitial 0.01

γ 0.9
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efficiency  achieved  through  our  DRL-based  resource
allocation  mechanism  for  UAVs-assisted  B5G
network. Initially,  we use one UAV and three BSs for
our  experimental  setting.  Energy  consumption  and
throughput are two important parameters to validate the
performance of a system, because energy consumption
causes  an  increase  in  the  total  operational  expenses,
and low throughput violates the SLA and impacts user
experience. Due to that, we have performed throughput
analysis, energy efficiency, and energy consumption to
validate  our  system. Figure  4 illustrates  the  results  of
the  total  throughput  achieved  in  two  different  use
cases,  with  UAVs  and  without  UAVs  and  multiple
BSs.  It  can  be  observed  that  by  increasing  BSs,  the
system’s  throughput  increases  in  both  cases.  More
importantly,  the  UAV-assisted  case  achieves  better
total  throughput than the case without UAVs by using
the same number of BSs.

On  the  other  hand, Fig.  5 illustrates  the  energy

consumption  results  achieved  from  our  experiment
using  different  numbers  of  BSs  with  and  without
UAVs. It  can be seen that the UAV-assisted case uses
higher energy consumption compared to those without
UAVs. This is because it provides higher throughput to
the  communication  system.  So,  it  is  visible  from  the
results  that  the  UAVs  are  very  efficient  in  increasing
the  system  throughput  and  coverage,  and  are  very
beneficial  to maintaining QoS for users in dense areas
or emergency cases.

Figure  6 illustrates  the  comparative  analysis  of  our
system  with  existing  techniques,  such  as  QL,  DQN,
and  throughput  maximization  for  energy  efficiency.
Figure  6 shows  the  experimental  results  of  energy
efficiency  achieved  by  all  the  approaches  using
different  numbers  of  users.  It  is  observed  that  our
DDPG  mechanism  achieves  higher  energy  efficiency
than the other approaches. Conversely, Fig. 7 illustrates
the  energy  efficiency  results  achieved  by  all  four
algorithms  using  multiple  BSs  with  different  numbers
of users.

As the number of BSs increases, a noteworthy rise in
energy efficiency is observed across all four considered
methods. This uptrend in energy efficiency is primarily
attributed to the decreasing user density resulting from
the expanding BS coverage. In particular, the proposed
DDPG  mechanism  exhibits  a  distinct  pattern,
maintaining a relatively stable energy efficiency, which
tends  to  be  higher  in  comparison  to  the  other  three
algorithms.  This  implies  that  in  situations  with  a
surplus  of  BSs  and  a  sparse  user  population,  the
application  of  our  DDPG algorithm can  notably  boost
system energy efficiency, all  while maintaining a high

 

 
Fig. 3    Convergence  of  DDPG  algorithm  on  different
learning rates.

 

 
Fig. 4    Total  throughput  by  using  multiple  base  stations  in
two scenarios: With UAVs and without UAVs.

 

 
Fig. 5    Total  energy  consumption  by  using  multiple  base
stations in two scenarios: With UAVs and without UAVs.
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level  of  QoE.  So,  it  is  visible  that  our  DDPG
mechanism achieves  more  energy  efficiency,  provides
higher  throughput  than  all  the  methods,  and  shows
satisfactory results.

In comparison to previous approaches, such as those
by  Du  et  al.[29],  Chu  et  al.[30],  and  Omoniwa  et  al.[32],
our  Deep-EERA  mechanism  stands  out  for  its
comprehensive  optimization  of  energy  efficiency  and
throughput in B5G dynamic environments. Du et al.[29]

focused  solely  on  static  BS  radio  resource  allocation,
while  Chu  et  al.[30] optimized  uplink  rates  without
considering  energy  efficiency.  Omoniwa  et  al.[32]

achieved good results for energy efficiency but limited
their  scope  to  UAV  trajectory  design  without
integrating  B5G  BS  communication  environments.  In
contrast,  Li  et  al.[33] addressed  energy  efficiency  and
downlink throughput in a UDN environment but faced

challenges with static environments and dimensionality
issues. Our Deep-EERA system, employing the DDPG
method,  excels  by  overcoming  these  challenges,
learning  optimal  policies  in  dynamic  B5G
environments,  and  delivering  superior  energy  savings
and  QoS  improvements  for  B5G  communication
environments.

4.3　Limitations

Our  study  highlights  the  advantages  and  effectiveness
of  integrating  UAVs  into  communication  systems  to
address  coverage,  capacity,  QoS,  and QoE challenges.
Our proposed DDPG-based resource allocation system
demonstrates  promising  results  in  achieving  optimal
resource  allocation  objectives,  particularly  focused  on
energy  conservation  and  enhanced  QoS  through
throughput  maximization  in  a  B5G  communication
framework.

Despite  the  numerous  advantages  of  our  system,
several  limitations  warrant  consideration.  Firstly,  our
mechanism  requires  further  exploration  to  optimize
link  selection,  which  remains  an  area  for  future
research  and  enhancement.  Secondly,  while  we  have
validated  the  proposed  mechanism  in  a  simulation
environment,  the  performance  may  vary  when
deployed in real-world scenarios due to factors, such as
signal  interference,  hardware  variations,  and  weather
conditions.  Additionally,  fine-tuning the DDPG model
is  necessary  to  adapt  to  different  network  topologies
and  configurations,  as  its  performance  may  be
influenced by environmental variations. Lastly, scaling
up  the  system  to  accommodate  a  larger  number  of
UAVs, BSs, and GUs may introduce challenges related
to decision-making, which require further investigation
and optimization.

5　Conclusion

In  conclusion,  this  study  addresses  the  challenges
associated  with  integrating  UAVs as  aerial  BSs  in  5G
and  beyond  networks,  aiming  to  enhance  network
coverage and capacity. We introduce an efficient DRL
approach  for  resource  allocation,  prioritizing
maximizing  energy  efficiency  and  throughput.  By
formulating  resource  allocation,  including  power
allocation,  as  an  optimization  problem,  we develope  a
DDPG  algorithm  tailored  to  dynamic  environments
characterized  by  high-dimensional  data,  making  it
well-suited  for  our  UAV-assisted  wireless  network
setting.  Our  DDPG  agent  is  trained  in  a  simulation
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Fig. 6    Comparative  analysis  of  energy  efficiency  with
respect to number of users.

 

5×107

4×107

3×107

2×107

En
er

gy
 e

ffi
ci

en
cy

 (b
it/

J)

1×107

0

 
Fig. 7    Comparative  analysis  of  the  energy  efficiency  with
respect to the number of BSs.
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environment  where  UAVs  and  BSs  work  together  to
serve  users,  enhancing  network  capacity  and  ensuring
seamless  connectivity.  This  agent  effectively  controlls
power transmission for both BSs and UAVs, ultimately
maximizing  data  rates  while  minimizing  energy
consumption.  Through  extensive  experimentation
focusing on energy efficiency,  throughput,  and energy
consumption,  we  validate  the  effectiveness  of  the
implemented mechanism.

The  simulation  results  unequivocally  reveal  the
superiority  of  the  proposed  DDPG  mechanism  over
existing approaches, achieving higher throughput while
maximizing  energy  efficiency.  This  work  marks  a
significant step forward in leveraging UAVs as integral
components  of  the  B5G  system,  offering  an  efficient
and  promising  solution  to  increase  network  capability
in scenarios ranging from emergencies to high-demand
situations.  The  application  of  DRL-based  resource
allocation  strategies  presents  a  robust  framework  for
future  advancements  in  wireless  communication
networks.

In our future research efforts, we aim to expand upon
our  Deep-EERA  mechanism  to  address  the
complexities  of  UAVs-assisted  B5G  networks  and
tackle  multi-objective  challenges  related  to  energy
efficiency,  trajectory  planning,  throughput
maximization, and optimal link selection.

To  achieve  this,  we  plan  to  delve  deeper  into  the
intricacies  of  UAVs-assisted  B5G  networks,
considering  various  real-world  scenarios  and  network
configurations.  Furthermore,  we  intend  to  implement
and  validate  our  Deep-EERA  mechanism  in  real-time
B5G  network  environments,  where  we  will  closely
examine  and  address  the  practical  challenges  and
constraints encountered in real-world settings.
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