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Abstract: The ability to forecast future events brings great benefits for society and cyberspace in many public

safety  domains,  such  as  civil  unrest,  pandemics  and  crimes.  The  occurrences  of  new  events  are  often

correlated  or  dependent  on  historical  and  concurrent  events.  Many  existing  studies  learn  event-occurring

processes  with  sequential  and  structural  models,  which,  however,  suffer  from  inefficient  and  inaccurate

prediction problems. To better understand the event forecasting task and characterize the occurrence of new

events, we exploit the human cognitive theory from the cognitive neuroscience discipline to find available cues

for  algorithm  design  and  event  prediction.  Motivated  by  the  dual  process  theory,  we  propose  a  two-stage

learning scheme for event knowledge mining and prediction.  First,  we screen out event candidates based on

historical  inherent  knowledge.  Then  we  re-rank  event  candidates  by  probing  into  the  newest  relative  events.

Our proposed model mimics a sociological  phenomenon called “the chameleon effect” and consists of  a new

target  attentive  graph  collaborative  learning  mechanism  to  ensure  a  better  understanding  of  sophisticated

evolution  patterns  associated  with  events.  In  addition,  self-supervised  contrastive  learning  is  employed  to

alleviate the over-smoothing problem that existed in graph learning while improving the model’s interpretability.

Experiments show the effectiveness of our approach.

Key words:  temporal  knowledge  graph; event  forecasting; graph  neural  networks; self-supervised  learning;

explainability

1　Introduction

Population-level societal events such as civil unrest and
crime  have  significant  impacts  on  our  daily  lives.
Forecasting  such  events  is  of  great  importance  for
society and individuals since the accurate prediction of
future  events  is  beneficial  to  resource  allocation[1-4],

casualty  prevention[5],  information  propagation[6, 7],
risk management[8, 9],  rumor/fake news detection[10, 11],
crime  detection[12] and  epidemic  prediction[13-15].  For
example,  the  terrible  crowd  crush  which  killed  more
than 150 people occurred in the Halloween festivity in
Itaewon  of  Seoul,  Republic  of  Korea  on  October  29,
2022,  is  partly  because  of  the  unpreparedness  of  the
police  for  anticipating  the  large  gatherings  in
advance[16].  However,  predicting  future  events  is
extremely  challenging  due  to  the  lack  of  knowledge
regarding  the  true  causes  and  underlying  mechanisms
of event occurrence[17, 18], as the quote from Niels Bohr
says: “Prediction  is  very  difficult,  especially  if  it’s
about the future.”

Over the past decade, considerable efforts have been
dedicated to gathering important events, building event
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databases,  developing  event  expertise,  and  creating
knowledge  systems  in  order  to  support  crucial  event
predictions.  For  instance,  the  United  States  can  make
policies  by  forecasting  international  crises  mainly
thanks  to  the  Integrated  Crisis  Early  Warning  System
(ICEWS)[19].  The  Early  Model  Based  Event
Recognition  using  Surrogates  (EMBERS)[20],  as
another example, is important for handling events such
as influenza-like illness, civil unrest, domestic political
elections,  and  crises.  As  a  free  open  platform,  Global
Database of Events,  Language,  and Tone (GDELT)[21]

monitors societal events in almost all countries and has
emerged  as  a  crucial  project  for  researchers  and
practitioners.

With  the  availability  of  mass  online  media  sources,
data-driven approaches  have been widely studied over
the last few years. Researchers have developed various
predictive  analytical  techniques  based  on  historical
data  of  events  and  other  relevant  sources  for  future
event  prediction.  Many  methods  are  explored  by
researchers from a variety of fields including statistics,
linguistics,  social  science,  data  mining  and  machine
learning.  Nowadays,  the  accelerated  developments  of
machine  learning  and  deep  learning  have  led  to
substantial  progress  in  event  prediction  research.
Before  temporal  dynamics  are  investigated  in  Refs.
[19, 22-25],  static  reasoning  is  the  mainstream  for
event  forecasting  methods[26-28].  Knowledge  graph
(KG)  embedding-based  models  (e.g.,  TransE[29],
RotatE[30],  and  ConvE[31])  map  the  predicates  and
entities  to  low-dimensional  vector  space  and  directly
predict the event in a static manner. Meanwhile, many
researchers[32-35] have found that societal events exhibit
geographical  properties  and a  high degree of  temporal
dependency. Based on this observation, methods based
on  Graph  Neural  Networks  (GNNs)[36] and  Recurrent
Neural  Networks  (RNNs)[37] are  proposed  to  exploit
spatiotemporal  characteristics  of  events.  RE-NET[38],
one  of  the  most  representative  works,  designs  a
recurrent  event  encoder  to  summarize  the  information
of the past event sequence and utilizes a neighborhood
aggregator  for  concurrent  event  with  the  same  time
snapshot.  Analogously,  RE-GCN[39] proposes  a
relation-aware Graph Convolutional Network (GCN) to
capture the structural  dependencies  within KG at  each
timestamp,  while  the  gate  recurrence  components  are
employed  to  extract  sequential  patterns  between
temporally adjacent facts.

Notwithstanding  the  increased  awareness  of
structural  and  sequential  information,  several
challenges hinder the applicability and performance of
existing event prediction algorithms:

(1)  Insufficient  event  knowledge  understanding.
Due  to  the  existence  of  the  time-variability[40],  events
at historical timestamps contribute differently to future
event forecasting. However, it is widely acknowledged
that the vanilla RNN benefits from recognizing patterns
in the surrounding input features, which, however, fails
to  capture  implicit  correlations  within  time-variable
sequences[41].  Analogously,  due  to  the  structural-
variability  phenomenon[42, 43],  events  that  occurred  in
the  neighborhood  places  contribute  differently  to  the
central  event forecasting.  However,  most studies build
an entity-level graph learning algorithm, updating only
the representation of entities, thus failing to capture the
event-level relationship.

(2) Inefficient learning algorithms. RNNs and their
derivatives mainly use sequential processing over time,
which  means  that  long-term  information  has  to
sequentially  travel  through  all  cells  before  getting  to
the  present  ones.  This  is  extremely  time-consuming
when  the  historical  KG  sequence  gets  longer[44].
Meanwhile,  to  prevent  the  model  from  missing
important events that have high-order associations with
the  query,  existing  methods  update  node  information
on the whole temporal knowledge graph (TKG), which,
significantly  increases  the  computational  overhead.
Since  practical  TKGs  are  often  very  large  in  scale,
designing  an  efficient  learning  algorithm  is  critical  to
avoid  issues  such  as  out-of-memory  and  expensive
computational  costs[45].  This,  in  turn,  motivates  recent
efforts  to  devise  efficient  methods  in  modeling
complex  event  data  and  deploying  practical  event
prediction systems[46].

As  a  way  of  better  understanding  event  forecasting,
we  try  to  mimic  the  cognitive  process  of  humans  and
find  clues  for  designing  artificial  architectures.  In  this
work,  we follow the dual-process  theory – a  principle
proposed  in  neuroscience[47] – for  TKG-based  event
forecasting.  The  dual-process  theory  suggests  that
human  reasoning  involves  both  heuristic  and  analytic
processes.  In  the  heuristic  process,  humans  filter  out
appropriate judgments in their memory space based on
prior  experience.  In  the  analytic  process,  humans  use
recent  developments  in  their  knowledge  to  adjust
decision-making.  This  principle  is  widely  used  to
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explain  human  predictive  behaviors  and  has  been
explored to design event reasoning algorithms[43, 48-50].

Motivated by the need for more efficient modeling of
historical  and  concurrent  events,  we  introduce  a  two-
stage  structural  and  temporal  learning  approach  for
event  forecasting.  In  the  first  pre-ranking  stage,  we
leverage temporal associations between events to filter
event  candidates  based on prior  cognitive  patterns.  To
account  for  unexpected  and  emerging  events,  the
second  re-ranking  stage  incorporates  an  event-level
graph learning network. This network represents events
as  nodes  and  models  their  implicit  relationships  to
capture  signals  from  recent  novel  occurrences.  By  re-
ranking based on this event graph, our model integrates
both historical knowledge and new evolving dynamics
for  accurate  forecasting.  Our  staged  learning  process
allows  efficiently  prioritizing  likely  events  while
adapting  predictions  based  on  fresh  unfamiliar  events.
Overall,  this  dual  design  extracts  cognitive  insights
from  the  past  while  remaining  agile  to  ever-changing
events.

To  encapsulate  temporal  event  knowledge  for  the
pre-ranking  stage,  we  explicitly  encode  historical
information  as  normalized  frequency  counts  via
preprocessing  the  event  data  from  the  TKG.  These
frequency  counts  produce  timestamp  representations
that  differentiate  events  with  shared  components  but
distinct  occurrence  times.  Compared  to  sequential
modeling  techniques  like  using  RNN[38, 39, 51],  our
proposed  approach  demonstrates  substantially  higher
efficiency  and  efficacy  in  capturing  historical  data –
RNN  architectures  model  temporality  through
computationally-expensive  sequential  translations,
whereas  our  frequency  counts  directly  quantify  event
history in a lightweight tensor representation.

To  model  structural  event  knowledge  for  the  re-
ranking  stage,  we  propose  a  novel  target  attentive
graph  collaborative  learning  algorithm.  This  explores
event-level  neighborhood  interactions  to  better
comprehend  the  intricate  patterns  within  the  TKG
associated  with  events.  Unlike  conventional  graph
learning  approaches  such  as  graph  attention  networks,
our  method  draws  inspiration  from  the  sociological
“Chameleon  Effect” phenomenon.  This  refers  to  the
unconscious  mimicry  of  behaviors  to  match  one’s
social  environment.  Specifically,  we  substitute  the
vacant position in an event query with different entities
to  generate  various  event  candidates.  An  event-level

graph  attention  mechanism  then  adapts  these  event
representations  by  modeling  interactions  with
neighboring  nodes.  This  allows  precisely  capturing
concurrent  structural  knowledge.  Additionally,  we
employ contrastive learning to mitigate over-smoothing
in  graph  neural  networks  and  enhance  interpretability
by  maximizing  the  mutual  information  between
original and event views. Our approach mimics human
adaptation  to  social  contexts,  enabling  more  nuanced
modeling of interrelated event dynamics.

The key contributions of this work are four-fold:
• We introduce a novel structural and temporal event

forecasting  model  called  TAG-Net,  inspired  by
neurological  theories  of  dual-process  and  the
chameleon  effect.  TAG-Net  employs  a  two-stage
ranking  strategy  to  adaptively  model  both  historical
and concurrent event interactions.

• We   propose   a   target-attentive   graph   learning
algorithm  to  collaboratively  incorporate  contextual
information  when  evaluating  different  event
candidates.  To our  knowledge,  this  represents  the first
technique  to  explicitly  capture  concurrent  event-level
relationships.

•  We   present   a   new   contrastive   constraint   that
mitigates  over-smoothing  in  graph  learning  while
improving  model  robustness  during  training.  We
provide theoretical and empirical analyses verifying its
effectiveness.

•  Extensive  experiments  on   five  real-world   event
datasets  demonstrate  the  performance  of  TAG-Net,
which significantly improves forecasting accuracy and
efficiency  compared  to  the  state-of-the-art  baseline
models for event prediction.

The remainder of this paper is organized as follows.
We  review  related  work  in  Section  2 and  introduce
necessary  background  while  formulating  the  event
forecasting  problem  in  Section  3.  We  describe  the
details  of  TAG-Net  and  provide  theoretical  model
analysis  in  Section  4.  In  Section  5,  we  present
empirical  evaluations  and  comparisons  between  our
model  and  baselines.  Ablation  study  and  parameter
sensitivity are also provided. Finally, we conclude this
work and point out future directions in Section 6.

2　Related Work

An event is a real-world occurrence that takes place in
a specific location and time related to a particular topic.
Unlike  retrospective  analyses  such  as  event
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summarization  and  event  detection,  event  forecasting
focuses on anticipating the occurrence of events in the
future[46]. We review the literature on event forecasting
from  three  categories:  Recurrent  Neural  Network
(RNN)-based  methods,  attention-based  methods,  and
knowledge  graph-based  methods,  especially  with  a
focus  on  deep-learning-powered  approaches  and
knowledge  graph-based  approaches.  We  also  briefly
introduce  recent  advances  in  incorporating  Large
Language  Models  (LLMs)  into  the  event  prediction
task.

2.1　Sequential model-based event forecasting

Predicting  events  can  be  considered  as  a  time  series
prediction problem[46], and, Recurrent Neural Networks
(RNNs) are an ideal and natural choice for time series
knowledge  miming  and  have  been  proven  to  be
powerful  and  expressive  to  capture  long-term
dependencies  than  traditional  machine  learning
approaches  such  as  hidden  Markov  models[52, 53] and
autoregressive  models[54, 55].  For  example,  LSTM-
ARMA[56] is  a  pioneering work that  applied LSTM[57]

to  solve  the  problem  of  predicting  the  occurrence  of
world  news  events.  They  take  the  feature
representation  of  events  as  input  and  then  feed  the
historical  sequence  to  the  standard  LSTM architecture
for predicting the next  event.  Many variants of  LSTM
such as bi-directional LSTM[58] and GRU[59] have also
been  used  for  event  sequence  modeling  and
forecasting[24].  Despite  the  significant  improvement  in
capturing  temporal  information,  several  challenges
have  emerged  in  RNN-based  approaches  in  event
prediction,  including  the  limited  ability  to  accurately
predict  unrest  events  and  the  difficulty  for  humans  to
understand the model behavior.

2.2　Attention-based event prediction

Attention  mechanisms  enable  dynamic  highlights  of
relevant  knowledge  of  the  input  data,  imitating  the
cognitive  attention  of  humans.  This  kind  of  method
enhances  the  important  parts  of  related  events  and
fades  out  the  trivial  ones[46].  For  example,  a  context-
aware  attention-based  LSTM  framework  called  CA-
LSTM[51] is  proposed  to  study  the  different
contributions  of  data  points  in  history  and  to  improve
the performance of  predicting civil  unrest  events.  CA-
LSTM  integrates  the  attention  mechanism  with  the
recurrent  neural  network  to  better  understand  the
occurrence  of  events.  ActAttn[60],  a  hierarchical

attention-based spatiotemporal learning approach, tries
to predict the occurrence of future protests and explains
the  importance  of  features.  Specifically,  the  model
contains  a  two-level  attention  module  built  on  LSTM
to  calculate  the  intra-regional  and  inter-regional
contributions.  In  general,  compared  to  RNN-based
methods,  models  that  are  equipped  with  the  attention
mechanism  can  help  interpret  the  feature  importance
while  underscoring the  correlated events  significant  to
the event prediction.

2.3　Knowledge graph-based event prediction

Recently,  Knowledge  Graphs  (KGs)[61-63] are  widely
used in many real-world applications. Since knowledge
graphs can model and reflect real-world facts, the event
prediction problem can be transformed into the missing
fact reasoning problem in the KGs[64]. With that, many
researchers  have  leveraged  KGs  as  a  promising
solution due to their natural ability to provide domain-
specific  knowledge  for  event  reasoning  and
forecasting. In this work, we review KG literature from
two  perspectives:  static  KG  and  temporal  KG-based
models.
2.3.1　Static KG-based models
In  recent  years,  Graph  Convolutional  Networks
(GCNs)[65] becomes a representative model to combine
content  and  structural  features  for  graph  learning.
Many studies have generalized it  to the relation-aware
GCNs so as to deal with the learning on KGs. Among
them,  R-GCN[66] is  the  first  work  applying  GCN  to
model  the  relational  KG  data.  It  extends  GCN  with
relation-specific  filters  by  defining  an  information
propagation model to calculate the forward-pass update
of  an  entity  in  a  relational  graph.  WGCN[67] is  a
weighted GCN that takes benefits from both GCN and
ConvE[31]. Its encoder leverages knowledge graph node
structure,  node  attributes,  and  edge  relation  types  to
encode  event  information,  while  the  decoder  models
the  relationship  as  the  translation  operation  and
captures the translational characteristic between entities
and relations. In comparison with existing GCNs which
cannot  fully  utilize  multi-relation  information,  VR-
GCN[68] utilizes  a  vectorized  relational  GCN  to  learn
embeddings  of  both  graph  entities  and  relations
simultaneously  for  modeling  the  multi-relational
networks.  Similarly,  CompGCN[69] leverages a variety
of  entity-relation  composition  operations  from
knowledge  graph  embedding  techniques  and  scales
with  the  number  of  relations  to  jointly  embed  both
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nodes  and  relations  in  a  relational  graph  during  GCN
aggregation. However, these static KG methods neglect
the dynamic evolution of the graph, which differs from
real-world  situations  and  leads  to  deviations  in  the
prediction[43].
2.3.2　Temporal KG-based models
Due  to  its  ability  to  incorporate  and  leverage  time
information  in  relational  data,  Temporal  Knowledge
Graph (TKG) has received considerable attention in the
KG community. A TKG is actually a sequence of KGs
corresponding  to  different  timestamps,  where  all
concurrent  facts  in  each  KG  exhibit  structural
dependencies,  and  temporally  adjacent  facts  carry
informative  sequential  patterns[39].  Many  new  TKG
models are proposed in the past few years.

The  mainstream  of  existing  approaches  leverages
GNNs  in  combination  with  a  sequential  model  to
integrate  structural  and  temporal  information  in  the
entity  and  relation  learning  process.  Representative
methods  include  RE-Net[38],  RE-GCN[39],  TANGO[70],
xERTE[71],  CEN[72],  and  HGLS[73].  Specifically,  RE-
Net[38] applies  a  GCN  and  a  GRU  to  model  the
sequence  of  1-hop  subgraphs  related  to  the  given
subject  entity.  Different  from  RE-Net  which  neglects
the  structural  dependencies  within  KGs  at  different
timestamps  and  the  static  properties  of  entities,  RE-
GCN[39] utilizes  a  relation-aware  GCN  to  capture  the
structural  dependencies  within  the  KG  at  each
timestamp,  while  the  historical  KG  sequence  is
modeled  autoregressively  by  the  gate  recurrent
components to capture the sequential patterns across all
temporally  adjacent  facts.  TANGO[70] utilizes  neural
ordinary  differential  equations  (ODEs)  to  model  the
temporal  sequences.  xERTE[71] is  based  on  temporal
relational attention mechanisms. To answer a query,  it
extracts  query-relevant  subgraphs,  and  further
computes  and  propagates  attention  scores  to  identify
the  relevant  evidence  in  the  subgraphs.  CEN[72]

integrates  CNNs  that  can  handle  evolution  patterns  of
variable  lengths  via  an  easy-to-difficult  curriculum
learning  strategy.  It  learns  the  evolution  patterns  from
short to long in an online setting and thus can adapt to
changes  in  evolution  patterns  over  time.  HGLS[73]

captures abundant semantic information of events from
two different perspectives: sub-graph level and global-
graph level.

Another  line  of  the  TKG-based  event  research
predicts the event occurrence based on the appearance

and  repetition  of  historical  facts.  For  example,
CyGNet[74] takes  account  of  temporal  facts  with
repetitive  patterns,  which  explicitly  models  the
historical  dependency  to  represent  the  query-related
historical  events.  DA-Net[43] extracts  the  historical
events from historical KGs and designs a self-attention
layer  to  learn  the  attention  of  these  events  uniformly.
Another  attention  layer  in  DA-Net  adjusts  the
coefficients  based  on  the  event  query  and  passes
historical event frequency. In contrast with RNN-based
methods  that  rely  on  sequential  facts  modeling,  both
CyGNet  and  DA-Net  are  much  more  time  efficient
since  they encode the  historical  information  with  only
one pass.  However,  they fail  to  consider  the  influence
of  unexpected  emergencies  while  ignoring  the
structural  information  that  is  important  for  depicting
event evolution and occurrence correlation.

The  proposed  method  also  discards  the  sequential
learning  scheme  and  enables  efficient  training  and
prediction:  we  explicitly  encode  the  historical
information  with  normalized  historical  frequency
counts.  We  note  that  our  work  differs  from the  above
two works  in  the  ways  of  the  encoding of  timestamps
and  the  handling  of  concurrent  events – we  encode
timestamps  via  event  historical  dependency,  and
propose  a  novel  event-level  graph  collaborative
learning  strategy  to  explore  neighborhood  interaction
in a more natural way.

2.4　Event prediction using LLM

In  recent  years,  LLMs  have  demonstrated  remarkable
performance  across  various  challenging  tasks,
including  arithmetic  reasoning  and  multi-turn
dialogue[75].  Some  recent  studies  have  explored  the
potential  of  LLMs  in  aiding  event  prediction.  For
example,  LAMP[76] utilizes  a  pre-trained  event
sequence  model  to  generate  predictions  regarding
future events, which are subsequently assessed with the
support  of  an  LLM.  Initially,  the  LLM  generates
potential  causes  to  explain  the  likelihood  of  each
prediction.  These  generated  causes  then  serve  as
queries to identify similar or relevant events from past
occurrences.  Another  model  is  tasked with embedding
these  retrievals  and  assessing  whether  they  could  lead
to the corresponding prediction. TimeLlaMA[77] is fine-
tuned on LlaMA2, using their own collection of multi-
source instruction tuning datasets. Experimental results
conducted  on  several  TKG  datasets  demonstrate  that
TimeLlaMA  achieves  the  state-of-the-art  performance
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in  temporal  prediction  and  explanation  generation
compared  to  a  variety  of  existing  LLMs.  Note  that
these methods using LLMs for event prediction are not
directly  relevant  to  the  scope  of  this  work.  However,
we trust that this supplementary information will prove
valuable  to  researchers  engaged  in  endeavors  within
this domain.

3　Preliminary

In  this  section,  we  formally  define  the  TKG-based
event  forecasting  problem  and  then  provide  the
necessary  backgrounds  w.r.t.  event  repetition
phenomenon. Table  1 summarizes  frequently  used
notations in this work.

3.1　Definitions

E R T

(s,r,o, t) s ∈ E
o ∈ E

r ∈ R
t s o

Definition  1 (Event)  Let , ,  and  denote  a  finite
set  of  entities,  relation  types,  and  timestamps,
respectively.  An  event  can  be  represented  as  a
quadruple  formalized  as ,  where  is  a
subject  (head)  entity,  is  an  object  (tail)  entity,

 is the relation (predicate) occurring at timestamp
 between  and .

G
Gt

t

Definition  2 (Temporal  Knowledge  Graph)  A
temporal  knowledge  graph  is  a  set  of  quadruples.
Among them,  represents  a  TKG snapshot  which  is
the set of quadruples captured at time .

Ee ∈ R|E|×d

Er ∈ R|R|×d

Definition  3 (Event  Representation)  Let 
be  the  embeddings  of  all  entities,  the  row  of  which
represents the embedding vector of an entity (subject or
object). Similarly, let  be the embeddings of

s r o
s r o

all  relation  types.  We  use  boldfaced , ,  for  the
embedding vectors of ,  and , respectively.

(s,r,?, t)
o

(?,r,o, t) s

Definition  4 (Event  Forecasting)  According  to
previous works[38, 74], event forecasting aims to predict
one  of  the  missing  components  of  a  certain  event.
Given  a  query ,  our  target  is  to  predict  the
missing  object .  Analogously,  if  the  query  is  set  to

, then our target is to predict .

t

Without loss of generality, we describe our model as
predicting  the  missing  object  entity  in  a  temporal  fact
(our  model  can  be  easily  extended  for  predicting  the
subject  entity).  Considering  the  task  is  to  forecast
future  events,  directly  applying  embedding  techniques
on timestamp  causes training issues – we discuss how
to encoder timestamps in Section 4.1.1.

3.2　Event repetition phenomenon

The event repetition phenomenon widely exists in real-
world  data  and  applications  because  consistent  or
similar  circumstances  usually  repeat  over  time[78].
Some  of  them  regularly  happen  while  others  do  not
(which  makes  this  problem  challenging).  Always,
similar  events  occur  over  time,  reflecting  how society
responds  to  the  historical  cycles.  According  to  our
investigations,  the  repetition  phenomenon  not  only
exists  but  also  accounts  for  a  large  proportion  of  the
interactions  in  real-world  event  datasets,  showing  that
temporal  knowledge  contains  conspicuous  recurrence
patterns  along  the  trending  timeline  (Table  2).
Motivated  by  this  phenomenon,  taking  repetitive
behaviors  into  account  can enhance our  understanding
and the prediction performance of event occurrence.

4　Method

According  to  the  dual-process  theory  of  human
cognition,  people  recall  similar  historical  facts  from
their memory and assign the original attention to them
according  to  prior  experience.  These  new  facts  and
knowledge  are  then  utilized  to  adjust  and  select  a
proper  decision.  Inspired by this  theory,  we propose  a
two-stage  spatiotemporal  event  learning  process  to

 

Table 1    Mathematical Symbols.
Symbol Description
E entity set.
R relation set.
T timestamps of events.
G temporal knowledge graph.
Gt a temporal knowledge graph snapshot.
Ee embeddings of all entities.
Er embeddings of all relation types.
Fs,r

t the normalized counted event frequencies.
Fs,r

t (o) othe frequencies of a candidate entity .
Is,r

t indicate whether the event is historical or new.
Ss,r

his the score with historical dependency.
Ss,r

non the score with non-historical dependency.
Mhis the mask to filter object candidates
Pbs the score of the binary mode selector.

P(o|s,r,Fs,r
t ) the probability of each event candidate.

 

Table 2    Repetition ratio (%) on five benchmarks.
Dataset Type Train(%) Validation(%) Test(%)

ICEWS18 Event 22.64 16.98 16.32
ICEWS14 Event 65.18 26.82 26.82
GDELT Event 35.44 23.91 24.93
WIKI KG 65.86 69.20 72.87

YAGO KG 40.30 78.25 83.81
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model  the  historical  information  and  the  concurrent
structural  correlation  for  event  forecasting.  In  the  first
stage,  we extract  the  repetitive  historical  facts  of  each
event  query  and  filter  out  candidates  on  the  basis  of
historical dependency. In the second stage, we consider
the influence of the concurrent event on the prediction
and  propose  a  target-aware  graph  learning  mechanism
to  help  make  the  final  decision. Figure  1 outlines  the
workflow of our proposed TAG-Net methodology.

4.1　Pre-rank via historical facts

(s, p,?, t)

(s, p,oi,k), k < t

According  to  the  dual  process  theory,  given  an
unknown query ,  humans determine the query
answer  by  first  searching  their  memory  space  for
similar  situations.  In  our  case,  these  situations  can  be
expressed  as ,  i.e.,  historical  repetitive
facts. Then our brain will investigate and decide which
facts are important for predicting future events[43].
4.1.1　Query encoder

(s,r,?, t)

s r

Given  event  query ,  existing  methods  often
encode  the  event  queries  into  vectors[43, 74, 79].  For
subject  and relation ,  embedding techniques[80] can

be  used  to  represent  these  discrete  variables  as
continuous  low-dimensional  vectors.  However,  it  is
difficult  to  encode timestamps directly  since the event
forecasting  task  is  to  predict  future  events.  In  other
words,  conventional  time  embedding  methods[43] are
not  suitable  here,  given  that  the  timestamps  in  the
training data  do not  occur  in  the testing data  will  lead
to unreliable predictions[81].

∆t

Previous  methods  primarily  tried  two  timestamp
modeling  ways:  capturing  intricate  temporal
dependencies  implicitly,  or  learning  the  inter-event
timestamp explicitly.  For the first  line of  work,  RNNs
have  been  used  to  summarize  and  maintain  evolving
entity  states[38, 64].  The  other  line  generally  models
inter-event  time  with  embedding  techniques  or
conditional  probability  density  estimation[19, 81].  In
practice,  RNN-based  methods  tend  to  be  time-
consuming when dealing with multiple snapshots (long
history/sequences),  while  time  interval-based  methods
make  a  strong  assumption  of  the  prior  distribution,
which,  however,  might  be  inaccurate  in  real-world
situations.  Note  that  the  time  interval-based  method
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Fig. 1    The workflow of TAG-Net (Target-Attentive Graph Neural Network). (i) In the first stage, we extract event historical
dependency  from the temporal knowledge graph, and then we use normalized  and embedding technique to generate
the query vector. Next, we feed the query vector into the binary mode selector to determine whether the event forecasting can
benefit  from historical interactions or is  a completely new event.  Finally,  we refine the event candidate list  and maintain the
top-  candidates.  (ii)  After  extracting  information  from  historical  interactions,  in  the  second  stage,  we  exploit  information
from concurrent events. Specifically, we apply a target attentive graph collaborative learning, generating corresponding event-
level graphs for each candidate. Finally, we re-rank event candidates by probing into the newest relative events.
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tk = tk−1+∆t
CyGNet[74] sets  an  infinite  magnitude  of  the  time
embedding  ( ) – i.e.,  the  magnitude  of  the
time  embedding  will  increase  when  the  timestamp
increases, resulting in an unstable training problem.

(s,r,?, t1) (s,r,?, t2)

L1
Fs,r

t ∈ R|E|

(s,r,?, t) Fs,r
t (o)

o s
r

The  core  desirability  of  temporal  modeling  lies  in
that,  given  two  event  queries  and ,
the  query  encoder  should  be  able  to  generate
inconsistent representations. In this work, we propose a
simple  but  effective  way  to  encode  the  event
timestamp.  Specifically,  we  use  the  normalized  ( -
Norm)  counted  frequencies  as  the  event-
aware  time  representation.  For  each  query  quadruple

,  represents  the frequencies  of  an event
candidate  entity  associated  with  subject  and
relation  from the previous snapshots:
 

Fs,r
t (o) =

∑
k<t

|{o | (s,r,o,k) ∈ Gk}| (1)

Fs,r
t

t

Fs,r
t

Directly  using  as  the  timestamp  representation
has several  benefits:  (i)  the model  can distinguish two
event  queries  that  have  the  same  subject  and  relation,
but  with  different  timestamps ;  (ii)  using  the
normalized counted frequencies  as  time representation
retains the information of historically related events in
a  more  elegant  way;  (iii)  the  magnitude  of  the
normalized  timestamp  vector  in  our  method  is
constant  to  1,  preventing  the  model  from  unstable
training.

Fs,r
tConsidering  the  sparsity  problem  of ,  we  use  a

non-linear  transformation  to  reduce  the  dimension  of
the time representation:
 

t = tanh(Wq norm(Fs,r
t )) (2)

tanh tanh(x) =
e2x −1
e2x +1

Wq ∈ Rd×|E|

(s,r,?, t)

where  is  the  activation  function 
and  are  trainable  parameters.  Then  the
representation  of  the  event  query  given  is
defined as:
 

q = (s⊕ r⊕ t) (3)

4.1.2　Historical dependency learning

Fs,r
t

As  discussed  above,  explicitly  considering  the
repetitive  behavior  in  algorithm  design  could  enhance
future  event  prediction  accuracy.  Following  previous
works[74, 82, 83],  we  propose  to  model  historical
dependency  explicitly  and  apply  it  as  an  additional
domain  expert  bias  to  forcibly  change  the  distribution
of model outputs. Normally, we can reuse the counted
frequencies  as  the  representation  of  historical
dependency. However, since the statistical frequency is

closely related to the data distribution, directly using it
as  an  additional  artificial  bias  may  cause  the  model
susceptible  to  the  long-tailed  distribution.  In  other
words,  the  model  may  predict  entities  that  frequently
interact  with  other  entities  in  the  training  dataset,
which,  however,  might  not  be  the  ground-truth
candidates.  Thereupon,  the  frequency-biased
representation  of  historical  dependency  typically
restricts  the  reliability  of  the  model  which  tends  to
focus on dominant types of events and exhibits a poor
performance  on  tail  types – infrequent  events  tend  to
have greater impact on society[84].

Fs,r
t Is,r

t ∈ R|E|To  this  end,  we  transform  into  where
each slot only indicate whether the corresponding event
is historical or new:
 

Is,r
t (o) =

+1, Fs,r
t (o) ⩾ 1;

−1, Fs,r
t (o) = 0

(4)

Then we define a repeat predictor to forecast future
events  based  on  the  assumption  that  it  has  already
occurred  in  the  past.  In  concrete,  we  design  a  non-
linear  layer  to  transform  the  query  embedding  into
candidate scores which can be defined as:
 

Ss,r
his = tanh(Whisq+bhis)ET

e (5)

Whis ∈ R3d×d b ∈ Rd

Is,r
t

Ss,r
his

where  and  are  trainable
parameters.  We add  to  change the  index scores  of
historical  entities  in  to  higher  values  without
contributing to the gradient update:
 

Ss,r
his = tanh(Whisq+bhis)ET

e +ηI
s,r
t (6)

Is,r
t Ss,r

his

As  a  result,  we  pay  more  attention  to  historical
entities by adding  into .
4.1.3　Non-historical event exploring
In  most  TKGs,  although  many  events  often  show
repeated occurrence patterns, new events may have no
historical  events  as  referred  by  Ref.  [74].  Thus,  we
should  take  not  only  historical  but  also  non-historical
entities  into  consideration.  Analogously,  for  non-
historical  dependency,  the  score  for  all  candidates  is
defined as:
 

Ss,r
non = tanh(Wnonq+bnon)ET

e (7)

We cut down the impact of events that have occurred
before by changing the candidates’ scores to:
 

Ss,r
non = tanh(Wnonq+bnon)ET

e −ηIs,r
t (8)

4.1.4　Binary mode selector
We  further  design  a binary  mode  selector which  is
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motivated  by  that,  once  we  have  trained  an  accurate
mode  selector,  our  model  can  learn  to  predict  from  a
delimited  candidate  space  rather  than  the  entire  entity
vocabulary, reducing the difficulty of event forecasting
and boosting the prediction accuracy.

q
Lce

bs

q
Pbs

M

Specifically,  we  feed  query  representation  to  a
simple  MLP,  using  cross-entropy  loss  as  the
guidance to minimize the difference between the output
of  binary  mode  selector  and  the  ground  truth  label
(whether the missing entity of query  exists in the set
of historical entities). Then, based on the prediction 
of the binary mode selector, our model will choose the
corresponding mask  to filter object candidates:
 

Mhis(o) =

1, Is,r
t (o) = +1;

0, Is,r
t (o) = −1

(9)

 

Mnon(o) =

1, Is,r
t (o) = −1;

0, Is,r
t (o) = +1

(10)

 

Ss,r
t = Ss,r

his ·Mhis ·Pbs+Ss,r
non ·Mnon · (1−Pbs) (11)

And the probability of each event candidate is:
 

P(o|s,r,Fs,r
t ) = softmax(Ss,r

t )(o) (12)

At last, we have entities with the maximum values:
 

õ = argmaxo∈E(P(o|s,r,Fs,r
t )) (13)

4.2　Re-rank via recent concurrent events

o
(s,r,?, t)

τ

In  the  last  subsection,  we  get  the  event  prediction 
given  event  query .  However,  as  reported  in
Ref. [85], belief bias occurs when we draw conclusions
solely  based  on  prior,  old-fashioned  beliefs[86].
Therefore,  we  consider  the  influence  of  the  newest
unexpected  emergencies  on  the  prediction,  i.e.,  the
relevant  concurrent  events  at  the  nearest  timestamp ,
for  adjusting  or  rearranging  the  event  candidates
obtained during the pre-rank stage.
4.2.1　Collaborative event learning
In  TAG-Net,  we  also  introduce  GNNs  to  facilitate
event collaborative learning as previous works do[38, 39,

64]. The core insight of the graph collaborative learning
is  to  enrich  the  node  representation  learning  via
aggregating  neighborhood  information  from  TKG[87].
Many of the existing works[38, 39] adopt GCNs and their
variants  such  as  relational  GCN[64] to  learn  a  better
representation of entities for every snapshot. However,
these  graph-based  learning  methods  are  resource-
consuming  and,  more  importantly,  restricted  to  low-

level  entity  representations  that  only  factor  in  subject
entities and relations when calculating attention scores,
making  the  model  unable  to  adjust  adaptively  to
different event candidates.

(s,r,?, t)

G = (V,E,A) τ τ

v ∈ V
h(v)

h(0) := (s⊕ r⊕o)

Taking  inspiration  from  the  natural  behavior  of
chameleons who change their color in response to their
surroundings,  in  this  work,  we  propose  a  target
attentive  graph  learning  approach  that  can  adaptively
incorporate  information  from  concurrent  events  when
faced with different object candidates. Specifically, we
substitute  the  vacant  position  in  the  event  query

 with  different  candidate  entities  to  form
complete candidate events. We then propose an event-
level attention mechanism to update the representation
of  candidate  events.  For  an  event-level  TKG

 at the latest timestamp  (  is omitted for
simplicity), every node  represent a certain event
and  will  be  paired  with  a  node  representation 
initialized as , which will serve as input
to  the  first  GNN  layer.  Events  that  have  at  least  one
common entity  will  serve  as  neighbors.  In  each  graph
convolution  layer,  node representations  are  updated  in
two steps: neighbors propagating and node updating.

a(l)

For  neighbor  propagation,  we  compute  a  pair-wise
unnormalized  attention  score  between  two  neighbors.
Here,  it  first  concatenates  two  event  representations
and takes a dot product with a learnable weight vector

:
 

e(l)
i j = LeakyReLU(a(l)(h(l)(i)⊕h(l)( j))) (14)

j
We  normalize  coefficients  across  all  choices  of

neighbors  using  the  softmax  function  to  make  them
easily comparable across different nodes:
 

α(l)
i j =

exp(e(l)
i j )∑

k∈N(i) exp(e(l)
ik )

(15)

Then the embeddings from neighbors are aggregated
together, scaled by the attention scores:
 

h(l+1)(i) = σ

 ∑
j∈N(i)

α(l)
i j h(l)( j)

 (16)

F (l+1)
a

(
h(l)( j),Ai, j

)The  above  aggregation  process  can  be  expressed  as
.

l
h(l)(i) i

h(l)(i)

For  node  updating  during  the -th  iteration,  each
 is  updated  using 's  neighborhood  information

and self-information :
 

h(l+1)(i) = F (l+1)
u

(
h(l)(i),F (l+1)

a

(
h(l)( j),Ai, j

))
, (17)
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Fu : R2d → Rdwhere  is  a  non-linear  layer  that  maps
both  the  current  representation  and  aggregated  vector
to update the node’s representation.
4.2.2　Re-rank on candidate subset

|E|
i ∈ |E|

K

Note  that  this  vanilla  version  of  the  target  attentive
graph learning has to compute graph attention  times
( ) for each sample, limiting its practical values in
real situations. To solve this problem, the first pre-rank
stage  should  provide  preliminary  filtering  results  to
narrow  down  the  item  list  delivered  to  the  second re-
rank stage.  Given  the  probability  of  each  candidate
from Eq. (12), we select the top  items for the second
stage:
 

Ẽ = argmax
topK

(P(o|s,r,Fs,r
t )) (18)

K Ẽ

|E| |Ẽ|

where  is  a  hyper-parameter  and  is  the  subset  of
entity  candidates.  In  the  second  stage,  with  a  small
portion of  object  candidates,  the  target  attentive  graph
collaborative  learning  can  be  considered  to  enrich  the
event  representation.  Since  we  reduce  the  number  of
candidates  from  to  (dozens),  the  computational
complexity is significantly reduced.
4.2.3　Over-smoothing and interpretability
Graph  neural  networks  integrate  the  comprehensive
relation  of  graph  data  and  the  representation  learning
capability  of  neural  networks.  However,  the
phenomenon  occurs  that  the  learned  node
representations  become  indistinguishable – due  to  the
nature  of  the  message  passing  scheme[88] and
overfitting  problem[89] – the  updated  event
representation  might  be  totally  different  from
the original one – hurting the performance of the model
on  downstream  tasks  (a.k.a. over-smoothing
problem)[88-90].  In  addition,  most  GNNs  are  deployed
as black boxes, lacking explicit  declarative knowledge
representations  (inexplicable  problem).  As  a  result,
they  have  difficulty  in  generating  the  required
underlying  explanatory  structure[91],  and,  without
understanding  and  verifying  the  inner  working
mechanism,  GNNs  cannot  be  fully  trusted,  which
prevents  their  use  in  critical  applications  pertaining  to
fairness, privacy and safety[92].
4.2.4　Self-supervised event learning
As for the over-smoothing problem, our key insight  is
to add a constraint to let  the model be able to identify
the original node after the graph collaborative learning.
For  the  interpretability  problem,  we  aim  to  identify  a
subgraph  that  is  most  influential  for  the  prediction[92].

Accordingly,  edges  and  nodes  that  have  limited
influences  will  not  be  selected  for  prediction
explanation  since  they  cannot  influence  the
performance of GNNs. This effect also implies that the
graph  with  strong  interpretability  tends  to  be  a  small
connected  subgraph.  In  this  work,  we  introduce  self-
supervised  contrastive  learning[93] to  solve  the  above
two problems simultaneously.

C

C

Ci j

i, j b
zA

b j,z
B
b j

As shown in Fig. 2, we feed the original view and the
graph  learning  view  of  the  candidate  event  samples
into  the  same  network  to  extract  features  and  learn  to
make  the  cross-correlation  matrix  between  these  two
groups of output features close to the identity. The goal
is  to  keep  the  representation  vectors  of  one  sample’s
different  views  similar  while  minimizing  the
redundancy  between  these  vectors.  Let  be  a  cross-
correlation matrix computed between outputs from two
identical  networks  along  the  batch  dimension.  is  a
square  matrix  with  the  size  same  as  the  feature
network’s  output  dimensionality.  Each  entry  in  the
matrix  is  the  cosine  similarity  between  network
output vector dimension at index  and batch index ,

,  with  a  value  between -1  (i.e.,  the  perfect  anti-
correlation) and 1 (i.e., the perfect correlation):
 

Ci j =

∑
b zA

b,iz
B
b, j√∑

b

(
zA

b,i

)2√∑
b

(
zB

b, j

)2 (19)

The contrastive loss function is then defined as:
 

Lcl =
∑

i

(1−Cii)2

︸         ︷︷         ︸
invariance term

+λ
∑

i

∑
j,i

Ci j
2

︸       ︷︷       ︸
redundancy reduction term

(20)

λwhere  is  a  positive  constant  to  balance  the
importance of  the invariance term and the redundancy
reduction  term  of  the  loss.  Intuitively,  the  invariance
term  of  the  objective  tries  to  equate  the  diagonal
 

…

s r ?

TKG Event-level

Event candidate

…

Empirical 
cross-correlation

Target 
cross-correlation

……

Tourist Doctor
Actor

Filtered candidate set

Generate event
candidates

 
Fig. 2    Illustration  of  self-supervised  contrastive  learning
between  the  self-information  view  and  graph  learning  view
for a certain event candidate.
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elements  of  the  cross-correlation  matrix  to  1,  making
the  event  embeddings  from collaborative  learning  still
retain  the  original  event  information.  Meanwhile,  the
redundancy  reduction  term  tries  to  equate  the  off-
diagonal  elements of  the cross-correlation matrix to 0,
decorrelating the representations of different events.
4.2.5　Theoretical analysis
In  this  subsection,  we  will  derive  the  reason  why  our
model  suffers  from  the  over-smoothing  problem
(Theorem  1).  Then,  we  prove  that  the  proposed
additional  contrastive  constraints  can  prevent  the
model  from  learning  homogeneous  representations,  as
formally  induced  in  Theorem  2.  Finally,  we  give  a
deep-insight  analysis  of  how  self-supervised
contrastive  learning  enhances  interpretability
(Discussion 1).

Specifically,  we  first  detail  why GNNs are  prone  to
the over-smoothing problem:

G N
V = {v1,v2, . . . ,vN}

v(κ)
i i κ

κ

∀i, j ∈ {1,2, . . . , N} ∥V(κ)
i −V(κ)

j ∥2 ⩽ ∥V
(0)
i −V(0)

i ∥2

Lemma  1 Suppose  a  connected  graph  with 
nodes  has no bipartite components,
defining  as the embedding of node  after  times
GCN  message  passing.  Then  for  large  enough ,

, [94].
Proof Given the message passing of vanilla GCN,

 

V(t+1) = D̂−
1
2 ÂD̂−

1
2 V(t) (21)

Â = A+ I D̂i =
∑

j Âi jwhere  and ,  we  can  then  rewrite
the message passing as
 

V(t+1) =
(
I− Lsym

)
V(t) (22)

Lsym = D̂−
1
2 L̂D̂−

1
2 , L̂ = D̂− Â (λ1,λ2, . . . ,λN)

(e1,e2, . . . ,eN)
I−Lsym

where .  Let 
and  respectively  denote  the  eigenvalue
and  eigenvector  of  matrix .  With  the  property
of  the  symmetric  Laplacian  matrix  for  non-bipartite
and connected graph, we have:
 

−1 < λ1 < · · · < λN = 1, eN = D̂−
1
2 [1,1, . . . ,1]T (23)

and
 

V(κ)
i −V(κ)

j

=
[(

I−Lsym
)κ

V
]
i
−
[(

I−Lsym
)κ

V
]

j

=
[
λκ1

(
e(i)

1 − e( j)
1

)
, . . . ,λκn−1

(
e(i)

N−1− e( j)
N−1

)
,0
]
V̂

(24)

e(i)
k i ek V̂

V
∥V(κ)

i −V(κ)
j ∥2

where  denotes the -th element of eigenvector . 
is  the coordinate  matrix  of  in  the space spanned by
eigenvectors. We can write the  as
 

∥∥∥∥V(κ)
i −V(κ)

j

∥∥∥∥
2
=

√√√√ N∑
m=1

N−1∑
k=1

λκk

(
e(i)

k − e( j)
k

)
V̂km


2

(25)

−1 < λ1 < · · · < λN−1 < 1 κ

∥V(κ)
i −V(κ)

j ∥2 ⩽ ∥V
(0)
i −V(0)

i ∥2
Since we have , for a large ,

. ■

κ

κ

V(t+1) = AV(t) AN×N

A A(t)
i j = α

(t)
i j j ∈ N(i)

0
∑N

i=1α
(t)
i, j = 1 D = diag(d1,d2, . . .dN)

di =
∑N

j=1 Ai, j G
L = D−A Lrw = D−1L

G

Note that smoothness (Euclidean distance) is a metric
that  reflects  the  similarity  of  node  representations[89],
so, according to the above lemma, the Frobenius norm
of the graph after -times message passing is less than
that  of  the  original  graph.  That  is  to  say,  when  gets
larger,  the  over-smoothing  problem  occurs.  As  we
introduce  an  attention  mechanism  into  message
passing,  the  above  derivation  cannot  directly  apply  to
our scenario. To facilitate the analysis of settings of our
model,  we  focus  on  the  attention  aggregation  and
simplify  Eq.  (16)  in  terms  of  matrix  operation  as

.  Among  them,  is  redefined  as  the
attention  weight  matrix  (different  from  the  above
discretized  in  vanilla  GCN): ,  if 
else ,  and .  Let  and

, then the graph Laplacian of  is defined
as . According to Ref. [95],  is the
random  walking  normalized  Laplacian  of  graph .
Then we have:

Lemma  2 Single-layer  attention  message  passing  is
equivalent  to  a  specific  Laplacian  smoothing
operation[90].

V

Proof According  to  random  walking  normalized
Laplacian smoothing[95],  each row of  the  input  feature
in matrix  is updated as:
 

vi = (1−λ)vi+λ

N∑
j

αi, j

di
v j (26)

0 < λ ⩽ 1where  is  a  parameter  to  control  the
smoothness,  i.e.,  the  importance  weight  of  the  node’s
features  with  respect  to  the  features  of  its  neighbors.
We can rewrite the Laplacian smoothing in Eq. (26) as:
 

V =
(
I−λD−1L

)
V = (I−λLrw)V (27)

di =
∑N

j=1 Ai, j = 1 D = I
Lrw = D−1L = I−1(I−A) = I−A

λ = 1

As ,  then  we  have  and
.  Consequently,  we  can

term  that  graph  attention  as  a  special  form  of  the
Laplacian smoothing with . ■

Theorem 1 Event-level graph collaborative learning
suffers from the over-smoothing problem.

G
G

P

Proof For  a  non-bipartite,  connected  graph ,  there
exists  a  random walk  on  with  transition  probability
matrix  that  converges  to  a  unique  stationary
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π A
(vi,v j) limt→∞P(t)

(
vi,v j
)
=

π
(
v j
)
= dv j/
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At t
f κi i

∑κ
t=1 Aκ∥∥∥ f κi −π
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i −π

∥∥∥ ⩽ · · · ⩽ Πκt=1λt
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λκ Aκ

0 < λκ < 1
limκ→∞ f κi = π

distribution [96].  That  is,  if  is  fixed  at  each  layer,
for  any  pair  of  node , 

[90].  However,  in  practice,  attention
weight  matrices  vary  in  different  layers.  Stacking
multiple attention layers is equivalent to a matrix chain
multiplication with different attention-weight matrices.
Let  be the attention matrix derived in -th layer. Let

 be  the -th  row  of ,  according  to  the
converge  analysis  of  random  walk  in  Ref.  [96],  we
have: ,
where  is  the  mixing  rate  of  random walk  with .
As  we  generate  the  event  graph  based  on  a  certain
event query, it is a query-dependent dynamic graph and
each  node  has  direct  or  indirect  connections  with  the
central  event.  Therefore,  our  event-level  query-
dependent graph is a strongly connected graph because
if  we  start  from  a  certain  vertex  (central  event  query)
and  use  BFS  (Breadth  First  Search)  or  DFS  (Depth
First  Search)  to  conduct  searches,  we  can  traverse  all
vertices – every  vertex  is  accessible  from  another
vertex, fulfilling the definition of a strongly connected
graph.  Drawn  conclusion  from  Ref.  [96]  that  for
strongly  connected  graph,  the  mixing  rate ,
we can derive that . ■

LclTheorem  2 Additional  contrastive  constraints 
between the original view and the enriched graph view
can  mitigate  the  negative  influence  of  the  over-
smoothing problem.

Proof Recent literature identifies two key properties
related  to  contrastive  learning: alignment and
uniformity[97].  Given  a  distribution  of  positive  pairs,
alignment calculates the expected distance between the
embeddings of all paired instances:
 

Lalign ≜ E
(h+,h)∼ppos

[
∥h+− h∥22

]
(28)

while  uniformity  measures  how  well  the  uniform
distribution of the embeddings is:
 

Luniform ≜ log E
h1,h2

i.i.d.∼ pdata

[
e−2∥h1−h2∥22

]
(29)

In  general  contrastive  learning,  positive  instances
should  stay  close  and  the  embeddings  for  random
instances should scatter  on the hypersphere[97].  Due to
the  uniformity  property,  the  over-smoothing  problem
can be alleviated. ■

κTheorem  2 states  that  when  gets  larger,  the
transition  matrix  from  the  attention  mechanism
becomes (nearly) static, thus the graph attention neural

network  on  a  strongly  connected  graph  also  suffers
from the over-smoothing problem[90].

Discussion  1 Contrastive  learning  can  enhance  the
interpretability of graph learning.

To illustrate how self-supervised contrastive learning
boosts  the  interpretability  of  graph  learning,  in  the
following, we detail existing works on graph explainer.
Specifically, previous works[91, 92] formalize the notion
of  importance  using  Mutual  Information  (MI)  and
formulate  the  graph  explainer  as  an  optimization
learning task:
 

max
GS

MI (Y,GS ) = H(Y)−H (Y | G = GS ) (30)

GS

G
H(Y)

Φ

Y GS

H (Y | G = GS )

where  is the explanation subgraph of the full TKG
graph . Examining this equation, we can see that the
entropy  term  is  constant  because  the  parameters

 are  fixed  for  a  trained  model.  As  a  result,
maximizing  mutual  information  between  predicted
label  distribution  and  explanation  graph  is
equivalent  to  minimizing  conditional  entropy

, which can be expressed as follows:
 

H (Y | G = GS ) = −EY |GS

[
log PΦ (Y |G =GS )

]
(31)

Y
GS

GS

The explanation  for  prediction  is  thus  a  subgraph
 that  minimizes  the  uncertainty  of  the  model  when

the  graph  scale  is  limited  to .  In  practice,  we  can
modify  the  conditional  entropy  objective  in  the  above
equation  with  a  cross-entropy  objective  between  the
label  class  and  the  model  prediction.  Thus,  the
objective  we  optimize  using  gradient  descent  is
rewritten as follows:
 

min−
C∑

c=1

I[y = c]
[
log PΦ (Y = y |G =GS )

]
(32)

G′S |GS | ⩽ KN

GS KN

To  obtain  a  compact  explanation,  existing  methods
impose an explicit constraint on s size as ,
so that  has at most  nodes. Taking the additional
constraint  proposed  in  Ref.  [92]  as  an  example:  they
penalize the large size of the graph explainer by adding
the  sum  of  all  elements  in  the  graph  as  the
regularization term. However, we argue that such a pre-
defined  constraint  on  the  neighbor  numbers  might  be
inappropriate  for  various  samples[98].  Our  method,
which leverages self-supervised contrastive learning to
overcome  the  unexplainable  problem,  is  much  more
effective than the explicit-constraint one.

In summary, the proposed self-supervised contrastive
learning  retains  non-redundant  information  about  the
event,  so  as  to  prevent  the  model  from  learning
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homogeneous representation, which, thereby, alleviates
the  over-smoothing  problem.  In  addition,  since  the
representation of the central event is the product of the
message  fusion  between  the  original  self-information
and its concurrent neighbor events, maximizing mutual
information (enhancing connections) between such two
views  is  equivalent  to  aggregating  information  from
neighbors  as  less  as  possible.  In  other  words,  this
objective  is  a  surrogate  constraint  that  suggests  the
graph  explainer  output  a  small  subgraph  with
minimally  influential  neighbors[99].  Apart  from  that,
contrastive  learning  also  augments  the  consistency
between  two  different  views,  preventing  one-sided
judgments  or  over-reliance  on  structural
information[98].

4.3　Inference and training

The followings are the details of event forecasting and
network training. We also analyze the time complexity
in data structures and algorithms.
4.3.1　Event forecasting

(s,r,?, t)

Fs,r
t

Fs,r
t t

q

K
oi ∈ Ẽ

(s,r,oi, t)

Given  an  event  query ,  the  inference  process
consists  of  several  steps.  First,  we  retrieve  historical
events  from  the  event  database  to  obtain  the
representation of  historical  dependency .  Then,  we
use  to  represent  the  timestamp  and  generate  the
representation  of  the  event  query  via  Eq.  (3).  Next,
we feed the query vector into the binary mode selector
to  choose  the  corresponding  module  for  event
forecasting.  We  then  filter  out  apparent  inappropriate
candidates  and  maintain  the  top  candidates.  After
that, for each candidate , we substitute it into the
event query to complete the event form as  and
utilize  a  target-attentive  collaborative  learning
mechanism  to  extract  associations  via  Eqs.  (14)−(17).
At last,  after getting the enriched event representation,
the score of each candidate is defined as:
 

Sq = tanh(Wq+b)ẼT
e (33)

Ẽewhere  represents the embedding dict of the filtered
set.  The  entity  with  the  maximum  value  is  the  most
likely entity the component predicts.
4.3.2　Network training
Predicting  the  entity  (object)  when  given  an  event
query can be viewed as a multi-class classification task,
where  each  class  corresponds  to  one  object  entity.
Thus,  the  learning  objective  can  be  defined  as
minimizing the following loss:
 

L =Lce+αLcl (34)

α Lcewhere  is  a  hyper-parameter  and  is  the  cross-
entropy  loss  across  two  stages† .  Considering  the
instability  of  the  model  in  the  early  stage  of  training,
we  do  not  directly  optimize  the  whole  network
simultaneously.  Instead,  we  adopt  a curriculum
learning  approach – first  training  the  components
belonging to the pre-rank stage until convergence, then
training the components belonging to the re-rank stage.
4.3.3　Complexity analysis
The main computational overheads of TAG-Net lie on
three  parts:  (1)  historical  dependency;  (2)  pre-rank
stage; (3) re-rank stage.

O(N log N) N

O(|E|d)

O(|Ẽ|d2)

Preprocessing historical  dependency  needs  to
traverse  all  events  in  the  TKG  to  count  the  event
frequency,  which  is  complexity,  here  is
the  number  of  training  samples.  During  the pre-rank
stage,  we  train  three  components: mode  selector,
repeat predictor and explore predictor. Since candidate
score  calculation  is  the  dominant  computational
consumption  in  each  component,  the  overall
complexity  of  the  pre-rank stage  can  be  approximated
as .  The re-rank  stage primarily  contains  two
components: self-supervised  contrastive  learning and
target-attentive  graph  collaborative  learning.
Compared  to  the  latter  one,  the  complexity  of  the
former one can be omitted. In practice, by conducting a
pre-filtering  operation,  target  attentive  graph  learning
only requires  complexity.

|E| |Ẽ|

Generally,  the  complexity  of  our  model  is  mainly
from the data preprocessing stage and the re-rank stage.
It  is  worth  mentioning  that  our  model  is  still  much
more  efficient  than  previous  RNN-based  methods.
Their computations of historical events are sequentially
dependent,  while  our  method  can  learn  event
interactions  in  parallel.  As  for  concurrent  event
collaborative  learning,  the  improved  performance
comes  at  the  cost  of  additional  computation  time.  We
apply a pre-rank filtering strategy to reduce the number
of  candidates  from  to  (dozens),  significantly
reducing the complexity without sacrificing forecasting
performance.

5　Experiments

We  now  present  evaluations  of  TAG-Net  against
baselines  on  event  forecasting.  After  discussing  the 
 

Lbs†The binary mode selector ( ) can be trained independently.
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details  of  the  experimental  setup,  we  provide
performance  comparison  results,  ablation  studies,
timestamp  influence,  over-smoothing  investigation,
interpretability visualization, and parameter sensitivity.

5.1　Experimental settings

In  this  subsection,  we  introduce  five  event  datasets,
13 baselines, two metrics and implementation details.
5.1.1　Data
We  select  five  benchmark  datasets  including  three
event-based  TKGs  and  two  public  TKGs.  The  former
three  event-based  datasets  consist  of Integrated  Crisis
Early  Warning  System (ICEWS18)[100],  ICEWS14[19]

and Global  Database  of  Events,  Language,  and  Tone
(GDELT)[21].  The  latter  two public  KG-based datasets
are  WIKI[101] and  YAGO[102].  In  our  experiments,  we
follow  the  preprocessing  of  CyGNet  and  split  the
datasets  into  training,  validation  and  test  sets  in
proportions  of  80%,  10% and  10%[38, 74]. Table  3
summarizes the data statistics.
5.1.2　Baselines
We  select  the  following  11 up-to-date open-sourced
event  forecasting  (knowledge  reasoning)  models,
including  both  static  and  temporal  approaches.  Note
that  we  omit  two  recent  works  here:  CEN[72] (uses
length-aware  CNNs  to  learn  evolutional  patterns  with
different lengths in a curriculum learning manner) and
HGLS[73] (captures  semantic  information  of  events
from sub-graph view and complete  graph view) – due
to  prohibitive  computational  cost – out  of  memory
(OOM) on a single RTX-3090.

• TransE[29]: is a classic knowledge base embedding
learning  model,  which  focuses  on  the  minimal
parameterization of the model to represent hierarchical
relations.

• DistMult[103]: proposes  a  simple  bilinear
formuation,  and  the  embeddings  learned  from  the
bilinear objective are particularly good at capturing the
relational semantics.

• ComplEx[104]: describes  a  simple  approach  of
matrix  and  tensor  factorization  for  link  prediction.  It

users  vectors  with  complex  values  and  retains  the
mathematical definition of the dot product.

• R-GCN[66]: shows  that  GCN  framework  can  be
applied  to  modeling  relational  data  for  link  prediction
and entity classification tasks.

• ConvE[31]: introduces a link prediction model that
users  2D  convolution  over  embeddings  and  nonlinear
feature layers to model KGs.

• TeMP[105]: learns  TKG  completion  by  computing
entity  representation  via  joint  modeling  of  multi-hop
structural  information  and  temporal  facts  from  nearby
timestamps.

• RE-NET[38]: proposes  a  method  for  modeling
temporal,  multi-relational  and  concurrent  interactions
between entities. It defines event joint probabilities and
is able to infer graphs in a sequential manner.

• xERTE[71]: proposes  an  explainable  reasoning
approach  for  link  prediction  on  TKGs.  This  model
extracts  a  query-dependent  subgraph  from  a  given
TKG and performs an attention propagation process to
reason the subgraph.

• TLogic[106]: is based on temporal random walks in
temporal  knowledge  graphs.  It  learns  temporal  logical
rules  from  TKGs  and  applies  these  rules  to  the  link
forecasting task.

• RE-GCN[39]: reasons TKGs by learning evolution
representations  of  entities  and  relations  and  capturing
structural  dependencies  among  concurrent  facts  and
informative  sequential  patterns  across  temporal
adjacent facts.

• TANGO[70]: proposes a multi-relational GCN layer
to  capture  structural  dependencies  on  TKGs and  learn
continuous dynamic representations using graph ODEs.

• CyGNet[74]: leverages  the  copy  mechanism  to
tackle  the  event  forecasting  problem.  It  hypothesizes
that  a  future  fact  can  be  predicted  from  the  facts  in
history.
5.1.3　Metrics
We report the results of Mean Reciprocal Rank (MRR)
and hits at 1/3/10 (H@1/3/10) in our evaluation. MRR
is the average of the reciprocal of the rank of each test

 

Table 3    Statistics of five event datasets.
Dataset # Entities # Relations # Training # Validation # Test # Time gap

ICEWS18 23 033 256 373 018 45 995 49 545 1 day
ICEWS14 12 498 260 323 895 - 341 409 1 day
GDELT 7691 240 1 734 399 238 765 305 241 15 min
WIKI 12 554 24 539 286 67 538 63 110 1 year

YAGO 10 623 10 161 540 19 523 20 026 1 year
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fact:
 

MRR =
1
|Dtest|

∑
(s,r,o,t)∈Dtest

1
Rank(s,r,o, t)) (35)

|Dtest| K
K

K
H@K = nhit/|Dtest|

nhit

K
K

where  is  the  size  of  the  test  set.  H@  is
calculated over top  items, i.e.,  the proportion of the
correct  recommended  entities  in  the  previous
positions  in  a  ranking  list: ,  where

 is  the  number  of  times  that  the  desired  quadruple
appears  in  the  top -ranked quadruples.  Higher  MRR
and H@  indicate better performance.

To  avoid  counting  higher  ranks  from  other  valid
predictions  as  errors  and  having  flaws  in  the  metrics,
we follow previous works[29, 38, 74] to remove all triples
(except  the  triples  of  interest)  that  appear  in  the
training,  validation  and  test  sets  form  the  list  of
corrupted triples.
5.1.4　Implementation details

1e−3

We  set  the  dimension  of  embedding  vectors  to  200
(which  is  consistent  with  the  experimental  settings  in
CyGNet).  We  train  our  model  using  Adam  optimizer
with  a  learning  rate  of .  We  tune  other
hyperparameters  using  grid  search  for  optimization
within 30 epochs. We train parameters in the first stage
with  15 epochs.  Then  we  froze  these  parameters  and
train  the  second  stage  for  another  15 epochs.  The
experiments  are  conducted  on  Intel(R)  Xeon(R)
Platinum  8124M  CPU  @  3.00GHz,  one  NVIDIA
GeForce  RTX  3090,  with  128GB  CPU  memory.  We
note  that  we  are  unable  to  run  xERTE  baseline  on

ICEWS14 and  WIKI  datasets  due  to  resource
constraints.

5.2　Comparison with prior models

The  overall  performance  comparison  between  TAG-
Net  and  baselines  is  shown  in Tables  4 and 5,  from
which we have the following observations:

(O1): Temporal-aware  event  forecasting  methods
outperform the  static  one. In  most  cases,  static  KG-
based  models  such  as  TransE  and  R-GCN  generally
performed  worse  than  others  and  cannot  meet  the
requirement for the event forecasting task. They rely on
time-missing  event  triplets  and  are  unable  to  capture
the  intrinsic  temporal  evolution  patterns  of  events.  In
other  words,  the  upper  bound  forecasting  accuracy  of
the  neural  network  will  be  restricted  by  the  expected
error  minimization  under  limited  static  triplet
information.  In  contrast  to  static  methods  that  are
unable to  distinguish two similar  events  with different
timestamps,  temporal  methods  can  capture  temporally
sequential patterns and thus, reason more accurately for
unobserved  timestamps.  It  suggests  that  additional
consideration  on  time  information  encoding  can  help
improve event forecasting performance.

(O2): Baselines  perform  inconsistently  across
datasets. Reviewing  all  existing  methods,  some  of
them  are  better  at  exploiting  historical  information,
while  others  are  good  at  enriching  entity
representations  via  leveraging  structural  information.
However,  none  of  them  perform  consistently  well  on

 

Table 4    Performance comparisons on three event-based TKGs. Best results are in bold font and the second-best results are
underlined.

Method
ICEWS18 ICEWS14 GDELT

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE[29] 18.86 4.11 25.46 44.73 20.69 2.12 32.74 48.37 17.35 0.63 26.92 42.37

DistMult[103] 22.87 12.87 28.61 42.61 20.88 10.05 21.51 35.33 19.74 13.18 20.96 32.64
ComplEx[104] 32.57 21.05 34.18 45.78 24.93 18.52 27.71 42.59 22.58 15.89 24.68 37.77

R-GCN[66] 24.23 15.36 25.56 37.79 27.82 19.61 32.96 44.82 24.02 16.02 26.72 33.82
ConvE[31] 38.29 28.83 39.68 50.55 39.95 33.06 42.32 55.22 35.51 29.03 38.87 49.23
TeMP[105] 41.73 32.07 43.51 52.42 45.07 35.04 46.64 55.84 39.66 29.24 41.31 48.79

RE-NET[38] 41.03 37.03 47.83 56.68 46.03 37.12 49.76 58.66 42.33 34.81 43.87 55.68
xERTE[71] 37.75 30.89 41.42 51.66 34.81 25.09 35.73 46.81 – – – –
TLogic[106] 37.52 30.09 40.87 52.27 38.19 32.23 41.05 49.58 22.73 17.65 24.66 32.59
RE-GCN[39] 31.45 25.79 35.63 50.28 33.37 24.45 36.23 50.78 28.77 23.27 34.67 44.94

TANGO-TuckER[70] 45.31 36.78 47.33 57.25 46.87 39.44 50.16 59.14 40.88 28.22 42.56 54.17
TANGO-Distmult[70] 44.23 37.66 46.07 56.14 46.62 43.75 47.36 59.17 41.02 35.81 43.22 53.75

CyGNet[74] 47.89 39.59 49.03 57.95 47.09 40.51 54.72 59.39 50.33 44.09 56.03 59.39
TAG-Net 48.77 40.43 51.11 59.34 48.76 44.32 56.34 61.82 51.52 45.61 57.24 61.51
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all  datasets.  For  example,  CyGNet  investigates  the
repetition  phenomenon  of  events  occurrence  and
thereupon  introduces  copy  mechanism  to  strengthen
the  influence  of  historical  dependency.  It  outperforms
other  baselines  on  three  event-related  datasets,
however,  is  inferior  under  two  KG-based  datasets
YAGO and WIKI. Analogously, RE-GCN and RE-Net
extract  inherent  spatial  knowledge  to  updating  entity
representation,  they  perform  well  on  YAGO  but  are
unstable  on  other  datasets.  These  observations  are
consistent with our expectations: The three event-based
datasets  have a  small  timestamp gap (see Table  3),  so
we  need  to  explore  the  long-term  historical
dependency.  In  contrast,  the  timestamp  gap  of  other
KG-based datasets YAGO and WIKI are up to a year,
so  finding  clues  for  event  forecasting  will  be  efficient
and precise if we just focus on recent concurrent events
(structural  knowledge)  rather  than long-term historical
dependency. To date, none of the existing methods can
precisely understand the occurrence pattern of events.

(O3): TAG-Net  consistently  outperforms  all
baselines  for  event  forecasting. Our  approach
outperforms  baselines  in  terms  of  two  evaluation
metrics  on  all  five  datasets.  For  example,  TAG-Net
achieves  up  to  1.84%,  3.55%,  and  2.37%
improvements  of  MRR  on  three  event-based  TKGs
datasets,  respectively.  Benefiting  from  the  two-stage
learning  process,  TAG-Net  can  model  the  historical
information  as  well  as  the  concurrent  structural
correlation  more  effectively.  For  KG  datasets  WIKI
and  YAGO,  TAG-Net  has  26.23% and  21.45%

improvements  of  MRR  against  the  best  baseline.  As
discussed  above,  TAG-Net  underscores  the  impact  of
the  newest  concurrent  events  via  the  target  attentive
graph  learning  mechanism,  thus  achieving  significant
improvements  on  WIKI  and  YAGO.  Generally,  these
results  suggest  that  our  proposed  method  is  effective
for event pattern understanding and forecasting.

5.3　Ablation study

To investigate  the  contributions  of  each component  in
TAG-Net, we conduct ablation study by examining the
performance  change  after  removing  each  component.
Specifically,  the  ablation  study  is  conducted  on  two
representative  datasets:  the  KG-based  YAGO  dataset
with  a  high  repetition  rate,  and  the  event-based
ICEWS18 dataset with a low repetition rate. We design
three variants of TAG-Net:

• w/o  S1:  this  variant  removes  the  pre-rank  stage
from  TAG-Net,  which  ignores  the  historical
dependency.

• w/o  S2:  this  variant  removes  the  second  re-rank
stage  from  TAG-Net,  which  ignores  the  influence  of
the concurrent events.

• GCN: contrary to TAG-Net w/o S2, we maintain the
pre-rank  stage  and  just  use  vanilla  GCN  model  to
replace the target attentive graph learning net.

The  results  are  shown  in Table  6 and  we  have  the
following  findings.  First,  when  we  discard  the
historical  information  and  only  focus  on  concurrent
events  (w/o  S1),  the  performance  drops  drastically  on
both datasets. And, the pre-rank stage appears to have a

 

Table 5    Performance comparisons on two public TKGs.

Method
WIKI YAGO

MRR H@1 H@3 MRR H@1 H@3
TransE 46.66 38.59 51.64 50.03 48.26 61.02

DistMult 48.36 36.93 50.71 61.71 54.49 62.75
ComplEx 48.41 37.59 50.55 61.22 55.42 61.96
R-GCN 37.94 28.01 38.85 43.53 34.62 45.27
ConvE 46.95 40.17 49.09 62.01 56.91 63.59
TeMP 49.53 46.18 51.01 64.86 57.25 65.28

RE-NET 50.26 49.16 54.29 65.43 63.34 66.57
xERTE – – – 59.92 58.35 60.32
TLogic 57.73 57.43 57.88 1.29 0.49 0.85

RE-GCN 43.92 39.34 47.78 64.08 58.99 68.92
TANGO-TuckER 53.51 52.63 54.98 67.54 66.39 69.66
TANGO-Distmult 53.98 52.25 54.02 68.65 67.34 70.89

CyGNet 49.03 46.56 51.41 64.36 62.81 65.57
TAG-Net 68.14 67.51 68.10 83.38 82.27 84.33
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greater  influence  on  KG-based  datasets  with  less
timestamp  gap.  Second,  paying  extra  attention  to  the
newest  concurrent  events  will  help the model  enhance
the forecasting accuracy, regardless of whether using a
standard  graph  learning  method  (e.g.,  GCN)  or  the
proposed  target  attentive  graph  learning  mechanism.
This  phenomenon  highlights  the  importance  of  recent
knowledge  developments  when  making  decisions.
Third,  the  proposed  target  attentive  graph  learning
achieves  better  performance  than  vanilla  GCN,
indicating the superiority of our method.

5.4　Influence of time encoding

∆t

One  of  the  pros  of  TAG-Net  is  to  emphasize  the
importance  of  characterizing  time  information  and
accordingly  propose  an  efficient  time  encoding
technique.  In  this  subsection,  we  compare  TAG-Net
with  two  variants  that  have  different  ways  of  time-
encoding. Specifically, TAG-Net w/o t represents event
query without  timestamps,  and TAG-Net  represents
event query with time interval-based technique[74].

∆t

The prediction results are shown in Table 7. We can
see  that  neglecting  temporal  information  will
significantly  lower  the  event  forecasting  performance.
As for TAG-Net ,  its  performance is  close to TAG-
Net,  which,  again,  emphasizes  the  importance  of
modeling time information for event forecasting.

5.5　Effectiveness of contrastive learning

To  verify  whether  the  self-supervised  contrastive
learning  approach  can  alleviate  the  over-smoothing
problem and enhance the interpretability of the model,
we  visualize  the  attention  scores  before  and  after

adding  the  contrastive  constraint  into  the  training
objectives,  as  shown  in Fig.  3.  We  can  observe  that,
without  the  contrastive  constraint,  the  model  learns  a
trivial  solution  that  aggregates  information  from
surrounding  neighbors  almost  uniformly.  In  contrast,
after  training  with  the  proposed  contrastive  learning
objective, the model only focuses on limited neighbors,
in  line  with  our  assumptions  and  derivations.  On  one
hand,  it  verifies  that  contrastive  learning  learns
distinguished representation that can prevent the model
from  the  over-smoothing  problem;  on  the  other,  it
shows  that  the  model  learned  with  contrastive
constraints  has  a  stronger  interpretability  than  the
original one.

5.6　Target attentive graph learning

(s,r,?, t)

Target  attentive  graph  collaborative  learning  can
improve the performance of  the event  forecasting task
and,  to  provide  more  insight,  we  visualize  the  most
influential  neighbors  to  better  understand  the  working
principles.  As  in Table  8,  we  select  an  event  query

 from  the  test  set  as  the  focal  event,  and  then
calculate  the  cosine  similarity  between representations
of  the  focal  event  and  other  events.  We  show  events
(three  for  each  graph  type)  with  the  highest  similarity
scores by using a normal graph and two target attentive
graphs (TAGs). We can observe that the similar events
obtained by the normal graph confuse the object types –
two of them are country names and the other is people
names.  When  we  use  target  attentive  graphs,  the
objects  of  similar  events  are  the same as  the object  of
the focal event. As expected, the target attentive graph
matches  similar  events  with  the  target  event  for

 

Table 6    Ablation study of TAG-Net.

Method
ICEWS18 YAGO

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TAG-Net w/o S1 25.41 23.21 28.41 32.35 38.19 37.71 39.06 41.56
TAG-Net w/o S2 46.92 36.84 51.99 54.06 80.58 79.96 80.72 81.73
TAG-Net-GCN 48.12 40.07 51.73 59.38 80.36 80.26 80.73 81.33

TAG-Net 48.77 40.43 51.11 59.34 83.38 82.27 84.33 84.44

 

t
∆t

Table 7    Influence  of  time  encoding.  Among  them,  TAG-Net  w/o  denotes  representing  event  query  without  considering
timestamp; TAG-Net  denotes representing timestamp with the time interval-based technique.

Method
ICEWS18 YAGO

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
tTAG-Net w/o 30.16 23.13 35.36 46.82 63.35 58.96 64.22 67.61

∆tTAG-Net 46.96 37.43 49.95 55.93 76.34 73.94 77.33 76.87
TAG-Net 48.77 40.43 51.11 59.34 83.38 82.27 84.33 84.44
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obtaining better representation.

5.7　Parameter sensitivity

K α λ η

We conduct parameter sensitivity experiments for four
important hyperparameters in TAG-Net: the number of
candidates , scalers , , and . As shown in Fig. 4,
we  adjust  the  values  of  hyperparameters  and  then
observe  the  performance  change  of  our  model  on

K

K K

K
K

α

Lce Lcl α

α λ

Lcl λ

α′ λ

η

η′

{2, 4, 6, 8, 10} 6
η

YAGO and ICEWS18. The top  event candidates are
the entities filtered out in the pre-rank stage. We select

 from  50 to  300.  We  can  see  that  larger 
consistently improves the prediction performance. The
improvements become saturated when  is sufficiently
large.  Due  to  resource  limitations,  we  do  not  test 
larger  than  300.  Scaler  controls  the  ratio  of  losses

 and . When  increases from 0 to 1, the results
on  the  two  datasets  first  increase  and  then  start  to
decrease. A suitable value of  is around 0.4. Scaler 
is a positive constant trading off the importance of the
invariance  term and  the  redundancy  reduction  term of
loss . The performance change trend of  is similar
to that of the s, but the suitable value of  is around
0.6.  A  larger  value  of  means  that  we  pay  more
attention  to  historical  entities.  We  alter  the s  value
from , and the results suggest that  is a
better choice for .

 

 
Fig. 3    We  calculate  the  attention  scores  against  neighbors
(after  4 times  message-passing)  before  and  after  adding  the
contrastive constraint into the training objectives. Each row
represents the attention scores of a specific sample. Note that
this  process  is  a  reflection  of  message  passing,  thus  it  can’t
reflect the coefficient of self-information.

 

Table 8    Case study on target attentive graph (TAG) collaborative learning net on ICEWS18.
Normal Focal event Donald Trump Accuse -

Similar event Donald Trump Accuse Russia
Donald Trump Accuse Pakistan
Donald Trump Accuse Vladimir Putin

TAG 1 Focal event Donald Trump Accuse Russia
Similar event Donald Trump Accuse China

Donald Trump Accuse Pakistan
Donald Trump Accuse North Korea

TAG 2 Focal event Donald Trump Accuse Vladimir Putin
Similar event Donald Trump Accuse Justin Trudeau

Donald Trump Accuse Kim Jong-Un
Donald Trump Accuse Bashar al-Assad

 

(a) YAGO dataset

(b) ICEWS18 dataset 
K α λ ηFig. 4    Impact of four important parameters , , , and .
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6　Conclusion

In  this  work,  we  presented  TAG-Net,  a  novel  method
for TKG-based event forecasting. To better understand
event  forecasting,  we  mimicked  the  cognitive  process
of  humans  and  proposed  a  two-stage  learning
framework  on  the  basis  of  the  dual-process  theory.  In
the first stage, we extracted temporal associations from
historical dependency; in the second stage, we modeled
the influence of the newest, unexpected, and emergent
events.  We  devised  a  target  attentive  graph
collaborative  learning  algorithm  to  explore  the  event-
level  neighborhood  interactions.  We  evaluated  TAG-
Net over five real-world datasets, and the experimental
results showed the superiority of our method.

In  addition  to  the  performance  improvements  our
model  achieved,  we  note  that  there  are  still  space  to
further  improve  the  performance  of  the  proposed
model.  First,  the  target  attentive  graph  collaborative
learning  network  brings  additional  computational
overhead,  even  with  the  proposed  candidate-reducing
strategy. Second, traditional event forecasting methods
mainly  focus  on  training  a  classifier  in  the  closed-set
world,  where  training  and  testing  samples  may  share
the same label space. Intuitively, the out-of-distribution
or  data  shift  problem  occurs  when  we  try  to  predict
future events.  To date,  event  forecasting is  still  a  very
challenging  task  and  is  worth  more  research
investigations.

In our future work, we plan to enhance our method to
address  the  above-mentioned  challenges.  First,  we  are
seeking more efficient architectures and algorithms that
can filter out irrelevant event candidates more precisely
via  some  anomaly  detection  methods[107].  Second,  we
will  consider  incorporating  uncertainty  learning,
adversarial  training  as  well  as  self-supervised
learning[108, 109] to  improve  the  reliability  of  event
forecasting methods on new events.
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