

CamDroid: Context-Aware Model-Based Automated GUI
Testing for Android Apps

Hongyi Wang, Yang Li*, Jing Yang, Daqiang Hu, and Zhi Liao

Abstract: Recent years have witnessed the widespread adoption of mobile applications (apps for short). For

quality-of-service and commercial competitiveness, sufficient Graphical User Interface (GUI) testing is required

to verify the robustness of the apps. Given that testing with manual efforts is time-consuming and error-prone,

automated GUI testing has been widely studied. However, existing approaches mostly focus on GUI

exploration while lacking attention to complex interactions with apps, especially generating appropriate text

inputs like real users. In this paper, we introduce CamDroid, a lightweight context-aware automated GUI testing

tool, which can efficiently explore app activities through (1) a model-based UI-guided testing strategy informed

by the context of previous event-activity transitions and (2) a data-driven text input generation approach

regarding the GUI context. We evaluate CamDroid on 20 widely-used apps. The results show that CamDroid

outperforms non-trivial baselines in activity coverage, crash detection, and test efficiency.

Key words: Android app; automated Graphical User Interface (GUI) testing; state transition model; text input

generation

1　Introduction

With the widespread popularity of mobile phones,
mobile applications (apps) have been an indispensable
part of our daily life and have increased dramatically in
number over recent years[1]. To maintain commercial
competitiveness and keep user loyalty, it is crucial to
adequately test these apps to guarantee their
robustness. In practice, Graphical User Interface (GUI)
testing for apps heavily involves human efforts.
However, due to the rapid releasing cycle and limited
human resources, manual GUI testing is time- and

resource-consuming with poor activity coverages in
limited test time. App stores also rely on automated
testing to detect malicious apps before they are
officially released[2–5]. Therefore, automated GUI
testing for Android apps has been studied extensively
in both academia and industry.

A variety of automated GUI testing approaches have
been proposed, including model-based[6], probability-
based[7], and deep learning based methods[8] to
dynamically explore app activities by injecting actions
(like clicking and scrolling) according to the detection
and analysis of the current GUI components[9].
However, since quick feedback on the quality of new
app features is required whenever a new internal
version of the app is built[8], these approaches are
mostly inefficient and ineffective in terms of
continuous testing. This is because they rerun each
version from scratch without learning from the context
knowledge of previous testing runs to accelerate the
current test. Moreover, inside one testing run, most of
them focus on the GUI exploration algorithm

 Hongyi Wang, Yang Li, and Jing Yang are with School of

Software, Tsinghua University, Beijing 100084, China. E-mail:
hongyi-w21@mails.tsinghua.edu.cn; liyang14thu@gmail.com;
yangj23@mails.tsinghua.edu.cn.

 Daqiang Hu and Zhi Liao are with Hangzhou Uusense
Technology Inc., Hangzhou 310012, China. E-mail: hudaqiang@
uusense.com; liaozhi@uusense.com.

* To whom correspondence should be addressed.
 Manuscript received: 2023-10-25; revised: 2024-02-09;

accepted: 2024-02-15

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 04/31 pp55−67
DOI: 10 .26599 /TST.2024 .9010038
Volume 30, Number 1, February 2025

© The author(s) 2025. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

improvement while lacking attention to complex
interactions with apps, especially generating
appropriate text inputs like real users, leading to
unsatisfactory app activity coverages.

To fill the above gaps, we propose CamDroid, a
context-aware model-based automated GUI testing
approach for Android apps. To effectively store the
context knowledge of previous testing runs, CamDroid
abstracts the key identities of feasible widgets with the
allowed actions on the GUI page as events, and builds
a state transition model to memorize the historical
probabilities of the event-activity transitions (each of
which represents the probability of an event to reach an
app activity). To further leverage the context
knowledge, CamDroid combines the one-step guidance
of the state transition model with the multi-step
guidance of reinforcement learning, aiming to reach
deep activities requiring sequential event executions.

Furthermore, CamDroid learns the correlation of user
characteristics and app metadata (collected from public
datasets[10–20]) with a Generative Adversarial Network
(GAN) and generates text inputs for diverse user
profiles and app scenarios (each pair of profile and
scenario information is encoded as a vector named
“input context vector”, which is corresponding to one
generated text input) in advance. When an event
requiring text inputs is selected by the aforementioned
state transition model, CamDroid encodes the contexts
of current GUI widget identities as a feature vector,
and calculates BERTScores[21] of this vector with each
of the input context vectors corresponding to the text
inputs generated by GAN. Then CamDroid ranks the
input context vectors by BERTScores and selects the
text input corresponding to the one with the highest

score. In this way, CamDroid can generate suitable text
inputs like real users, and certain sequential activities
requiring specific text inputs to reach can be effectively
explored. The architectural overview of CamDroid is
depicted in Fig. 1.

We implement the prototype of CamDroid based on
the source of Android Monkey. To evaluate the
effectiveness of CamDroid, we compare CamDroid
with state-of-the-art testing tools (i.e., Monkey[22],
APE[6], and Fastbot2[7]) on 20 large, widely-used apps
from Google Play. Experiment results show that
CamDroid achieves 1.25× (1.27×) higher average
(median) activity coverage than the best baseline
within one hour. Though the apps have been well
tested, CamDroid manages to find 34 unique crashes in
one hour, while the best baseline Fastbot2 finds 18. We
also conduct ablation study to further demonstrate the
effectiveness of our text input generation technique and
its adaptability to other testing tools. Results show that
the proposed text input generation technique can
improve the activity coverages of Monkey, APE, and
Fastbot2 by 1.13×, 1.19×, and 1.15×, respectively.

Roadmap. The remainder of the paper is organized
as follows. In Section 2, we illustrate the problem and
challenges. In Section 3, we present our algorithm
CamDroid. In Section 4, we introduce the prototype
setting and the evaluation results. We survey the
related works in Section 5 and conclude this paper in
Section 6.

2　Background and Motivation

In this section, we introduce the problem and
challenges of the automated GUI testing for Android
apps, especially issues related to text input generation.

Context
knowledge

Event abstractor

Valid-identity
pool

Android
application

package

Install

GUI
info

Static widget
labels

One-step state
transition model

Update

Event execution

Reinforcement
learning

Build

Events

Multi-step
rewards

GAN

Public
datasets

Current
GUI

context

Learn correlations

Text inputs
with

contexts

Generate

Activity
coverage

High-score text

Crashes

Event selection Text input generation

CamDroid

rankingBERTScore

Fig. 1 Architectural overview of CamDroid.

 56 Tsinghua Science and Technology, February 2025, 30(1): 55−67

Furthermore, we uncover why existing methods
struggle to address these challenges.

2.1　Problem

With the rapid growth of the Android app market,
ensuring the quality and reliability of Android apps
becomes a critical concern for developers. However,
mobile apps have short update cycles and encompass a
wide range of scenarios. These characteristics make
comprehensive testing of mobile apps challenging.
Traditional manual testing is not only time-consuming
and labor-intensive but also prone to overlooking
corner cases. As a result, there is a growing demand for
effective and efficient automated testing tools that can
streamline the testing process, improve the testing
coverage, and enhance the quality of Android apps.

2.2　Challenges

(1) Vast and dynamically changing search space
Considering that a mobile app has hundreds of

activities and potentially thousands of widgets, the
search space for app testing is very extensive. Random
testing tools, like Monkey[22], suffer from getting stuck
in loops early and no longer making progress.
Additionally, since GUI pages often update
dynamically, sometimes even a simple backward action
fails to return to the exact previous GUI page.
Consequently, the effectiveness of search-based tools
based on graph traversal algorithms[23, 24] is not ideal.

Model-based tools[6, 7, 25] abstract GUI trees into
different states and regard the page changes caused by
events as transitions between states. They adapt to the
dynamic search space by adjusting state abstractions or
transition relationships. However, simply defining
different GUI pages as different states leads to a large
state space, thus reducing the testing efficiency.

Some model-based tools leverage coarse-grained
abstractions to tackle the problem. Unfortunately, they
face low accuracy in modeling app behaviors. Take
Fastbot2[7] for example, it may consider two events
with different functionalities as the same one, which
may mislead event selections. This limitation makes it
only suitable for specific apps (i.e., Douyin and
Toutiao) and less effective for others. Therefore,
balancing the trade-off between the size and precision
of states is untrivial for model-based tools.

Worse still, some actions lead to irreversible changes
in GUI pages and result in great differences between
the search space before and after performing them. For

example, a variety of pages cannot be accessed without
the login operation. On the other hand, some activities
can only be reached when the app is not logged in.
However, existing tools fail to handle them properly.

Additionally, a model-based tool needs to initialize
its model at the beginning of the testing. Considering
the vast search space, the initialization can be time-
consuming. For industrial app development, a single
version update for an app rarely undergoes heavy-
weight changes, which means that the model built in
previous testing can be somehow reusable. However,
most model-based tools fail to leverage this
characteristic and instead rebuild the model from
scratch after each version update, which is ineffective
and inefficient.

(2) Text input generation
Most existing tools only focus on GUI exploration,

while lacking attention to complex interaction with
apps like text input generation. They just perform
completely random inputs or input a few fixed
words[25, 26]. However, most apps contain pages that
require meaningful text inputs in the preceding page to
proceed. As shown in Fig. 2, the test will be hindered if
the tool can not enter meaningful content in the search
box of X (former name Twitter). Therefore, testing
tools failing to generate valid text inputs struggle to
access these pages, resulting in limited activity
coverages and difficulties in surpassing the bottleneck.

Automated text input generation is challenging. The
algorithm needs to generate text that conforms to the
GUI context and satisfies constraints, requiring strong
Natural Language Processing (NLP) capabilities.
Although the Large Language Model (LLM)
demonstrates remarkable performance in the field of
NLP, applying the inference of such a model for the
input generation of app testing[27] would entail several
seconds on generating and encoding the prompt for
each text input. Consequently, the whole testing
process would be slowed down by the inference
overhead of the LLM, resulting in unsatisfactory test
efficiency. As a result, maintaining test efficiency
without significantly reducing the quality of generated
text inputs is difficult.

Additionally, correlations may exist among a real
user’s multiple text inputs while interacting with an
app. For example, when a user purchases a flight ticket
and then proceeds to book accommodation in a travel
app, the destination of the ticket and the city of the

 Hongyi Wang et al.: CamDroid: Context-Aware Model-Based Automated GUI Testing for Android Apps 57

accommodation typically are the same.
However, realizing the above insight in practice is

challenging. First, there is no public dataset of real user
text inputs while using apps, while collecting data
manually is time-consuming, labor-intensive, and lacks
diversity. Therefore, it is difficult to conduct a large-
scale study on interrelationships among text input
scenarios within the same app. Second, further utilizing
previous text inputs and user information for real-time
text generation can lead to even longer prompt
processing time and lower efficiency.

3　Approach

In this section, we present CamDroid, a context-aware
model-based automated GUI testing tool that tackles
the above challenges. Our efforts lie in two folds. First,
we propose a model-based testing tool where we
carefully design its state abstraction and enable it to
leverage historical context knowledge from previous
testing runs. Second, we introduce a lightweight
approach to generate text inputs by incorporating GUI
widget identities, user characteristics, and app
metadata.

3.1　Overview of CamDroid

The workflow of CamDroid is illustrated in Fig. 1,
which mainly consists of two components: event
selection and text input generation. CamDroid first
utilizes the GUI info to extract feasible events. The
event selection component then combines the one-step
guidance of the state transition model with the multi-
step guidance of reinforcement learning to choose the
best event. The text input generation component is
activated when an event requiring text inputs is
selected. This component utilizes a trained GAN to text

inputs for various possible scenarios (each is encoded
as an input context vector) before the test. During the
test, it encodes the current GUI context into a feature
vector and calculates BERTScores[21] of this vector
with each of the input context vectors. It then selects
the text corresponding to the highest-scoring input
context vector to fill in.

3.2　Model-based testing tool

3.2.1　Model abstraction

M

M
p (e,a)

In our model-based testing tool, we regard each activity
as a state, and the transitions between states represent
the switchings between activities. The key identities of
interactive widgets on each page are extracted and
considered as events. In this way, we construct a
probability model to represent the relationships
between activities and widgets in an app. Specifically,

 stores event-activity transition probabilities, each
one of which is denoted as , where

e● represents for an event,
a● represents for an app activity, and
p e

a
● represents the probability of the event to reach

the app activity .
M

ei p (ei,a j)
ei

During the test, the model is updated whenever an
event, e.g., , is executed. The value of every
that associates with is updated according to the
following rule:

p (ei,a j) =
n (ei,a j)

n (ei)
(1)

n (ei,a j)
a j ei n (ei)

ei

M

where represents the number of times reaching
 after executing , and represents the total

execution times of . In order to reuse the context
information from previous testing runs, CamDroid
stores the model as well as total execution times of

Random text input

Meaningful text input
(e.g., a person’s name)

Fig. 2 Example of text input in Android app.

 58 Tsinghua Science and Technology, February 2025, 30(1): 55−67

Meach event. will be reconstructed from the
aforementioned values before the next testing run.

M

activity
content-description text resource-id

class-name allowed actions click
long click scroll text input

Additionally, if each widget is considered as an
individual event, the scale of would be rather large.
Therefore, we carefully design abstract rules for
widgets to prevent redundant records of widgets with
the same functionalities. In detail, we classify widgets
into the same event if they share the following
6 properties: the to which the widget
belongs, , , ,

, and (i.e., ,
, , and). According to

sampling observations, there are tens of widget
attributes that contain meaningful representatives of
functionalities. Furthermore, based on statistical
calculation results, the heterogeneity is most prominent
among the aforementioned 6 properties, resulting in an
effective abstraction.

text resource-ID
content-description

text

resource-ID

content-description

M

The contents of the widget’s , ,
and sometimes overlap, as they
often provide a brief summary of the widget’s
functionality, such as search or location. The reason for
recording all three properties is that some widgets may
have empty values for some of them (this is also why
there is still significant heterogeneity among them).
Imagine a scenario that a widget only has one non-
empty property of these three, e.g., with the
content “search”, while another widget only has one
non-empty with the content “location”.
If, unfortunately, they are on the same GUI page and
we only record , then they
would be mistakenly classified as the same event. By
simultaneously recording these properties, we ensure
an accurate abstraction of the GUI event. With the size
of slightly increased, this approach guarantees a
high precision for classifying the widgets into events.
3.2.2　One-step guidance for event selection

M
M

M

M
M

M

M

During testing, model is used to guide event
selection. However, in the early stages of the test,
only has limited information. Therefore, event
selection at this stage is relatively random, aiming at
rapidly initializing model . Specifically, when there
are still unexecuted events on a page, that is, events not
recorded in , CamDroid randomly selects one and
updates based on the execution result. Once the
information in is sufficient, it can be utilized to
further explore unreached activities. When all events
on a GUI page are included in , CamDroid selects

Mevents based on the transition probabilities in ,
aiming to cover activities that have not been covered in
the current testing.

ei E

pr M

For each event of all events on the page, we
calculate the probability that it can reach a new
activity, and select the event according to the
probability distribution. The probability (represented as

) can be calculated according to ,

pr (ei) =
∑

a j<At

p (ei,a j) (2)

At

ei

ps (ei)
pr(ei)

where is the set of activities tested in the current
testing run. The probability that event is selected
(represented as) is calculated through applying
the softmax function to ,

ps (ei) =
exp (α1× pr(ei))∑

e j∈E
exp (α1× pr(e j))

(3)

α1

α1× pr (ei) pr

pr

where is a float larger than 1 and is set as 1.25 in
CamDroid. Here we use the scaled probability

 instead of to magnify the gaps among the
probabilities assigned to different events. In this way,
events with higher values are further preferred,
leading to faster exploration of uncovered activities.

click scroll

Furthermore, we have detailed settings towards the
selection of events and actions for improving the test
efficiency in CamDroid from the following three
aspects. First, if an event corresponds to multiple
widgets, CamDroid will randomly select one for
execution. Second, if the selected event has multiple
executable actions (e.g., and),
CamDroid will prioritize actions that have not been
executed or have been executed only a few times.
Third, if an event on the current page has been selected
twice under the one-step guidance, it will not be chosen
for a time. This continues until all other events on the
page have been executed twice. Then their counters of
execution times in this stage will be reset to 0.
3.2.3　Multi-step guidance for event selection
Some activities may require sequential events to reach,
and for these activities, the aforementioned one-step
guidance may not be sufficient. Reinforcement
learning, on the other hand, enables multi-step
decision-making. Therefore, we have incorporated a
typical reinforcement learning algorithm, Q-learning,
into CamDroid to provide multi-step guidance.

The core of Q-learning is to utilize a Q-table to store
the Q-values of actions (events in CamDroid), where

 Hongyi Wang et al.: CamDroid: Context-Aware Model-Based Automated GUI Testing for Android Apps 59

t et

et

rt

at+1 Q (et)

the Q-value represents the benefits that an action can
bring. In our tool, the Q-value suggests the probability
of reaching new activities in the future. Then, at each
time CamDroid selects an event (no matter whether

 is selected under one-step guidance or multi-step
guidance), observes a reward , enters the activity

, and updates the ,

Qnew(et) =(1−β)×Q (et) +
β× (Qs

t (et)+Qr
t (et)) (4)

β Qs
t (et)

et

rt et

Qr
t (et)

t t−1

where is the learning rate and is set as 0.8. is
the reward earned from this event , including the
immediate reward from and the potential future
rewards. is a bonus reward, indicating whether
the selection at is better than that at .

Qs
t (et) is calculated by the N-step Sarsa method[28]

for sequential decision guidance,

Qs
t (et) =rt +γrt+1+ · · ·+

γm−1rt+m−1+γ
mQ (et+m) (5)

γ m

rt+i

et+i t+ i

where is the discount factor and is set as 0.5. is the
number of steps taken into account for updating the Q-
values and set as 3. is the immediate reward from
event executed at time .

rt = re
t + ra

t re
t ra

t

The design of the reward can be approached from
two perspectives. From the aspect of events, the
benefits are higher when executing events with fewer
execution times but higher probabilities of reaching the
unvisited activities. From the aspect of activities, the
benefits are higher when accessing activities with
fewer visit times and more unexecuted events on the
page. Therefore, , where and are
calculated as follows:

re
t =

pr(et)√
n (et)+1

(6)

ra
t =

nne+0.5×nnt+
∑
ei∈Et

pr (ei)

√
n (at)+1

(7)

nne at

nnt

at

Et

at n (at) at

where denotes the number of events on that have
never been executed. denotes the number of events
on that have not been executed in the current testing
run but executed in previous ones. denotes the set of
all events on . denotes the number of times
is visited in this testing run.

Qr
t (et) is designed according to potential-based

reward shaping[29]:

Qr
t (et) = γ× rt − rt−1 (8)

rt rt−1

et et−1

t t−1

where and represent instant rewards after
executing and , respectively. CamDroid gets an
additional reward if it performs better at than .

ps

Similar to the one-step guidance, multi-step guidance
is used only after the Q-table contains enough
information,i.e., when all the events on the page have
been executed at least twice under the former guidance.
We still use the softmax function to calculate ,

ps(ei) =
exp (α2×Q(ei))∑

e j∈E
exp (α2×Q(e j))

(9)

α2where is set as 10.
3.2.4　Restructure the testing pipeline
In practice, we observe that there is a non-trivial
number of operations which are irreversible.
Benchmark experiments are conducted to identify such
actions with the help of the previous model-based
testing tool. In detail, we record the GUI page before
an operation is performed. Then the backward button is
clicked right after the operation, and the new GUI page
is recorded. We repeat the above steps multiple times
to obtain two sets of GUI pages, and calculate the
difference between the two sets. Significant difference
indicates that the operation is irreversible. The
benchmark experiments ultimately yield 10+
irreversible operations.

To cover both GUI pages before and after these
operations, CamDroid intelligently select the timing to
perform them. When an irreversible action is
encountered, CamDroid checks whether the remaining
widgets on the activity have been selected during the
current test. CamDroid selects the action only after all
the other widgets have been executed at least once.

3.3　Text input generation

To better understand the scenarios of text inputs as well
as their categories and correlations in real world apps,
we conduct a detailed research with one of the largest
Android UI datasets Rico[30]. Then we design a
lightweight tool for automated text input generation
based on the experience from the aforementioned
study.

Especially, the research on correlations between text
inputs is not straightforward, due to the lack of datasets
of real users’ continuous text inputs. Fortunately, we
notice that there are abundant datasets containing user
information from various apps, including basic user
information, user preferences, and usage patterns.
These pieces of information largely originate from the

 60 Tsinghua Science and Technology, February 2025, 30(1): 55−67

text inputs during user interactions. Hence, we utilize
open datasets of app user profiles for our research.

In addition, in order to address the problem of low
efficiency in real-time text input generation, CamDroid
performs the generation before testing. During testing,
CamDroid only selects the appropriate text according
to the scenario, which greatly improves efficiency. The
detailed pipeline is explained in Section 3.3.3.
3.3.1　Text input categories

class-name

Rico, the dataset we used for analysis, contains UI
screenshots and their view hierarchy files from over
9300 Android apps. We filter out pages that contain
text input widgets by checking if the of a
widget includes the keywords “EditText” and
“AutoCompleteTextView”[31]. As widgets related to
login are handled specifically in Section 3.2.4, we do
not consider them in the subsequent analysis.

Finally, we get 2866 pages with 6846 text inputs
from a total of 2241 apps. We classify these apps into
10 categories referring to Google Play, i.e., finance,
information, entertainment, video streaming, social,
reading, shopping, health, map, and travel, with each
category including 87 to 427 apps.

hint-text resource-id text

For each text input, we utilize the contexts of the
GUI widget it belongs to along with the app metadata
to describe the scenario. The contexts include the

, , and properties of the
widget, while app metadata includes the app category
and the activity name. We tokenize and encode these
identities with Bert[32], a well-established and widely
used model in the field of NLP. As a result, we obtain a
vectorized representation of the current text input
scenario, which we refer to as a feature vector. Next,
we cluster the 6846 feature vectors to explore the
distribution of input text scenarios. Specifically,
considering our large data scale, we employ the
DBSCAN clustering algorithm. The similarity between
vectors is measured by BERTScore[21], a metric used to

evaluate sentence similarity. We name each text input
category by decoding the feature vector of its cluster
centroid (termed input context vector). We ultimately
identify 81 classes of text input scenarios and list the
detailed information for the top-5 classes in Table 1.
3.3.2　Correlations between different categories
According to the text input categories identified in
Section 3.3.1, we select 11 datasets[10–20] to cover them.
We associate each category with attributes in public
datasets based on their meanings. Some categories,
such as user age and gender, may have
correspondences in multiple public datasets. Attributes
in public datasets that do not have a corresponding text
input category are removed. Next, we calculate
regression models[33] between each pair of attributes in
the same dataset, and then perform F-tests[34] on the
obtained models. If the p-value of F-statistic is less
than 0.05, it indicates a significant correlation between
them.

Because not all inputs depend on others, we further
divide these text input categories into independent and
non-independent ones based on the results of
correlation calculations. First, we examine categories
with p-values higher than 0.05 for all other columns in
the same dataset. In other words, the inputs for these
categories are independent of those in other scenarios.
We refer to them as independent categories.

⩾

Next, we look at combinations of categories with
p-values less than 0.05. For such a pair of categories, if
one of them has similar text input scenarios in more
than 5 app types, it indicates that it is common enough
to be regarded as an independent category. The
threshold for universality 5 is set empirically based on
our manual inspection of representative samples. If
both categories are very universal, the one with similar
scenarios in more app types is an independent category,
while the other one is not. If they have similar
scenarios in an equal number (5) of app types, then

Table 1 Detailed information for top-5 text input categories.
Name Brief description Percentage (%) Attribute Independent

Information-search-news Input news keywords and search 5.9 News headlines[12] Yes
Health-host-height Input the user’s height on the profile page 4.7 Height[10] No

Travel-map-destination Input the destination on the navigation/
booking page 4.3 Neighbourhood_group[20] No

Social-profile-country Input the country the user is from 2.8 Tweet_location[15] Yes
Shopping-product-name-search Input a product name and search 2.4 Product_name[17] No

Note: The columns respectively denote the classes’ names (Name, i.e., input context vector), a brief description of the scenario of the
text input category (Brief description), the percentage it occupies among all text inputs in Rico (Percentage), its corresponding attribute
in public datasets (Attribute), and whether it is an independent category or not.

 Hongyi Wang et al.: CamDroid: Context-Aware Model-Based Automated GUI Testing for Android Apps 61

both are considered independent.
This process allows us to identify all the independent

text input categories, while the remaining categories
are considered non-independent. Finally, the 81 text
input categories are classified into 33 independent ones
and 48 non-independent ones. The pipeline for this
classification is shown in Fig. 3 and the results of the
top-5 categories are recorded in Table 1.

After that, we utilize the Residual Sum of Squares
(RSS)[35] and Goodness Of Fit (GOF)[36] tests to study
the statistical distribution of the content of each
independent category. Due to the distribution of an
independent category may vary across different types
of apps, we perform fitting for each app class.
Furthermore, we employ a GAN[37] to learn the
relationship between the content of non-independent
and independent categories. The GAN takes the
content of all independent ones as input and outputs the
corresponding content for all non-independent ones. In
this method, we obtain the distributions and
dependency relationships among various text input
categories, which prepares us for the automatic
generation.
3.3.3　Text input generation pipeline
The pipeline is divided into two stages: pre-test and in-
test. Before the test, CamDroid utilizes the knowledge
from Section 3.3.2 to generate all the potential inputs,
i.e., the content of the 81 text input categories.

CamDroid determines the distribution functions for
each independent category based on the app type. It
then generates their text inputs using these distribution
functions. Then, these text inputs are input into the
trained GAN model to produce content of all non-
independent categories. During the test, if an event
with text input is selected, CamDroid encodes its
context into a feature vector with the method described
in Section 3.3.1. It calculates the BERTScore between
this vector and each of the 81 input context vectors.
CamDroid then selects the pre-generated content
corresponding to the input context vector with the
highest score to fill in.

3.4　Implementation

The prototype of CamDroid is implemented based on
the source of Android Monkey and includes server and
client components. The client part can be installed and
used directly through Android Debug Bridge (ADB)
without any additional modifications to the device or
the app under test. It is compatible with both physical
and virtual devices and supports Android 10−13. The
selection of events and the generation of text inputs are
carried out on the server side, and the historical context
information is stored in an online database. Therefore,
CamDroid only occupies a minimal amount of
hardware resources on the device.

4　Evaluation

We evaluate CamDroid on 20 widely-used apps from
Google Play and compare its performance with 3 state-
of-the-art automated testing tools i.e., Monkey[22],
APE[6], and Fastbot2[7]. The highlights are as follows:

● Compared with the field-renowned baselines,
CamDroid improves the average (median) activity
coverage by 1.25× to 3.69× (1.27× to 5.45×).

● Within the time limitation of industrial app testing,
CamDroid detects 1.89× to 8.50× more crashes than
the baselines.

● The learning-based text input generation approach
alone improves the activity coverages of CamDroid
and all the baselines by 1.13× to 1.19×.

4.1　Experimental setup

Setup. All tools can run without modifications to apps
and devices. We conduct parallel tests on four mobile
phones with the same configuration (i.e., Snapdragon
855 2.84 GHz CPU, 6 GB RAM, and Android
11 operating system) to mitigate potential bias. We

Category A

Loop:
Category B

in the same dataset

F-testing

p-value ≤ 0.05

Dose A appear in more
than 5 app types ?

Dose B appear in more
than 5 app types ?

Last category?

Independent
Non-independent

Independent Which category appears
 in more app types? Non-independent

Independent

No

No

No

No

Yes

A B

Yes

Yes

Yes

Fig. 3 Pipeline of classifying text input categories into
independent and non-independent ones.

 62 Tsinghua Science and Technology, February 2025, 30(1): 55−67

choose Android 11 because it had the highest market
share when we started our development (Jan. 2023),
and it can cover the new functions and performance
improvements introduced in Android 10 compared to
Android 9[38]. Following previous work[6, 24, 39], the
four tools are set to perform a 1-hour test on each app.
Each test is repeated 5 times. The average activity
coverage and the total number of detected crashes are
used to evaluate their performance.

⩽ 30

Benchmark collection. We select 20 widely-used
apps as our test subjects. Specifically, for each of the
10 app types mentioned in Section 3.3.1, we randomly
choose 2 apps with high downloads on Google Play.
We filter out apps if (1) they contain too few activities
(); (2) they have no text input widgets; (3) their
view hierarchy files are inaccessible by UIAutomator[40];
and (4) one or more baselines crash on them. We
present the basic information of the 20 selected apps in
Table 2.

4.2　Performance on benchmark apps

Figure 4 illustrates the activity coverage of four tools
across the 20 apps. It is evident that CamDroid

achieves the highest coverage on each app. Its average
(median) activity coverage on the 20 apps is 3.69×
(5.45×), 1.94× (2.11×), 1.25× (1.27×) higher than
Monkey, APE, and Fastbot2, respectively.
Furthermore, CamDroid performs well regardless of
app’s type and number of activities, which indicates its
universality.

Overall, CamDroid shows a more pronounced
improvement over the baselines in apps with more
activities, such as Booking and AliExpress. This is
because the baselines face more difficulties in
comprehensively exploring these complex apps. In
contrast, apps with fewer activities are more prone to
reaching saturation, limiting the potential for
enhancement. Relatively, all four tools exhibit poorer
performance on Dianping, Weibo, and Facebook. This
is due to the strong interactivity of these three apps,
where automated testing tools still face certain gaps
compared to human users.

In terms of crash detection, as shown in Fig. 5,
CamDroid also performs the best. Since these apps
undergo thorough test before being released, the
number of crashes uncovered by these tools is
relatively low. Nevertheless, CamDroid, with its high
testing efficiency, manages to discover 34 crashes
across the 20 apps, whereas Monkey, APE, and
Fastbot2 only find 4, 8, and 18 crashes, respectively.
All the crashes detected by CamDroid can be
reproduced reliably.

4.3　Ablation study

We conduct ablation study to explore the effectiveness
of our model-based testing tool and learning-based text
input generation method. We integrate the text
generation method into Monkey, APE, and Fastbot2,
and test them following the approach described in

Table 2 Mobile apps used for testing.

ID App Type

Number of
downloads
on Google

Play

Total
activities

1 Dianping Travel > 1×106 535
2 Weibo Social > 1×107 778
3 Facebook Social > 5×109 862
4 Netease News Information > 1×104 249

5 Youtube Video
streaming > 1×1010 55

6 Kugou Music Entertainment > 5×104 258

7 iQiyi Video
streaming > 5×107 279

8 Resso Music Entertainment > 5×107 53
9 Booking Travel > 5×108 295
10 YahooFinance Finance > 1×107 92
11 Tencent News Information > 1×105 149
12 Vested Finance > 5×105 31
13 Fitbit Health > 5×107 456
14 Kindle Reading > 1×108 142
15 Fizzo Novel Reading > 5×104 118
16 Amazon Shopping > 5×108 85
17 AliExpress Shopping > 5×108 379
18 Google Map Maps > 1×1010 36
19 Citymapper Maps > 1×107 100
20 Fasting Health > 1×107 94

Ac
tiv

ity
 c

ov
er

ag
e

(%
)

Fig. 4 Results of activity coverage by CamDroid and other
tools.

 Hongyi Wang et al.: CamDroid: Context-Aware Model-Based Automated GUI Testing for Android Apps 63

Section 4.1. We also evaluate the performance of
CamDroid without the text input generation. The
results in Table 3 illustrate that both aspects of our
efforts contribute to CamDroid's overall performance.

It can be observed that our text input generation
method improves the activity coverage of Monkey,
APE, and Fastbot2 by 1.13×, 1.19×, and 1.15×,
respectively. CamDroid, with text input generation,
achieves a coverage increase of 1.15× compared to the

one without it. Relatively speaking, Monkey shows the
lowest improvement, which can be attributed to its
lower activity coverage, thus triggering fewer pages
containing text input widgets. On the other hand, APE
demonstrates the highest improvement. This is because
both Fastbot2 and CamDroid already achieve high
activity coverages, and their effectiveness may easily
reach saturation. The numbers of crashes discovered by
Monkey, APE, and Fastbot2 increase by 1.75× (7 vs. 4),
1.89× (15 vs. 8), and 1.78× (32 vs. 18), respectively.

Additionally, as shown in Table 3, CamDroid
without text input generation (referred to as C-T) also
performs better than the baselines. Its average activity
coverage is 16.7%, which is 3.21× higher than Monkey
(5.2%), 1.69× higher than APE (9.9%), and 1.09×
higher than Fastbot2 (15.3%). It discovers a total of
21 unique crashes, which are 5.25×, 2.62×, and 1.17×
as many as Monkey (4), APE (8), and Fastbot2 (18).

5　Related Work

Our work integrates learning-based text input
generation with model-based automated GUI testing

U
nc

ov
er

ed
 c

ra
sh

es

Fig. 5 Results of crash detection by CamDroid and other
tools.

Table 3 Activity coverage and crash detection with automated GUI testing tool with and without text input generation.

ID
Activity coverage (%) # Uncovered crashes

M M+T A A+T F F+T C-T C M M+T A A+T F F+T C-T C
1 2.2 2.6 ↑ 3.2 3.6 ↑ 4.7 5.2 ↑ 4.9 5.6 ↑ 0 0 − 1 1 − 0 2 ↑ 1 2 ↑
2 2.1 2.3 ↑ 3.7 4.5 ↑ 5.5 6.4 ↑ 5.8 6.6 ↑ 0 1 ↑ 0 1 ↑ 1 1 − 2 2 −
3 2.6 3.0 ↑ 4.8 5.0 ↑ 5.8 6.7 ↑ 6.4 8.0 ↑ 0 0 − 0 0 − 1 1 − 1 1 −
4 1.6 1.6 − 3.2 3.6 ↑ 5.6 7.6 ↑ 6.4 8.0 ↑ 0 0 − 0 0 − 1 2 ↑ 1 3 ↑
5 1.8 1.8 − 3.6 3.6 − 5.5 7.3 ↑ 7.3 9.0 ↑ 0 0 − 1 1 − 1 2 ↑ 1 2 ↑
6 1.9 2.3 ↑ 5.4 5.8 ↑ 8.5 9.3 ↑ 9.7 10.9 ↑ 0 0 − 0 0 − 1 1 − 1 1 −
7 3.6 3.9 ↑ 7.2 8.2 ↑ 10.4 11.1 ↑ 10.8 12.2 ↑ 0 0 − 0 0 − 1 1 − 1 2 ↑
8 1.9 3.8 ↑ 7.5 7.5 − 13.2 13.2 − 13.2 15.6 ↑ 1 1 − 0 1 ↑ 0 2 ↑ 1 1 −
9 7.1 7.1 − 9.5 11.9 ↑ 14.2 17.3 ↑ 15.9 17.4 ↑ 0 0 − 0 0 − 1 1 − 0 1 ↑
10 3.3 5.4 ↑ 7.6 9.8 ↑ 16.3 18.5 ↑ 18.5 20.6 ↑ 0 1 ↑ 1 1 − 1 1 − 1 1 −
11 10.1 10.1 − 14.1 16.8 ↑ 16.8 19.5 ↑ 19.5 20.8 ↑ 1 1 − 1 2 ↑ 1 2 ↑ 2 2 −
12 6.5 6.5 − 12.9 12.9 − 16.1 19.4 ↑ 16.1 20.9 ↑ 0 0 − 1 2 ↑ 1 2 ↑ 1 2 ↑
13 2.0 3.1 ↑ 11.2 15.4 ↑ 18.4 23.5 ↑ 19.5 22.7 ↑ 0 1 ↑ 0 1 ↑ 1 2 ↑ 0 1 ↑
14 7.0 9.2 ↑ 14.1 16.9 ↑ 18.3 21.8 ↑ 18.3 22.9 ↑ 1 1 − 0 0 − 1 1 − 2 2 −
15 5.1 5.1 − 11.9 15.3 ↑ 17.8 19.5 ↑ 20.3 23.0 ↑ 0 0 − 0 0 − 1 1 − 1 2 ↑
16 5.9 5.9 − 12.9 15.3 ↑ 21.2 22.4 ↑ 22.4 26.2 ↑ 0 0 − 1 1 − 2 2 ↑ 1 2 ↑
17 4.0 5.0 ↑ 10.0 14.2 ↑ 20.3 21.9 ↑ 23.5 26.5 ↑ 0 0 − 1 1 − 2 2 − 2 3 ↑
18 5.6 8.3 ↑ 11.1 13.9 ↑ 19.4 22.2 ↑ 22.2 27.0 ↑ 0 0 − 0 1 ↑ 0 2 ↑ 0 1 ↑
19 19.0 21.0 ↑ 25.0 26.0 ↑ 31.0 35.0 ↑ 31.0 35.0 ↑ 1 1 − 1 1 − 0 2 ↑ 0 1 ↑
20 10.6 10.6 − 19.1 26.6 ↑ 36.2 44.7 ↑ 42.6 47.3 ↑ 0 0 − 0 1 ↑ 1 2 ↑ 2 1 −

Note: “M” denotes Monkey, “A” denotes APE, and “F” denotes Fastbot2. “M+T”, “A+T”, and “F+T” denote Monkey, APE, and
Fastbot2 with our text input generation method. “C-T” denotes CamDroid without text input generation. “C” denotes CamDroid. “↑”
means performance increase of automated testing tools after integrating text input generation and “−” means no growth.

 64 Tsinghua Science and Technology, February 2025, 30(1): 55−67

for Android apps. CamDroid automates the GUI testing
of Android apps using a combinatorial model with the
one-step guidance of event-activity transitions and the
multi-step guidance of reinforcement learning, and
generates text inputs like real users with a GAN based
on public datasets. We review related literature in this
section.

Monkey[22] is the most classical and lightweight tool
to perform black box testing. Given that the exploration
strategy of Monkey is completely random, Monkey
lacks extensibility and is easy to bypass intentionally.
To strategically automate the GUI testing for Android
apps, learning-based approaches have been widely
studied[8, 41, 42]. Humanoid[8] is a representative one that
uses a deep neural network model to learn how users
choose UI actions from human interaction traces. Such
approaches require specific sequential trace data and in
the early stage of the test, they have similar
performance with the random strategy.

Since the GUI switches of apps can be modeled as
state transitions via UI actions, a plethora of model-
based testing approaches[6, 7, 25, 43] emerge. Recently,
APE, a practical model-based approach via dynamic
model abstraction, has significantly advanced the state-
of-the-art model-based techniques[6]. Furthermore,
based on the implementation of APE, Fastbot2[7] is
proposed by ByteDance and achieves outstanding
industrial success. However, when encountering
scenarios with text input requirements, these methods
just randomly input and thus possibly miss the hidden
activities with specific inputs to reach.

To fill the above gap, many efforts have been devoted
to generating text inputs like real users[27, 44, 45].
Existing text input generation methods either rely on
large amounts of manual text input samples and thus
lack generalizability[44], or adopt heavy-weight
language models requiring undesirable prompt
processing time[27]. Different from them, CamDroid
achieves high input efficiency, as well as good
generation effects with the help of the generation-and-
selection pipeline. In addition, CamDroid considers the
correlations of multiple text inputs during a single test,
resulting in more realistic behaviors.

6　Conclusion

This paper presents a context-aware model-based GUI
testing approach for Android apps, named CamDroid.
Through combining the one-step guidance of event-
activity transitions and the multi-step guidance of

reinforcement learning, CamDroid leverages the
context knowledge of previous tests to efficiently and
effectively explore app activities. Moreover, CamDroid
efficiently generates text inputs regarding the GUI
context like real users through pre-training a GAN
based on public datasets when encountering GUI
widgets requiring text inputs. Experiments with
20 widely-used apps from Google Play show that
CamDroid outperforms 3 state-of-the-art testing tools
in terms of both activity coverage and number of
detected crashes within industrial testing time
limitation.

Acknowledgment

This work was supported by the National Key R&D
Program of China (No. 2022YFB4500703), the National
Natural Science Foundation of China (Nos. 61902211 and
62202266), the China Postdoctoral Science Foundation
(No. 2022M721831), and Microsoft Research Asia (No.
100336949).

References

 Number of android apps, https://www.appbrain.com/stats/
number-of-android-apps, 2022.

[1]

 L.i Gong, Z. Li, H. Wang, H. Lin, X. Ma, and Y. Liu,
Overlay-based android malware detection at market
scales: Systematically adapting to the new technological
landscape, IEEE Transactions on Mobile Computing, vol.
21, no.12, pp. 4488–4501, 2021.

[2]

 L. Gong, H. Lin, Z. Li, F. Qian, Y. Li, X. Ma, and Y. Liu,
Systematically landing machine learning onto market-
scale mobile malware detection, IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 7, pp.
1615–1628, 2020.

[3]

 L. Gong, Z. Li, F. Qian, Z. Zhang, Q. Chen, Z. Qian, H.
Lin, and Y. Liu, Experiences of landing machine learning
onto market-scale mobile malware detection, in Proc. 15th
European Conference on Computer Systems, Bordeaux,
France, 2020, pp. 1–14.

[4]

 Y. Yan, Z. Li, Q. Chen, C. Wilson, T. Xu, E. Zhai, Y. Li,
and Y. Liu, Understanding and detecting overlay-based
android malware at market scales, in Proc. 17th Annual
International Conference on Mobile Systems,
Applications, and Services, Seoul, Republic of Korea,
2019, pp. 168–179.

[5]

 T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J.
Lu, and Z. Su, Practical GUI testing of android
applications via model abstraction and refinement, in
Proc. 41st International Conference on Software
Engineering, Montreal, Canada, 2019, pp. 269–280.

[6]

 Z. Lv, C. Peng, Z. Zhang, T. Su, K. Liu, and P. Yang,
Fastbot2: Reusable automated model-based GUI testing
for android enhanced by reinforcement learning, in Proc.

[7]

 Hongyi Wang et al.: CamDroid: Context-Aware Model-Based Automated GUI Testing for Android Apps 65

37th International Conference on Automated Software
Engineering, Rochester, MI, USA, 2022, pp. 1–5.
 Y. Li, Z. Yang, Y. Guo, and X. Chen, Humanoid: A deep
learning-based approach to automated black-box android
app testing, in Proc. 34th International Conference on
Automated Software Engineering, San Diego, CA, USA,
2019, pp. 1070–1073.

[8]

 H. Lin, J. Qiu, H. Wang, Z. Li, L.i Gong, D. Gao, Y. Liu,
F. Qian, Z. Zhang, P. Yang, et al., Virtual device farms for
mobile app testing at scale, in Proc. 29th ACM
International Conference on Mobile Computing and
Networking, Madrid, Spain, 2023, pp. 1–17.

[9]

 Body fat prediction dataset, https://www.kaggle.com/
datasets/fedesoriano/body-fat-prediction-dataset, 2021.

[10]

 Bank customers churn, https://www.kaggle.com/datasets/
santoshd3/bank-customers, 2018.

[11]

 A million news headlines, https://www.kaggle.com/
datasets/therohk/million-headlines, 2022.

[12]

 Movielens 20m dataset, https://www.kaggle.com/datasets/
grouplens/movielens-20m-dataset, 2018.

[13]

 Dataset for chatbot, https://www.kaggle.com/datasets/
grafstor/simple-dialogs-for-chatbot, 2020.

[14]

 Twitter friends, https://www.kaggle.com/datasets/
hwassner/TwitterFriends, 2016.

[15]

 Goodreads books, https://www.kaggle.com/datasets/
jealousleopard/goodreadsbooks, 2019.

[16]

 Amazon sales dataset, https://www.kaggle.com/datasets/
karkavelrajaj/amazon-sales-dataset, 2019.

[17]

 Medical transcriptions, https://www.kaggle.com/datasets/
tboyle10/medicaltranscriptions, 2018.

[18]

 China city dataset, https://github.com/brightgems/china_
city_dataset, 2017.

[19]

 New york city airbnb 2023, public data, https://www.
kaggle.com/datasets/godofoutcasts/new-york-city-airbnb-
2023-public-data, 2023.

[20]

 T. Zhang, V. Kishore, F. Wu, K. Weinberger, and Y.
Artzi, BERTScore: Evaluating text generation with bert,
arXiv preprint arXiv: 1904.09675, 2019.

[21]

 Google, Ui/application exerciser monkey, https://developer.
android.com/studio/test/monkey.html, 2018.

[22]

 R. Mahmood, N. Mirzaei, and S. Malek, Evodroid:
Segmented evolutionary testing of android apps, in Proc.
22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Hong Kong, China,
2014, pp. 599–609.

[23]

 K. Mao, M. Harman, and Y. Jia, Sapienz: Multi-objective
automated testing for android applications, in Proc. 25th
International Symposium on Software Testing and
Analysis, Saarbrucken, Germany, 2016, pp. 94–105.

[24]

 T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G.
Pu, Y. Liu, and Z. Su, Guided, stochastic model-based
GUI testing of android apps, in Proc. 11th Joint Meeting
on Foundations of Software Engineering, Paderborn,
Germany, 2017, pp. 245–256.

[25]

 Y. Li, Z. Yang, Y. Guo, and X. Chen, Droidbot: A
lightweight UI-guided test input generator for android, in
Proc. 39th International Conference on Software
Engineering Companion, Buenos, Aires, 2017, pp. 23–26.

[26]

 Z. Liu, C. Chen, J. Wang, X. Che, Y. Huang, J. Hu, and Q.[27]

Wang, Fill in the blank: Context-aware automated text
input generation for mobile GUI testing, in Proc. 45th
International Conference on Software Engineering,
Melbourne, Australia, 2023, pp. 1355–1367.
 K. De Asis, J Hernandez-Garcia, G Holland, and R.
Sutton, Multi-step reinforcement learning: A unifying
algorithm, in Proc. 32nd AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2018, pp. 2902–
2909.

[28]

 Y. Gao and F. Toni, Potential based reward shaping for
hierarchical reinforcement learning, in Proc. 24th
International Joint Conference on Artificial Intelligence,
Buenos Aires, Argentina, 2015, pp 3504–3510.

[29]

 B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan,
Y. Li, J. Nichols, and R. Kumar, Rico: A mobile app
dataset for building data-driven design applications, in
Proc. 30th Annual ACM Symposium on User Interface
Software and Technology, Quebec City, Canada, 2017, pp.
845–854.

[30]

 Google, Introduction of text input, https://developer.android.
com/reference/android/widget/EditText?hl=en, 2023.

[31]

 J. Devlin, M. Chang, K. Lee, and K. Toutanova. Bert: Pre-
training of deep bidirectional transformers for language
understanding, arXiv preprint arXiv: 1810.04805, 2018.

[32]

 T. Amemiya, Non-linear regression models, Handbook of
Econometrics, vol. 1, pp. 333–389, 1983.

[33]

 L. M. Lix, J. C. Keselman, and H. J. Keselman,
Consequences of assumption violations revisited: A
quantitative review of alternatives to the one-way analysis
of variance f test, Review of Educational Research, vol.
66, no. 4, pp. 579–619, 1996.

[34]

 J. A. Morgan and J. F. Tatar, Calculation of the residual
sum of squares for all possible regressions, Technometrics,
vol. 14, no. 2, pp. 317–325, 1972.

[35]

 E. B. Andersen, A goodness of fit test for the rasch model.
Psychometrika, vol. 38, pp. 123–140, 1973.

[36]

 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
Generative adversarial nets, in Proc. 28th Conference on
Neural Information Processing Systems, Montreal,
Canada, 2014, pp. 2672–2680.

[37]

 Y. Li, H. Lin, Z. Li, Y. Liu, F. Qian, L. Gong, X. Xin, and
T. Xu, A nationwide study on cellular reliability:
Measurement, analysis, and enhancements, in Proc. of
2021 ACM International Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, Virtual Event, 2021, pp. 597–609.

[38]

 S. Choudhary, A. Gorla, and A. Orso, Automated test
input generation for android: Are we there yet? in Proc.
30th International Conference on Automated Software
Engineering, Lincoln, NE, USA, 2015, pp. 429–440.

[39]

 Google, Ui automator, https://developer.android.com/
training/testing/other-components/ui-automator, 2021.

[40]

 W. Choi, G. Necula, and K. Sen, Guided GUI testing of
android apps with minimal restart and approximate
learning, ACM Sigplan Notices, vol. 48, no. 10, pp.
623–640, 2013.

[41]

 C. Degott, N. B. Jr, and A. Zeller, Learning user interface
element interactions, in Proc. 28th ACM SIGSOFT

[42]

 66 Tsinghua Science and Technology, February 2025, 30(1): 55−67

International Symposium on Software Testing and
Analysis, Beijing, China, 2019, pp. 296–306.
 S. Hao, B. Liu, S. Nath, W. Halfond, and R. Govindan,
Puma: Programmable ui-automation for large-scale
dynamic analysis of mobile apps, in Proc. 12th Annual
International Conference on Mobile Aystems,
Applications, and Services, Bretton Woods, NH, USA,
2014, pp. 204–217.

[43]

 P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and[44]

L. Zeng, Automatic text input generation for mobile
testing, in Proc. 39th International Conference on
Software Engineering, Buenos, Aires, 2017, pp. 643–653.
 Y. He, L. Zhang, Z. Yang, Y. Cao, K. Lian, S. Li, W.
Yang, Z. Zhang, M. Yang, Y. Zhang, et al., Textexerciser:
Feedback-driven text input exercising for android
applications, in Proc. 41st IEEE Symposium on Security
and Privacy, San Francisco, CA, USA, 2020, pp.
1071–1087.

[45]

Hongyi Wang received the BEng degree
from Tsinghua University, China in 2021.
She is working towards the PhD degree at
School of Software, Tsinghua University,
Beijing, China. Her research areas mainly
include network measurement and machine
learning.

Yang Li received the BEng and MEng
degrees from Tsinghua University, China
in 2018 and 2021, respectively. He is
working towards the PhD degree at School
of Software, Tsinghua University, Beijing,
China. His research areas mainly include
big data analysis, network measurement,
and machine learning.

Jing Yang received the BEng degree from
Tongji University, China in 2023. She is
currently a master student at School of
Software, Tsinghua University, Beijing,
China. Her research areas mainly include
network measurement and machine
learning.

Daqiang Hu received the BEng degree
from University of Electronic Science and
Technology of China in 1993, and the
MEng degree from Chongqing University
of Posts and Telecommunications, China
in 1996. He is the CEO of Hangzhou
Uusense Technology Inc., China. His
research areas mainly include automated

software testing and network measurement.

Zhi Liao received the BEng degree from
Central China Normal University in 2001.
He is the CTO of Hangzhou Uusense
Technology Inc., China. His research areas
mainly include automated software testing
and network measurement.

 Hongyi Wang et al.: CamDroid: Context-Aware Model-Based Automated GUI Testing for Android Apps 67

