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Abstract: Recent  years  have  witnessed  the  widespread  adoption  of  mobile  applications  (apps  for  short).  For

quality-of-service and commercial competitiveness, sufficient Graphical User Interface (GUI) testing is required

to verify the robustness of the apps. Given that testing with manual efforts is time-consuming and error-prone,

automated  GUI  testing  has  been  widely  studied.  However,  existing  approaches  mostly  focus  on  GUI

exploration  while  lacking  attention  to  complex  interactions  with  apps,  especially  generating  appropriate  text

inputs like real users. In this paper, we introduce CamDroid, a lightweight context-aware automated GUI testing

tool, which can efficiently explore app activities through (1) a model-based UI-guided testing strategy informed

by  the  context  of  previous  event-activity  transitions  and  (2)  a  data-driven  text  input  generation  approach

regarding the GUI context.  We evaluate CamDroid on 20 widely-used apps. The results show that CamDroid

outperforms non-trivial baselines in activity coverage, crash detection, and test efficiency.

Key words:  Android  app; automated  Graphical  User  Interface  (GUI)  testing; state  transition  model; text  input

generation

1　Introduction

With  the  widespread  popularity  of  mobile  phones,
mobile applications (apps) have been an indispensable
part of our daily life and have increased dramatically in
number  over  recent  years[1].  To  maintain  commercial
competitiveness  and  keep  user  loyalty,  it  is  crucial  to
adequately  test  these  apps  to  guarantee  their
robustness. In practice, Graphical User Interface (GUI)
testing  for  apps  heavily  involves  human  efforts.
However,  due  to  the  rapid  releasing  cycle  and  limited
human  resources,  manual  GUI  testing  is  time- and

resource-consuming  with  poor  activity  coverages  in
limited  test  time.  App  stores  also  rely  on  automated
testing  to  detect  malicious  apps  before  they  are
officially  released[2–5].  Therefore,  automated  GUI
testing  for  Android  apps  has  been  studied  extensively
in both academia and industry.

A variety of automated GUI testing approaches have
been  proposed,  including  model-based[6],  probability-
based[7],  and  deep  learning  based  methods[8] to
dynamically explore app activities by injecting actions
(like clicking and scrolling) according to the detection
and  analysis  of  the  current  GUI  components[9].
However,  since  quick  feedback  on  the  quality  of  new
app  features  is  required  whenever  a  new  internal
version  of  the  app  is  built[8],  these  approaches  are
mostly  inefficient  and  ineffective  in  terms  of
continuous  testing.  This  is  because  they  rerun  each
version from scratch without learning from the context
knowledge  of  previous  testing  runs  to  accelerate  the
current  test.  Moreover,  inside one testing run,  most  of
them  focus  on  the  GUI  exploration  algorithm
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improvement  while  lacking  attention  to  complex
interactions  with  apps,  especially  generating
appropriate  text  inputs  like  real  users,  leading  to
unsatisfactory app activity coverages.

To  fill  the  above  gaps,  we  propose  CamDroid,  a
context-aware  model-based  automated  GUI  testing
approach  for  Android  apps.  To  effectively  store  the
context knowledge of previous testing runs, CamDroid
abstracts the key identities of feasible widgets with the
allowed actions on the GUI page as events, and builds
a  state  transition  model  to  memorize  the  historical
probabilities  of  the  event-activity  transitions  (each  of
which represents the probability of an event to reach an
app  activity).  To  further  leverage  the  context
knowledge, CamDroid combines the one-step guidance
of  the  state  transition  model  with  the  multi-step
guidance  of  reinforcement  learning,  aiming  to  reach
deep activities requiring sequential event executions.

Furthermore, CamDroid learns the correlation of user
characteristics and app metadata (collected from public
datasets[10–20])  with  a  Generative  Adversarial  Network
(GAN)  and  generates  text  inputs  for  diverse  user
profiles  and  app  scenarios  (each  pair  of  profile  and
scenario  information  is  encoded  as  a  vector  named
“input  context  vector”,  which  is  corresponding  to  one
generated  text  input)  in  advance.  When  an  event
requiring text inputs is selected by the aforementioned
state transition model, CamDroid encodes the contexts
of  current  GUI  widget  identities  as  a  feature  vector,
and calculates BERTScores[21] of this vector with each
of  the  input  context  vectors  corresponding  to  the  text
inputs  generated  by  GAN.  Then  CamDroid  ranks  the
input  context  vectors  by  BERTScores  and  selects  the
text  input  corresponding  to  the  one  with  the  highest

score. In this way, CamDroid can generate suitable text
inputs  like  real  users,  and  certain  sequential  activities
requiring specific text inputs to reach can be effectively
explored.  The  architectural  overview  of  CamDroid  is
depicted in Fig. 1.

We implement the prototype of  CamDroid based on
the  source  of  Android  Monkey.  To  evaluate  the
effectiveness  of  CamDroid,  we  compare  CamDroid
with  state-of-the-art  testing  tools  (i.e.,  Monkey[22],
APE[6],  and Fastbot2[7])  on 20 large, widely-used apps
from  Google  Play.  Experiment  results  show  that
CamDroid  achieves  1.25×  (1.27×)  higher  average
(median)  activity  coverage  than  the  best  baseline
within  one  hour.  Though  the  apps  have  been  well
tested, CamDroid manages to find 34 unique crashes in
one hour, while the best baseline Fastbot2 finds 18. We
also  conduct  ablation  study  to  further  demonstrate  the
effectiveness of our text input generation technique and
its adaptability to other testing tools. Results show that
the  proposed  text  input  generation  technique  can
improve  the  activity  coverages  of  Monkey,  APE,  and
Fastbot2 by 1.13×, 1.19×, and 1.15×, respectively.

Roadmap. The  remainder  of  the  paper  is  organized
as follows. In Section 2, we illustrate the problem and
challenges.  In  Section  3,  we  present  our  algorithm
CamDroid.  In  Section  4,  we  introduce  the  prototype
setting  and  the  evaluation  results.  We  survey  the
related  works  in  Section  5 and  conclude  this  paper  in
Section 6.

2　Background and Motivation

In  this  section,  we  introduce  the  problem  and
challenges  of  the  automated  GUI  testing  for  Android
apps, especially issues related to text input generation.
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Fig. 1    Architectural overview of CamDroid.
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Furthermore,  we  uncover  why  existing  methods
struggle to address these challenges.

2.1　Problem

With  the  rapid  growth  of  the  Android  app  market,
ensuring  the  quality  and  reliability  of  Android  apps
becomes  a  critical  concern  for  developers.  However,
mobile apps have short update cycles and encompass a
wide  range  of  scenarios.  These  characteristics  make
comprehensive  testing  of  mobile  apps  challenging.
Traditional manual testing is  not only time-consuming
and  labor-intensive  but  also  prone  to  overlooking
corner cases. As a result, there is a growing demand for
effective and efficient automated testing tools that  can
streamline  the  testing  process,  improve  the  testing
coverage, and enhance the quality of Android apps.

2.2　Challenges

(1) Vast and dynamically changing search space
Considering  that  a  mobile  app  has  hundreds  of

activities  and  potentially  thousands  of  widgets,  the
search space for app testing is very extensive. Random
testing tools, like Monkey[22], suffer from getting stuck
in  loops  early  and  no  longer  making  progress.
Additionally,  since  GUI  pages  often  update
dynamically, sometimes even a simple backward action
fails  to  return  to  the  exact  previous  GUI  page.
Consequently,  the  effectiveness  of  search-based  tools
based on graph traversal algorithms[23, 24] is not ideal.

Model-based  tools[6, 7, 25] abstract  GUI  trees  into
different states and regard the page changes caused by
events as transitions between states.  They adapt to the
dynamic search space by adjusting state abstractions or
transition  relationships.  However,  simply  defining
different GUI pages as different states leads to a large
state space, thus reducing the testing efficiency.

Some  model-based  tools  leverage  coarse-grained
abstractions to tackle the problem. Unfortunately, they
face  low  accuracy  in  modeling  app  behaviors.  Take
Fastbot2[7] for  example,  it  may  consider  two  events
with  different  functionalities  as  the  same  one,  which
may mislead event selections. This limitation makes it
only  suitable  for  specific  apps  (i.e.,  Douyin  and
Toutiao)  and  less  effective  for  others.  Therefore,
balancing the  trade-off  between the  size  and precision
of states is untrivial for model-based tools.

Worse still, some actions lead to irreversible changes
in  GUI  pages  and  result  in  great  differences  between
the search space before and after performing them. For

example, a variety of pages cannot be accessed without
the login operation. On the other hand, some activities
can  only  be  reached  when  the  app  is  not  logged  in.
However, existing tools fail to handle them properly.

Additionally,  a  model-based  tool  needs  to  initialize
its  model  at  the  beginning  of  the  testing.  Considering
the  vast  search  space,  the  initialization  can  be  time-
consuming.  For  industrial  app  development,  a  single
version  update  for  an  app  rarely  undergoes  heavy-
weight  changes,  which  means  that  the  model  built  in
previous  testing  can  be  somehow  reusable.  However,
most  model-based  tools  fail  to  leverage  this
characteristic  and  instead  rebuild  the  model  from
scratch  after  each  version  update,  which  is  ineffective
and inefficient.

(2) Text input generation
Most  existing  tools  only  focus  on  GUI  exploration,

while  lacking  attention  to  complex  interaction  with
apps  like  text  input  generation.  They  just  perform
completely  random  inputs  or  input  a  few  fixed
words[25, 26].  However,  most  apps  contain  pages  that
require meaningful text inputs in the preceding page to
proceed. As shown in Fig. 2, the test will be hindered if
the tool can not enter meaningful content in the search
box  of  X  (former  name  Twitter).  Therefore,  testing
tools  failing  to  generate  valid  text  inputs  struggle  to
access  these  pages,  resulting  in  limited  activity
coverages and difficulties in surpassing the bottleneck.

Automated text  input  generation is  challenging.  The
algorithm  needs  to  generate  text  that  conforms  to  the
GUI  context  and  satisfies  constraints,  requiring  strong
Natural  Language  Processing  (NLP)  capabilities.
Although  the  Large  Language  Model  (LLM)
demonstrates  remarkable  performance  in  the  field  of
NLP,  applying  the  inference  of  such  a  model  for  the
input generation of app testing[27] would entail  several
seconds  on  generating  and  encoding  the  prompt  for
each  text  input.  Consequently,  the  whole  testing
process  would  be  slowed  down  by  the  inference
overhead  of  the  LLM,  resulting  in  unsatisfactory  test
efficiency.  As  a  result,  maintaining  test  efficiency
without  significantly  reducing the quality  of  generated
text inputs is difficult.

Additionally,  correlations  may  exist  among  a  real
user’s  multiple  text  inputs  while  interacting  with  an
app. For example, when a user purchases a flight ticket
and  then  proceeds  to  book  accommodation  in  a  travel
app,  the  destination  of  the  ticket  and  the  city  of  the
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accommodation typically are the same.
However,  realizing  the  above  insight  in  practice  is

challenging. First, there is no public dataset of real user
text  inputs  while  using  apps,  while  collecting  data
manually is time-consuming, labor-intensive, and lacks
diversity.  Therefore,  it  is  difficult  to  conduct  a  large-
scale  study  on  interrelationships  among  text  input
scenarios within the same app. Second, further utilizing
previous text inputs and user information for real-time
text  generation  can  lead  to  even  longer  prompt
processing time and lower efficiency.

3　Approach

In this section, we present CamDroid, a context-aware
model-based  automated  GUI  testing  tool  that  tackles
the above challenges. Our efforts lie in two folds. First,
we  propose  a  model-based  testing  tool  where  we
carefully  design  its  state  abstraction  and  enable  it  to
leverage  historical  context  knowledge  from  previous
testing  runs.  Second,  we  introduce  a  lightweight
approach to generate text inputs by incorporating GUI
widget  identities,  user  characteristics,  and  app
metadata.

3.1　Overview of CamDroid

The  workflow  of  CamDroid  is  illustrated  in Fig.  1,
which  mainly  consists  of  two  components:  event
selection  and  text  input  generation.  CamDroid  first
utilizes  the  GUI  info  to  extract  feasible  events.  The
event selection component then combines the one-step
guidance  of  the  state  transition  model  with  the  multi-
step  guidance  of  reinforcement  learning  to  choose  the
best  event.  The  text  input  generation  component  is
activated  when  an  event  requiring  text  inputs  is
selected. This component utilizes a trained GAN to text

inputs  for  various  possible  scenarios  (each  is  encoded
as  an  input  context  vector)  before  the  test.  During  the
test,  it  encodes  the  current  GUI  context  into  a  feature
vector  and  calculates  BERTScores[21] of  this  vector
with  each  of  the  input  context  vectors.  It  then  selects
the  text  corresponding  to  the  highest-scoring  input
context vector to fill in.

3.2　Model-based testing tool

3.2.1　Model abstraction

M

M
p (e,a)

In our model-based testing tool, we regard each activity
as  a  state,  and  the  transitions  between  states  represent
the switchings between activities. The key identities of
interactive  widgets  on  each  page  are  extracted  and
considered  as  events.  In  this  way,  we  construct  a
probability  model  to  represent  the  relationships
between activities and widgets in an app. Specifically,

 stores  event-activity  transition  probabilities,  each
one of which is denoted as , where

e●  represents for an event,
a●  represents for an app activity, and
p e

a
●  represents the probability of the event  to reach

the app activity .
M

ei p (ei,a j)
ei

During the test, the model  is updated whenever an
event, e.g., , is executed. The value of every 
that  associates  with  is  updated  according  to  the
following rule:
 

p (ei,a j) =
n (ei,a j)

n (ei)
(1)

n (ei,a j)
a j ei n (ei)

ei

M

where  represents the number of times reaching
 after  executing ,  and  represents  the  total

execution  times  of .  In  order  to  reuse  the  context
information  from  previous  testing  runs,  CamDroid
stores the model  as well as total execution times of

 

Random text input

Meaningful text input
(e.g., a person’s name) 

Fig. 2    Example of text input in Android app.
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Meach  event.  will  be  reconstructed  from  the
aforementioned values before the next testing run.

M

activity
content-description text resource-id

class-name allowed actions click
long click scroll text input

Additionally,  if  each  widget  is  considered  as  an
individual event, the scale of  would be rather large.
Therefore,  we  carefully  design  abstract  rules  for
widgets  to  prevent  redundant  records  of  widgets  with
the same functionalities.  In  detail,  we classify widgets
into  the  same  event  if  they  share  the  following
6 properties:  the  to  which  the  widget
belongs, , , ,

,  and  (i.e., ,
, , and ). According to

sampling  observations,  there  are  tens  of  widget
attributes  that  contain  meaningful  representatives  of
functionalities.  Furthermore,  based  on  statistical
calculation results, the heterogeneity is most prominent
among the aforementioned 6 properties, resulting in an
effective abstraction.

text resource-ID
content-description

text

resource-ID

content-description

M

The  contents  of  the  widget’s , ,
and  sometimes overlap, as they
often  provide  a  brief  summary  of  the  widget’s
functionality, such as search or location. The reason for
recording all three properties is that some widgets may
have empty values  for  some of  them (this  is  also why
there  is  still  significant  heterogeneity  among  them).
Imagine  a  scenario  that  a  widget  only  has  one  non-
empty  property  of  these  three,  e.g.,  with  the
content “search”,  while  another  widget  only  has  one
non-empty  with  the  content “location”.
If,  unfortunately,  they  are  on  the  same  GUI  page  and
we  only  record ,  then  they
would  be  mistakenly  classified  as  the  same  event.  By
simultaneously  recording  these  properties,  we  ensure
an accurate abstraction of the GUI event. With the size
of  slightly  increased,  this  approach  guarantees  a
high precision for classifying the widgets into events.
3.2.2　One-step guidance for event selection

M
M

M

M
M

M

M

During  testing,  model  is  used  to  guide  event
selection.  However,  in  the  early  stages  of  the  test, 
only  has  limited  information.  Therefore,  event
selection  at  this  stage  is  relatively  random,  aiming  at
rapidly  initializing  model .  Specifically,  when  there
are still unexecuted events on a page, that is, events not
recorded  in ,  CamDroid  randomly  selects  one  and
updates  based  on  the  execution  result.  Once  the
information  in  is  sufficient,  it  can  be  utilized  to
further  explore  unreached  activities.  When  all  events
on  a  GUI  page  are  included  in ,  CamDroid  selects

Mevents  based  on  the  transition  probabilities  in ,
aiming to cover activities that have not been covered in
the current testing.

ei E

pr M

For  each  event  of  all  events  on  the  page,  we
calculate  the  probability  that  it  can  reach  a  new
activity,  and  select  the  event  according  to  the
probability distribution. The probability (represented as

) can be calculated according to ,
 

pr (ei) =
∑

a j<At

p (ei,a j) (2)

At

ei

ps (ei)
pr(ei)

where  is  the  set  of  activities  tested  in  the  current
testing  run.  The  probability  that  event  is  selected
(represented  as )  is  calculated  through  applying
the softmax function to ,
 

ps (ei) =
exp (α1× pr(ei))∑

e j∈E
exp (α1× pr(e j))

(3)

α1

α1× pr (ei) pr

pr

where  is  a  float  larger  than  1 and  is  set  as  1.25 in
CamDroid.  Here  we  use  the  scaled  probability

 instead of  to magnify the gaps among the
probabilities  assigned  to  different  events.  In  this  way,
events  with  higher  values  are  further  preferred,
leading to faster exploration of uncovered activities.

click scroll

Furthermore,  we  have  detailed  settings  towards  the
selection  of  events  and  actions  for  improving  the  test
efficiency  in  CamDroid  from  the  following  three
aspects.  First,  if  an  event  corresponds  to  multiple
widgets,  CamDroid  will  randomly  select  one  for
execution.  Second,  if  the  selected  event  has  multiple
executable  actions  (e.g.,  and ),
CamDroid  will  prioritize  actions  that  have  not  been
executed  or  have  been  executed  only  a  few  times.
Third, if an event on the current page has been selected
twice under the one-step guidance, it will not be chosen
for a time. This continues until  all  other events on the
page have been executed twice. Then their counters of
execution times in this stage will be reset to 0.
3.2.3　Multi-step guidance for event selection
Some activities may require sequential events to reach,
and  for  these  activities,  the  aforementioned  one-step
guidance  may  not  be  sufficient.  Reinforcement
learning,  on  the  other  hand,  enables  multi-step
decision-making.  Therefore,  we  have  incorporated  a
typical  reinforcement  learning  algorithm,  Q-learning,
into CamDroid to provide multi-step guidance.

The core of Q-learning is to utilize a Q-table to store
the  Q-values  of  actions  (events  in  CamDroid),  where
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t et

et

rt

at+1 Q (et)

the  Q-value  represents  the  benefits  that  an  action  can
bring. In our tool, the Q-value suggests the probability
of  reaching  new activities  in  the  future.  Then,  at  each
time  CamDroid selects an event  (no matter whether

 is  selected  under  one-step  guidance  or  multi-step
guidance),  observes  a  reward ,  enters  the  activity

, and updates the ,
 

Qnew(et) =(1−β)×Q (et) +
β× (Qs

t (et)+Qr
t (et)) (4)

β Qs
t (et)

et

rt et

Qr
t (et)

t t−1

where  is the learning rate and is set as 0.8.  is
the  reward  earned  from  this  event ,  including  the
immediate  reward  from  and  the  potential  future
rewards.  is  a  bonus  reward,  indicating  whether
the selection at  is better than that at .

Qs
t (et) is  calculated  by  the N-step  Sarsa  method[28]

for sequential decision guidance,
 

Qs
t (et) =rt +γrt+1+ · · ·+

γm−1rt+m−1+γ
mQ (et+m) (5)

γ m

rt+i

et+i t+ i

where  is the discount factor and is set as 0.5.  is the
number of steps taken into account for updating the Q-
values and set  as 3.  is  the immediate reward from
event  executed at time .

rt = re
t + ra

t re
t ra

t

The  design  of  the  reward  can  be  approached  from
two  perspectives.  From  the  aspect  of  events,  the
benefits  are  higher  when  executing  events  with  fewer
execution times but higher probabilities of reaching the
unvisited  activities.  From  the  aspect  of  activities,  the
benefits  are  higher  when  accessing  activities  with
fewer  visit  times  and  more  unexecuted  events  on  the
page.  Therefore, ,  where  and  are
calculated as follows:
 

re
t =

pr(et)√
n (et)+1

(6)

 

ra
t =

nne+0.5×nnt+
∑
ei∈Et

pr (ei)

√
n (at)+1

(7)

nne at

nnt

at

Et

at n (at) at

where  denotes the number of events on  that have
never been executed.  denotes the number of events
on  that have not been executed in the current testing
run but executed in previous ones.  denotes the set of
all  events on .  denotes the number of times 
is visited in this testing run.

Qr
t (et) is  designed  according  to  potential-based

reward shaping[29]:
 

Qr
t (et) = γ× rt − rt−1 (8)

rt rt−1

et et−1

t t−1

where  and  represent  instant  rewards  after
executing  and ,  respectively.  CamDroid  gets  an
additional reward if it performs better at  than .

ps

Similar to the one-step guidance, multi-step guidance
is  used  only  after  the  Q-table  contains  enough
information,i.e.,  when  all  the  events  on  the  page  have
been executed at least twice under the former guidance.
We still use the softmax function to calculate ,
 

ps(ei) =
exp (α2×Q(ei))∑

e j∈E
exp (α2×Q(e j))

(9)

α2where  is set as 10.
3.2.4　Restructure the testing pipeline
In  practice,  we  observe  that  there  is  a  non-trivial
number  of  operations  which  are  irreversible.
Benchmark experiments are conducted to identify such
actions  with  the  help  of  the  previous  model-based
testing  tool.  In  detail,  we  record  the  GUI  page  before
an operation is performed. Then the backward button is
clicked right after the operation, and the new GUI page
is  recorded.  We  repeat  the  above  steps  multiple  times
to  obtain  two  sets  of  GUI  pages,  and  calculate  the
difference between the two sets.  Significant difference
indicates  that  the  operation  is  irreversible.  The
benchmark  experiments  ultimately  yield  10+
irreversible operations.

To  cover  both  GUI  pages  before  and  after  these
operations, CamDroid intelligently select the timing to
perform  them.  When  an  irreversible  action  is
encountered,  CamDroid checks whether  the remaining
widgets  on  the  activity  have  been  selected  during  the
current test.  CamDroid selects the action only after all
the other widgets have been executed at least once.

3.3　Text input generation

To better understand the scenarios of text inputs as well
as their  categories and correlations in real  world apps,
we conduct  a  detailed research with one of  the largest
Android  UI  datasets  Rico[30].  Then  we  design  a
lightweight  tool  for  automated  text  input  generation
based  on  the  experience  from  the  aforementioned
study.

Especially, the research on correlations between text
inputs is not straightforward, due to the lack of datasets
of  real  users’ continuous  text  inputs.  Fortunately,  we
notice that  there are  abundant  datasets  containing user
information  from  various  apps,  including  basic  user
information,  user  preferences,  and  usage  patterns.
These pieces of information largely originate from the
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text  inputs  during  user  interactions.  Hence,  we  utilize
open datasets of app user profiles for our research.

In  addition,  in  order  to  address  the  problem  of  low
efficiency in real-time text input generation, CamDroid
performs the generation before testing.  During testing,
CamDroid  only  selects  the  appropriate  text  according
to the scenario, which greatly improves efficiency. The
detailed pipeline is explained in Section 3.3.3.
3.3.1　Text input categories

class-name

Rico,  the  dataset  we  used  for  analysis,  contains  UI
screenshots  and  their  view  hierarchy  files  from  over
9300  Android  apps.  We  filter  out  pages  that  contain
text input widgets by checking if  the  of a
widget  includes  the  keywords “EditText” and
“AutoCompleteTextView”[31].  As  widgets  related  to
login  are  handled  specifically  in  Section  3.2.4,  we  do
not consider them in the subsequent analysis.

Finally,  we  get  2866 pages  with  6846 text  inputs
from a total  of  2241 apps.  We classify these apps into
10 categories  referring  to  Google  Play,  i.e.,  finance,
information,  entertainment,  video  streaming,  social,
reading,  shopping,  health,  map,  and  travel,  with  each
category including 87 to 427 apps.

hint-text resource-id text

For  each  text  input,  we  utilize  the  contexts  of  the
GUI widget  it  belongs to along with the app metadata
to  describe  the  scenario.  The  contexts  include  the

, ,  and  properties  of  the
widget,  while  app  metadata  includes  the  app  category
and  the  activity  name.  We  tokenize  and  encode  these
identities  with  Bert[32],  a  well-established  and  widely
used model in the field of NLP. As a result, we obtain a
vectorized  representation  of  the  current  text  input
scenario,  which  we  refer  to  as  a  feature  vector.  Next,
we  cluster  the  6846 feature  vectors  to  explore  the
distribution  of  input  text  scenarios.  Specifically,
considering  our  large  data  scale,  we  employ  the
DBSCAN clustering algorithm. The similarity between
vectors is measured by BERTScore[21], a metric used to

evaluate  sentence  similarity.  We name each  text  input
category  by  decoding  the  feature  vector  of  its  cluster
centroid  (termed  input  context  vector).  We  ultimately
identify  81 classes  of  text  input  scenarios  and  list  the
detailed information for the top-5 classes in Table 1.
3.3.2　Correlations between different categories
According  to  the  text  input  categories  identified  in
Section 3.3.1, we select 11 datasets[10–20] to cover them.
We  associate  each  category  with  attributes  in  public
datasets  based  on  their  meanings.  Some  categories,
such  as  user  age  and  gender,  may  have
correspondences in multiple public datasets. Attributes
in public datasets that do not have a corresponding text
input  category  are  removed.  Next,  we  calculate
regression models[33] between each pair of attributes in
the  same  dataset,  and  then  perform  F-tests[34] on  the
obtained  models.  If  the p-value  of  F-statistic  is  less
than 0.05, it indicates a significant correlation between
them.

Because  not  all  inputs  depend  on  others,  we  further
divide these text input categories into independent and
non-independent  ones  based  on  the  results  of
correlation  calculations.  First,  we  examine  categories
with p-values higher than 0.05 for all other columns in
the  same  dataset.  In  other  words,  the  inputs  for  these
categories are independent  of  those in other  scenarios.
We refer to them as independent categories.

⩾

Next,  we  look  at  combinations  of  categories  with
p-values less than 0.05. For such a pair of categories, if
one  of  them  has  similar  text  input  scenarios  in  more
than 5 app types, it indicates that it is common enough
to  be  regarded  as  an  independent  category.  The
threshold for universality 5 is set empirically based on
our  manual  inspection  of  representative  samples.  If
both categories are very universal, the one with similar
scenarios in more app types is an independent category,
while  the  other  one  is  not.  If  they  have  similar
scenarios in an equal  number (  5)  of  app types,  then

 

Table 1    Detailed information for top-5 text input categories.
Name Brief description Percentage (%) Attribute Independent

Information-search-news Input news keywords and search 5.9 News headlines[12] Yes
Health-host-height Input the user’s height on the profile page 4.7 Height[10] No

Travel-map-destination Input the destination on the navigation/
booking page 4.3 Neighbourhood_group[20] No

Social-profile-country Input the country the user is from 2.8 Tweet_location[15] Yes
Shopping-product-name-search Input a product name and search 2.4 Product_name[17] No

Note: The columns respectively denote the classes’ names (Name, i.e., input context vector), a brief description of the scenario of the
text input category (Brief description), the percentage it occupies among all text inputs in Rico (Percentage), its corresponding attribute
in public datasets (Attribute), and whether it is an independent category or not.
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both are considered independent.
This process allows us to identify all the independent

text  input  categories,  while  the  remaining  categories
are  considered  non-independent.  Finally,  the  81 text
input categories are classified into 33 independent ones
and  48 non-independent  ones.  The  pipeline  for  this
classification  is  shown in Fig.  3 and the  results  of  the
top-5 categories are recorded in Table 1.

After  that,  we  utilize  the  Residual  Sum  of  Squares
(RSS)[35] and Goodness Of Fit (GOF)[36] tests to study
the  statistical  distribution  of  the  content  of  each
independent  category.  Due  to  the  distribution  of  an
independent  category  may  vary  across  different  types
of  apps,  we  perform  fitting  for  each  app  class.
Furthermore,  we  employ  a  GAN[37] to  learn  the
relationship  between  the  content  of  non-independent
and  independent  categories.  The  GAN  takes  the
content of all independent ones as input and outputs the
corresponding content for all non-independent ones. In
this  method,  we  obtain  the  distributions  and
dependency  relationships  among  various  text  input
categories,  which  prepares  us  for  the  automatic
generation.
3.3.3　Text input generation pipeline
The pipeline is divided into two stages: pre-test and in-
test.  Before the test,  CamDroid utilizes the knowledge
from Section 3.3.2 to  generate  all  the  potential  inputs,
i.e.,  the  content  of  the  81 text  input  categories.

CamDroid  determines  the  distribution  functions  for
each  independent  category  based  on  the  app  type.  It
then generates their text inputs using these distribution
functions.  Then,  these  text  inputs  are  input  into  the
trained  GAN  model  to  produce  content  of  all  non-
independent  categories.  During  the  test,  if  an  event
with  text  input  is  selected,  CamDroid  encodes  its
context into a feature vector with the method described
in Section 3.3.1. It  calculates the BERTScore between
this  vector  and  each  of  the  81 input  context  vectors.
CamDroid  then  selects  the  pre-generated  content
corresponding  to  the  input  context  vector  with  the
highest score to fill in.

3.4　Implementation

The  prototype  of  CamDroid  is  implemented  based  on
the source of Android Monkey and includes server and
client components. The client part can be installed and
used  directly  through  Android  Debug  Bridge  (ADB)
without  any  additional  modifications  to  the  device  or
the app under  test.  It  is  compatible  with both physical
and  virtual  devices  and  supports  Android  10−13.  The
selection of events and the generation of text inputs are
carried out on the server side, and the historical context
information is  stored in an online database.  Therefore,
CamDroid  only  occupies  a  minimal  amount  of
hardware resources on the device.

4　Evaluation

We  evaluate  CamDroid  on  20 widely-used  apps  from
Google Play and compare its performance with 3 state-
of-the-art  automated  testing  tools  i.e.,  Monkey[22],
APE[6], and Fastbot2[7]. The highlights are as follows:

●  Compared  with  the  field-renowned  baselines,
CamDroid  improves  the  average  (median)  activity
coverage by 1.25× to 3.69× (1.27× to 5.45×).

● Within the time limitation of industrial app testing,
CamDroid  detects  1.89×  to  8.50×  more  crashes  than
the baselines.

● The learning-based text input generation approach
alone  improves  the  activity  coverages  of  CamDroid
and all the baselines by 1.13× to 1.19×.

4.1　Experimental setup

Setup. All tools can run without modifications to apps
and devices.  We conduct  parallel  tests  on  four  mobile
phones  with  the  same  configuration  (i.e.,  Snapdragon
855  2.84  GHz  CPU,  6  GB  RAM,  and  Android
11 operating  system)  to  mitigate  potential  bias.  We
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Fig. 3    Pipeline  of  classifying  text  input  categories  into
independent and non-independent ones.
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choose  Android  11 because  it  had  the  highest  market
share  when  we  started  our  development  (Jan.  2023),
and  it  can  cover  the  new  functions  and  performance
improvements  introduced  in  Android  10 compared  to
Android  9[38].  Following  previous  work[6, 24, 39],  the
four tools are set to perform a 1-hour test on each app.
Each  test  is  repeated  5 times.  The  average  activity
coverage  and  the  total  number  of  detected  crashes  are
used to evaluate their performance.

⩽ 30

Benchmark  collection. We  select  20 widely-used
apps  as  our  test  subjects.  Specifically,  for  each  of  the
10 app types mentioned in Section 3.3.1, we randomly
choose  2 apps  with  high  downloads  on  Google  Play.
We filter out apps if (1) they contain too few activities
( );  (2)  they  have  no  text  input  widgets;  (3)  their
view hierarchy files are inaccessible by UIAutomator[40];
and  (4)  one  or  more  baselines  crash  on  them.  We
present the basic information of the 20 selected apps in
Table 2.

4.2　Performance on benchmark apps

Figure  4 illustrates  the  activity  coverage  of  four  tools
across  the  20 apps.  It  is  evident  that  CamDroid

achieves the highest coverage on each app. Its average
(median)  activity  coverage  on  the  20 apps  is  3.69×
(5.45×),  1.94×  (2.11×),  1.25×  (1.27×)  higher  than
Monkey,  APE,  and  Fastbot2,  respectively.
Furthermore,  CamDroid  performs  well  regardless  of
app’s type and number of activities, which indicates its
universality.

Overall,  CamDroid  shows  a  more  pronounced
improvement  over  the  baselines  in  apps  with  more
activities,  such  as  Booking  and  AliExpress.  This  is
because  the  baselines  face  more  difficulties  in
comprehensively  exploring  these  complex  apps.  In
contrast,  apps  with  fewer  activities  are  more  prone  to
reaching  saturation,  limiting  the  potential  for
enhancement.  Relatively,  all  four  tools  exhibit  poorer
performance on Dianping, Weibo, and Facebook. This
is  due  to  the  strong  interactivity  of  these  three  apps,
where  automated  testing  tools  still  face  certain  gaps
compared to human users.

In  terms  of  crash  detection,  as  shown  in Fig.  5,
CamDroid  also  performs  the  best.  Since  these  apps
undergo  thorough  test  before  being  released,  the
number  of  crashes  uncovered  by  these  tools  is
relatively  low.  Nevertheless,  CamDroid,  with  its  high
testing  efficiency,  manages  to  discover  34 crashes
across  the  20 apps,  whereas  Monkey,  APE,  and
Fastbot2 only  find  4,  8,  and  18 crashes,  respectively.
All  the  crashes  detected  by  CamDroid  can  be
reproduced reliably.

4.3　Ablation study

We conduct ablation study to explore the effectiveness
of our model-based testing tool and learning-based text
input  generation  method.  We  integrate  the  text
generation  method  into  Monkey,  APE,  and  Fastbot2,
and  test  them  following  the  approach  described  in

 

Table 2    Mobile apps used for testing.

ID App Type

Number of
downloads
on Google

Play

Total
activities

1 Dianping Travel > 1×106 535
2 Weibo Social > 1×107 778
3 Facebook Social > 5×109 862
4 Netease News Information > 1×104 249

5 Youtube Video
streaming > 1×1010 55

6 Kugou Music Entertainment > 5×104 258

7 iQiyi Video
streaming > 5×107 279

8 Resso Music Entertainment > 5×107 53
9 Booking Travel > 5×108 295
10 YahooFinance Finance > 1×107 92
11 Tencent News Information > 1×105 149
12 Vested Finance > 5×105 31
13 Fitbit Health > 5×107 456
14 Kindle Reading > 1×108 142
15 Fizzo Novel Reading > 5×104 118
16 Amazon Shopping > 5×108 85
17 AliExpress Shopping > 5×108 379
18 Google Map Maps > 1×1010 36
19 Citymapper Maps > 1×107 100
20 Fasting Health > 1×107 94

 

Ac
tiv

ity
 c

ov
er

ag
e 

(%
)

 
Fig. 4    Results of activity coverage by CamDroid and other
tools.
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Section  4.1.  We  also  evaluate  the  performance  of
CamDroid  without  the  text  input  generation.  The
results  in Table  3 illustrate  that  both  aspects  of  our
efforts contribute to CamDroid's overall performance.

It  can  be  observed  that  our  text  input  generation
method  improves  the  activity  coverage  of  Monkey,
APE,  and  Fastbot2 by  1.13×,  1.19×,  and  1.15×,
respectively.  CamDroid,  with  text  input  generation,
achieves a coverage increase of 1.15× compared to the

one without it. Relatively speaking, Monkey shows the
lowest  improvement,  which  can  be  attributed  to  its
lower  activity  coverage,  thus  triggering  fewer  pages
containing text input widgets. On the other hand, APE
demonstrates the highest improvement. This is because
both  Fastbot2 and  CamDroid  already  achieve  high
activity  coverages,  and  their  effectiveness  may  easily
reach saturation. The numbers of crashes discovered by
Monkey, APE, and Fastbot2 increase by 1.75× (7 vs. 4),
1.89× (15 vs. 8), and 1.78× (32 vs. 18), respectively.

Additionally,  as  shown  in Table  3,  CamDroid
without  text  input  generation (referred to  as  C-T)  also
performs better  than the  baselines.  Its  average activity
coverage is 16.7%, which is 3.21× higher than Monkey
(5.2%),  1.69×  higher  than  APE  (9.9%),  and  1.09×
higher  than  Fastbot2  (15.3%).  It  discovers  a  total  of
21 unique  crashes,  which  are  5.25×,  2.62×,  and  1.17×
as many as Monkey (4), APE (8), and Fastbot2 (18).

5　Related Work

Our  work  integrates  learning-based  text  input
generation  with  model-based  automated  GUI  testing
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Fig. 5    Results  of  crash  detection  by  CamDroid  and  other
tools.

 

Table 3    Activity coverage and crash detection with automated GUI testing tool with and without text input generation.

ID
Activity coverage (%) # Uncovered crashes

M M+T A A+T F F+T C-T C M M+T A A+T F F+T C-T C
1 2.2 2.6 ↑ 3.2 3.6 ↑ 4.7 5.2 ↑ 4.9 5.6 ↑ 0 0 − 1 1 − 0 2 ↑ 1 2 ↑
2 2.1 2.3 ↑ 3.7 4.5 ↑ 5.5 6.4 ↑ 5.8 6.6 ↑ 0 1 ↑ 0 1 ↑ 1 1 − 2 2 −
3 2.6 3.0 ↑ 4.8 5.0 ↑ 5.8 6.7 ↑ 6.4 8.0 ↑ 0 0 − 0 0 − 1 1 − 1 1 −
4 1.6 1.6 − 3.2 3.6 ↑ 5.6 7.6 ↑ 6.4 8.0 ↑ 0 0 − 0 0 − 1 2 ↑ 1 3 ↑
5 1.8 1.8 − 3.6 3.6 − 5.5 7.3 ↑ 7.3 9.0 ↑ 0 0 − 1 1 − 1 2 ↑ 1 2 ↑
6 1.9 2.3 ↑ 5.4 5.8 ↑ 8.5 9.3 ↑ 9.7 10.9 ↑ 0 0 − 0 0 − 1 1 − 1 1 −
7 3.6 3.9 ↑ 7.2 8.2 ↑ 10.4 11.1 ↑ 10.8 12.2 ↑ 0 0 − 0 0 − 1 1 − 1 2 ↑
8 1.9 3.8 ↑ 7.5 7.5 − 13.2 13.2 − 13.2 15.6 ↑ 1 1 − 0 1 ↑ 0 2 ↑ 1 1 −
9 7.1 7.1 − 9.5 11.9 ↑ 14.2 17.3 ↑ 15.9 17.4 ↑ 0 0 − 0 0 − 1 1 − 0 1 ↑
10 3.3 5.4 ↑ 7.6 9.8 ↑ 16.3 18.5 ↑ 18.5 20.6 ↑ 0 1 ↑ 1 1 − 1 1 − 1 1 −
11 10.1 10.1 − 14.1 16.8 ↑ 16.8 19.5 ↑ 19.5 20.8 ↑ 1 1 − 1 2 ↑ 1 2 ↑ 2 2 −
12 6.5 6.5 − 12.9 12.9 − 16.1 19.4 ↑ 16.1 20.9 ↑ 0 0 − 1 2 ↑ 1 2 ↑ 1 2 ↑
13 2.0 3.1 ↑ 11.2 15.4 ↑ 18.4 23.5 ↑ 19.5 22.7 ↑ 0 1 ↑ 0 1 ↑ 1 2 ↑ 0 1 ↑
14 7.0 9.2 ↑ 14.1 16.9 ↑ 18.3 21.8 ↑ 18.3 22.9 ↑ 1 1 − 0 0 − 1 1 − 2 2 −
15 5.1 5.1 − 11.9 15.3 ↑ 17.8 19.5 ↑ 20.3 23.0 ↑ 0 0 − 0 0 − 1 1 − 1 2 ↑
16 5.9 5.9 − 12.9 15.3 ↑ 21.2 22.4 ↑ 22.4 26.2 ↑ 0 0 − 1 1 − 2 2 ↑ 1 2 ↑
17 4.0 5.0 ↑ 10.0 14.2 ↑ 20.3 21.9 ↑ 23.5 26.5 ↑ 0 0 − 1 1 − 2 2 − 2 3 ↑
18 5.6 8.3 ↑ 11.1 13.9 ↑ 19.4 22.2 ↑ 22.2 27.0 ↑ 0 0 − 0 1 ↑ 0 2 ↑ 0 1 ↑
19 19.0 21.0 ↑ 25.0 26.0 ↑ 31.0 35.0 ↑ 31.0 35.0 ↑ 1 1 − 1 1 − 0 2 ↑ 0 1 ↑
20 10.6 10.6 − 19.1 26.6 ↑ 36.2 44.7 ↑ 42.6 47.3 ↑ 0 0 − 0 1 ↑ 1 2 ↑ 2 1 −

Note: “M” denotes Monkey, “A” denotes APE, and “F” denotes Fastbot2. “M+T”, “A+T”, and “F+T” denote Monkey, APE, and
Fastbot2 with our text input generation method. “C-T” denotes CamDroid without text input generation. “C” denotes CamDroid. “↑”
means performance increase of automated testing tools after integrating text input generation and “−” means no growth.

    64 Tsinghua Science and Technology, February 2025, 30(1): 55−67

 



for Android apps. CamDroid automates the GUI testing
of Android apps using a combinatorial model with the
one-step  guidance  of  event-activity  transitions  and  the
multi-step  guidance  of  reinforcement  learning,  and
generates text inputs like real users with a GAN based
on public datasets.  We review related literature in this
section.

Monkey[22] is the most classical and lightweight tool
to perform black box testing. Given that the exploration
strategy  of  Monkey  is  completely  random,  Monkey
lacks  extensibility  and  is  easy  to  bypass  intentionally.
To strategically  automate  the  GUI testing  for  Android
apps,  learning-based  approaches  have  been  widely
studied[8, 41, 42]. Humanoid[8] is a representative one that
uses  a  deep  neural  network  model  to  learn  how  users
choose UI actions from human interaction traces. Such
approaches require specific sequential trace data and in
the  early  stage  of  the  test,  they  have  similar
performance with the random strategy.

Since  the  GUI  switches  of  apps  can  be  modeled  as
state  transitions  via  UI  actions,  a  plethora  of  model-
based  testing  approaches[6, 7, 25, 43] emerge.  Recently,
APE,  a  practical  model-based  approach  via  dynamic
model abstraction, has significantly advanced the state-
of-the-art  model-based  techniques[6].  Furthermore,
based  on  the  implementation  of  APE,  Fastbot2[7] is
proposed  by  ByteDance  and  achieves  outstanding
industrial  success.  However,  when  encountering
scenarios  with  text  input  requirements,  these  methods
just  randomly input  and thus possibly miss the hidden
activities with specific inputs to reach.

To fill the above gap, many efforts have been devoted
to  generating  text  inputs  like  real  users[27, 44, 45].
Existing  text  input  generation  methods  either  rely  on
large  amounts  of  manual  text  input  samples  and  thus
lack  generalizability[44],  or  adopt  heavy-weight
language  models  requiring  undesirable  prompt
processing  time[27].  Different  from  them,  CamDroid
achieves  high  input  efficiency,  as  well  as  good
generation effects with the help of the generation-and-
selection pipeline. In addition, CamDroid considers the
correlations of multiple text inputs during a single test,
resulting in more realistic behaviors.

6　Conclusion

This paper presents a context-aware model-based GUI
testing  approach  for  Android  apps,  named  CamDroid.
Through  combining  the  one-step  guidance  of  event-
activity  transitions  and  the  multi-step  guidance  of

reinforcement  learning,  CamDroid  leverages  the
context  knowledge  of  previous  tests  to  efficiently  and
effectively explore app activities. Moreover, CamDroid
efficiently  generates  text  inputs  regarding  the  GUI
context  like  real  users  through  pre-training  a  GAN
based  on  public  datasets  when  encountering  GUI
widgets  requiring  text  inputs.  Experiments  with
20 widely-used  apps  from  Google  Play  show  that
CamDroid  outperforms  3 state-of-the-art  testing  tools
in  terms  of  both  activity  coverage  and  number  of
detected  crashes  within  industrial  testing  time
limitation.
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