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Abstract: In  the  current  landscape  of  online  data  services,  data  transmission  and  cloud  computing  are  often

controlled  separately  by  Internet  Service  Providers  (ISPs)  and  cloud  providers,  resulting  in  significant

cooperation challenges and suboptimal global data service optimization. In this study, we propose an end-to-

end  scheduling  method  aimed  at  supporting  low-latency  and  computation-intensive  medical  services  within

local wireless networks and healthcare clouds. This approach serves as a practical paradigm for achieving low-

latency data services in local private cloud environments. To meet the low-latency requirement while minimizing

communication and computation resource usage, we leverage Deep Reinforcement Learning (DRL) algorithms

to  learn  a  policy  for  automatically  regulating  the  transmission  rate  of  medical  services  and  the  computation

speed of cloud servers. Additionally, we utilize a two-stage tandem queue to address this problem effectively.

Extensive  experiments  are  conducted  to  validate  the  effectiveness  for  our  proposed  method  under  various

arrival rates of medical services.

Key words:  medical  service; tandem  queue; cloud  computing; Deep  Reinforcement  Learning  (DRL); resource

allocation

1　Introduction

In  the  current  landscape  of  online  data  services,  the
control  of  data  transmission  and  cloud  computing  is
often  fragmented  between  ISPs  and  cloud  providers.

This  separation  leads  to  substantial  cooperation
challenges and suboptimal optimization for global data
services.  ISPs  and  cloud  providers  operate  distinct
infrastructures  and  pursue  different  profit  patterns,
resulting  in  diverse  approaches  to  support  online  data
services  with  varying  service  requirements.  An
illustrative example is the decline of Quality of Service
(QoS)  and  the  rise  of  Quality  of  Experience  (QoE).
ISPs  perceive  QoS  as  the  ability  to  assign  different
priorities  to  applications,  users,  or  data  flows,  or  to
ensure  a  certain  level  of  performance  for  a  given  data
flow.  This  approach  treats  network  conditions  as  a
black box and necessitates explicit  and precise service
requirements  from  end  users,  which  may  prove
challenging  to  implement  across  numerous
applications.  On  the  other  hand,  cloud  providers
prioritize  QoE,  which  gauges  the  satisfaction  or
dissatisfaction  of  customers’ experiences  with  a
service.  They  proactively  assess  network  conditions
without  active  involvement  from  ISPs  to  deliver  a
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holistic  service  experience.  Consequently,  any
scheduling  of  data  transmission  and  cloud  computing
must  navigate  the  opaque  nature  of  information  and
cooperation  challenges  between  ISPs  and  cloud
providers.

Simultaneously,  the  rapid  growth  of  the  Internet  of
Things  (IoTs)  has  facilitated  the  emergence  of
numerous  low-latency  and  computation-intensive
services, necessitating support through edge computing
or  cloud  computing  at  the  user’s  end.  It  brings  a
pressing  need for  a  practical  paradigm that  effectively
coordinates data transmission and processing to enable
low-latency data services within local networks. In the
healthcare domain, the global IoT in healthcare market
is  projected  to  reach  a  value  of  188.2  billion  USD by
2025[1]. This growth can be attributed to the increasing
public awareness regarding personal health,  which has
led  to  a  rising  demand  for  various  types  of  smart
medical wearable devices, such as ECG monitors, heart
rate  monitors,  and  blood  pressure  monitors.  These
devices  enable  the  acquisition  of  real-time  health  and
fitness  information.  In  addition  to  personal  medical
devices, hospitals also deploy a multitude of dedicated
IoT  medical  devices,  including  smart
electrocardiographs  and  smart  call  devices.  However,
despite these advancements, it is important to note that
certain  critical  medical  services,  such  as  real-time
patient  monitoring,  virtual  consultations,  and
Augmented  Reality/Virtual  Reality  (AR/VR)-based
surgeries[2, 3],  which  require  low  latency  and  intensive
computation, may still face challenges in meeting their
requirements.

In recent years,  numerous researchers have explored
the potential of cloud computing in the IoT and cloud-
based  healthcare  domains  to  provide  intelligent
medical  services[4–9].  However,  healthcare  cloud
platforms face a unique challenge with high latency in
many scenarios, which is particularly unacceptable due
to  the  potential  risks  it  poses  to  patients’ health  and
even  their  lives.  Some  studies  propose  the  use  of  fog
computing-based  healthcare  systems  to  minimize
latency  between  medical  IoT  devices  and  cloud
servers.  Fog  computing  servers,  being  geographically
closer  to  the  devices,  offer  a  potential  solution  for
reducing latency[10–16]. However the deployment of fog
nodes  incurs  substantial  costs,  and the  communication
and  collaboration  between  fog  nodes  pose  non-trivial
challenges,  making  them  less  suitable  for  small  or
medium-sized hospitals.

As  mentioned  earlier,  all  traditional  methods  have
focused on optimizing the computational resources and
computational  latency  at  the  server  side,  without
considering  the  latency  during  the  transmission
processes.  One  of  unique  advantages  of  healthcare
cloud  is  that  both  the  transmission  network  and  cloud
services are controlled by the hospital’s IT department,
which  enables  effective  joint  optimization  of  end-to-
end  latency  and  computational  resources  while
ensuring statistical latency guarantees within local IoT
and  private  cloud  networks,  as  shown  in Fig.  1.  To
bridge this gap, we propose a two-stage tandem queue
consisting  of  a  communication  queue  and  a
computation  queue[17–19].  In  order  to  satisfy  latency
constraints  without  wasting  communication  and
computation  resources,  a  well-designed  resource
allocation policy is required to effectively utilize cloud
computing.  In  this  paper,  we  introduce  a  central
controller  that  dynamically  adjusts  bandwidth  and
computation  speed  on  a  global  scale.  Specifically,
allocating  more  bandwidth  resources  corresponds  to
lower  transmission  latency,  while  faster  computation
speed  leads  to  reduced  processing  latency.  We  model
the  process  of  IoT devices  accessing  cloud computing
services  as  a  tandem  queue.  The  primary  objective  of
this paper is to ensure that the service latency remains
below  the  specified  latency  requirement  for  medical
services,  while  minimizing  the  utilization  of
communication and computation resources. To achieve
this,  we  employ  a  DRL  algorithm,  which  is  a  natural
choice  for  addressing  sequential  decision-making
problems. Through the DRL algorithm, we develop an
intelligent  policy  for  the  controller  that  automatically
regulates  the  transmission  rate  and  computation  speed
in an optimal manner.

The  structure  of  this  paper  is  organized  as  follows:
Section  2 presents  the  related  work  in  this  field.  In
Section 3, we describe the system model and define the
problem. Section 4 provides an overview of the related
materials  and  presents  our  proposed  methods.  The
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Fig. 1    Medical services in healthcare cloud.
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training  of  the  model,  simulation  details,  and
evaluation results are discussed in Section 5. Finally, in
Section 6, we summarize the conclusions of this paper.

2　Related Work

Due to the increasing adoption of IoT and cloud-based
healthcare systems, numerous researchers have focused
on leveraging IoT technologies and cloud computing to
enable  intelligent  medical  services,  thereby  enhancing
the  experiences  of  patients  and  improving  the
efficiency  of  healthcare  providers.  For  example,
Zgheib  et  al.[4] developed  a  human  activity  detection
application  capable  of  handling  data  from diverse  IoT
devices  in  a  monitoring  environment,  providing
semantic  detection  of  activities.  Tariq  et  al.[5]

introduced  a  technique  and  an  augmented  dataset  to
improve the detection of daily assistive activities, with
a  particular  emphasis  on  sitting  posture,  in  IoT-driven
environments.  In  Ref.  [6],  the  authors  created  an
integrated  medical  platform  for  remote  health
monitoring,  collecting  vital  signs  and  living
environment  information  from  patients  and
transmitting it to the cloud for processing and analysis.
Marques and Pitarma[7] developed an IoT-based indoor
air  quality system that offers a practical  assessment of
indoor  air  quality  for  subsequent  interventions  to
enhance air quality.

Furthermore, the field of Internet of m-Health things,
which  combines  mobile  computing,  medical  sensors,
and  cloud  computing,  has  gained  significant  attention.
Erdeniz  et  al.[20] proposed  a  novel  recommender
system  that  suggests  healthcare  devices,  new
applications, and physical activity plans for patients in
IoT-enabled  mobile  health  applications.  Xu  et  al.[21]

presented a  framework based on cloud computing and
mobile  computing  for  pervasive  health  monitoring,
incorporating  three  layers:  a  data  storage  layer  for
ensuring  patient  privacy,  a  data  annotation  layer  for
enhancing  health  data  interoperability,  and  a  data
analysis  layer  for  executing  mining  algorithms.
Wearable devices have also made remarkable progress,
enabling the monitoring of various patient biosignals to
benefit  both  patients  and  doctors.  Kelati  et  al.[22]

introduced  a  battery-powered  wearable  IoT  system
with a microcontroller for data processing and wireless
transmission of patient biosignals.

However, addressing latency requirements remains a
challenging  problem  that,  if  not  effectively  resolved,
can result in serious medical negligence. Consequently,

researchers have engaged in extensive research to find
solutions for reducing latency in IoT and cloud-enabled
medical  services.  Mahmud et  al.[12] proposed  a  cloud-
fog-based IoT healthcare structure with interoperability
and  coordination  to  support  low-latency  services.  To
mitigate  latency  issues  introduced  by  the  cloud
paradigm,  Ref.  [13]  proposes  an  architecture  for  IoT-
based health monitoring that leverages fog computing’s
proximity  to  IoT  medical  devices.  Awaisi  et  al.[14]

introduced a fog-based healthcare architecture for IoT,
utilizing  virtual  machine  partitioning  technology  to
significantly  reduce  latency  and  improve  network
usage.  They  also  proposed  a  user  authentication
method  to  protect  patient  privacy  through  an  identity
management system. In Ref. [15], the authors proposed
a  novel  framework  called  healthfog,  which  combines
edge  computing  and  ensemble  deep  learning
algorithms  for  time-critical  automatic  heart  disease
analysis.  To  address  pressing  challenges  such  as
resource  limitations,  low-latency  provision,  and
massive data processing, Ren et  al.[16] proposed a task
offloading strategy with a centralized decision-making
algorithm  that  combines  software-defined  networking
and  blockchain  technologies  in  a  fog-assisted
healthcare system.

Generally,  the  aforementioned  literature  primarily
focuses  on  fog  computing  to  support  low-latency
service provision without considering the excessive use
of  communication  and  computation  resources.  We
consider  a  local  IoT-cloud  healthcare  system  in  our
early  work[23],  and  develop  a  DRL  algorithm  to
automatically  regulate  the  transmission  rate  and
computation speed in this study.

3　Problem Formulation

3.1　System model

Figure  1 illustrates  the  architecture  of  our  IoT  and
cloud-based  healthcare  system,  which  comprises
multiple IoT medical devices, a Base Station (BS), and
a  healthcare  cloud  platform.  All  these  devices  can
connect  to  the  cloud  computing  platform  through  a
wireless  link.  We  assume  the  existence  of
homogeneous relay servers in the BS and computation
servers in the healthcare cloud. Initially, a medical task
is  transmitted  to  the  BS  and  then  forwarded  to  the
healthcare  cloud  if  there  are  available  idle  relay
servers. Otherwise, it is buffered in a queue. Similarly,
the  medical  task  is  processed  if  there  are  idle
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computation  servers,  and  buffered  in  a  queue
otherwise[24].

To  model  the  system,  we  abstract  it  as  a  two-stage
tandem queue, comprising a communication queue and
a  computation  queue.  This  queuing  model  follows  the
first-come-first-serve  discipline  to  ensure  efficient  and
reliable  provision  of  medical  services,  as  depicted  in
Fig. 2. Notably, we do not assume any specific arrival
rate  distribution  for  medical  services,  making  the
arrivals  completely  random  and  thus  more  realistic.
Consequently,  it  is  crucial  to  dynamically  adjust
resource  allocation  to  prevent  wastage  of
communication and computation resources.

q1 q2

a1 a2

qn

d

dmax

To address this challenge, we propose the concept of
a  central  controller  that  sets  the  transmission  rate  and
computation  speed  at  the  beginning  of  each  time  slot.
These values remain constant  throughout  the time slot
in this environment, as shown in Fig. 3. At the start of
the time slot, we have two queue lengths as  and 
and  two  adjust  actions  and  on  the  two  queues.
Moregenerally,  the queue length is  denoted as ,  and
the  service  latency,  denoted  as ,  represents  the
duration  from  when  a  task  enters  the  communication
queue  to  when  it  leaves  the  computation  queue.  We
also define  as the maximum tolerable latency for
medical  services.  The  objective  of  the  proposed
controller  is  to  determine  appropriate  transmission

rates  and  computation  speeds  for  relay  servers  and
computation  servers,  respectively,  that  satisfy  the
latency requirement while minimizing resource usage.

3.2　Problem formulation

We formulate our problem within the context of a two-
stage  tandem  queue  system,  which  consists  of  a
communication  queue  and  a  computation  queue,  both
equipped  with  multiple  servers.  The  tandem  queue
model is commonly employed when there are multiple
queues  involved,  each  with  one  or  more  servers.  This
model is particularly suitable for scenarios where tasks
or services can be divided into independent procedures
that need to be executed in a specific order[25, 26]. Given
its  applicability  to  our  problem,  it  serves  as  an
excellent candidate for our study.

dmax

Our  objective  is  to  design  a  central  controller  that
minimizes  the  latency  of  each  medical  service,
ensuring  it  remains  below  the  threshold  of .
However,  due  to  the  limited  availability  of
communication and computation resources, there exists
a  tradeoff  between  service  latency  and  resource
utilization.  Hence,  the  problem  is  formulated  to  seek
the  minimun  expected  value  of  the  total  resources  as
follows:
 

max
θ
−E
[
ρ1m1c+ρ2m2s

]
(1)

 

s.t., P (d < dmax) > ϵ (2)
 

cmin ⩽ c ⩽ cmax (3)
 

smin ⩽ s ⩽ smax (4)
 

mn ⩾ 1, n ∈ {1, 2} (5)

mn

In  our  problem  formulation,  we  introduce  the
variables  to represent the number of relay servers or
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ρn

c

s
cmin cmax smin smax

computation  servers,  and  as  the  fixed  cost
coefficient  associated  with  communication  and
computation. The transmission rate is denoted as , the
task latency denoted as d, while the computation speed
of  cloud  servers  is  represented  by .  Furthermore,  the
values  of , , ,  and  are  determined
based on the available communication and computation
resources.

ϵ

Our  primary  objective  is  to  minimize  the  total
utilization  of  resources,  taking  into  consideration  both
communication  and  computation  aspects.  To  achieve
this, we aim to optimize the allocation of relay servers,
computation  servers,  transmission  rates,  and
computation  speeds.  Additionally,  we  introduce  the
parameter ,  a  small  positive  integer,  which allows us
to  control  the  number  of  medical  services  that  exceed
the  maximum  allowable  latency.  By  minimizing  the
utilization  of  resources  while  maintaining  service
latency within acceptable limits, we aspire to minimize
the number of medical services that experience latency
violations.

c p
d

In  the  given  problem  context,  the  selection  of
transmission  rate  ( )  and  computation  speed  ( )
directly  influences  task  latency  ( ).  These  two factors
assume a crucial role in determining the overall system
performance.  Our  problem involves  a  two-stage  serial
queue  system  for  tasks,  namely  the  communication
queue  and  the  computation  queue.  The  following
elucidates  the  impact  of  transmission  rate  and
computation speed choices on task latency.

cSelection  of  transmission  rate  ( )  affects  latency  in
the  communication  queue  and  potential  resource
contention.

Latency  in  the  communication  queue: The
transmission  rate  governs  the  waiting  time  of  tasks  in
the  communication  queue.  A  higher  transfer  rate
generally  facilitates  faster  movement  of  tasks  through
the  communication  queue,  thereby  reducing
communication delays.

Potential  resource  contention: However,  higher
transfer rates may lead to contention with other tasks or
service resources, which could increase overall latency
in certain cases.

sSelection  of  computation  speed  ( )  influences
latency  in  the  computation  queue  and  resource
utilization and contention.

Latency  in  the  computation  queue: Computation
speed directly correlates to the processing time of tasks
in  the  computation  queue.  Higher  computing  speed

typically diminishes computing latency.
Resource utilization and contention: Nevertheless,

opting  for  a  higher  computation  speed  might  entail
increased  resource  consumption,  possibly  resulting  in
less  efficient  resource  utilization  and  subsequently
augmenting  the  overall  latency  between
communication and computation.

In conclusion,  the selection of  transmission rate  and
computation speed necessitates a trade-off process that
involves  comprehensive  consideration  of  the
communication  queue  and  computation  queue
characteristics  to  minimize  overall  system  delay.  The
optimal balance between these two factors depends on
specific  problem  requirements  and  the  availability  of
resources.

4　Method

4.1　Materials of reinforcement learning

at

µ (a|s)
at st

st st+1 rt

R (st, at, st+1)

t
∑∞

k=t γ
k−trk

0 < γ < 1 γ

In  this  section,  we  begin  by  introducing  the
fundamental concepts of Reinforcement Learning (RL)
as  one  of  the  three  fundamental  machine  learning
paradigms.  RL  involves  an  agent  and  an  environment
as  its  core  components.  The  agent  perceives  the
environment through sensors and takes actions that can
influence the environment. Unlike supervised learning,
which  heavily  relies  on  labeled  datasets,  RL  learns
through  interaction  with  the  environment[27].  At  each
time  slot,  the  agent  receives  observations  from  the
environment and selects an action  based on a learned
policy ,  representing  the  probability  of  taking
action  in state . Subsequently, the state transitions
from  to , and the agent receives a reward  or a
reward with a mapping relationship  from
the  environment.  The  total  discounted  reward  from
time  slot  to  infinity  is  defined  as ,  where

.  The  factor  determines  the  importance  of
past rewards, with smaller values assigning less weight
to  earlier  rewards.  Therefore,  the  agent’s  goal  is  to
search  for  a  policy  that  maximizes  the  total  rewards.
One  approach  is  to  store  state-action  pairs  in  a  table
and  update  it  iteratively  until  convergence[28].
However,  this  method  becomes  impractical  when
dealing  with  large  state  spaces.  Another  approach
involves  using  artificial  neural  networks  as  function
approximators to address this limitation[29].

To  solve  RL  problems  with  continuous  actions,
policy  gradient  methods  are  commonly  employed.
These methods directly model and optimize the policy
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πθ (a|s) θ

to  find  the  optimal  solution.  The  policy  function  is
denoted  as ,  parameterized  by .  According  to
the  policy gradient  theorem[30],  the  gradient  is  defined
as
 

∇θJ(θ) = Eπ [Qπ (s, a)∇θ lnπθ (a|s)] (6)

Qπ (s, a)

θ

πθ (a|s)
w

Qw (a|s)

However,  evaluating  the  state-action  value  function
 can  be  computationally  complex.  Therefore,

researchers  often  approximate  the  expectation  using
Monte  Carlo  methods[31].  Additionally,  the  actor-critic
algorithm, another popular policy gradient approach, is
used to address this challenge. The actor-critic method
consists  of  two  components,  the  actor  and  the  critic,
which  work  together  to  improve  policy  updates.  The
actor  updates  the  parameters  of  the  policy  function

 based  on  feedback  from  the  critic,  while  the
critic  updates  the  parameters  of  the  value  function

.  Finally,  we  adopt  the  Deep  Deterministic
Policy  Gradient  (DDPG)  algorithm,  an  offline-policy
algorithm  that  combines  deep  neural  networks  with
Deterministic Policy Gradient (DPG). DDPG improves
upon  DPG,  especially  in  scenarios  with  large  state
spaces, by leveraging neural networks. Additionally, it
incorporates  a  replay buffer  mechanism to address  the
challenges  of  correlated  data  and  non-stationary
distribution. Furthermore, to enhance training stability,
DDPG  employs  target  networks  that  are  periodically
updated based on the online network.

4.2　Design of DRL model

Our  proposed  framework  comprises  three  modules:  a
central  controller  responsible  for  determining  the
transmission  rate  and  computation  speed,  a
communication  queue  for  storing  data  to  be
transmitted,  and  a  computation  queue  for  processing
tasks. Figure  3 illustrates  the  architecture.  Initially,
both the communication queue and computation queue
are  empty,  and  the  parameters  of  the  actor  and  critic
networks  are  randomly  initialized.  Medical  tasks  are
continuously  generated  according  to  an  arbitrary
distribution.  These  tasks  are  first  placed  in  the
communication  queue,  and  then  forwarded  to  the
healthcare  cloud  for  processing.  At  the  beginning  of
each  time step,  the  controller  outputs  the  transmission
rate  and  computation  speed,  which  remain  constant
throughout  the  time  step.  At  the  end  of  the  time  step,
feedback is obtained from all completed medical tasks.
The controller then updates its network parameters, and
the  queue  lengths  are  also  updated.  This  iterative

process  continues  until  the  controller  converges  to  a
policy that ensures low latency.

We  will  begin  to  definie  the  three  fundamental
components  of  the  RL  problem:  state,  action,  and
reward.  Furthermore,  we  will  present  more  detailed
design aspects of our proposed approach.

s = (q1, q2)

State is  represented  by  a  vector  containing  the
lengths  of  the  communication  queue  and  computation
queue, denoted as .

a = µθ (s)

c
p

Action is  obtained  by  evaluating  the  deterministic
policy . This action is defined as a vector that
contains  the  values  outputted  by  the  controller,
including  the  transmission  rate  and  computation
speed , which remain constant during the time step.

T
At

t r′

At t
β1 β2

Reward is  often  the  most  challenging  aspect  of  an
RL  problem,  as  it  greatly  influences  the  algorithm’s
convergence, correctness, and robustness. Therefore, it
is crucial to set the reward function carefully to reflect
the  controller’s  performance  after  taking  an  action  in
one time slot. Let  represent the duration of one time
step, and let  denote the set of medical task arrivals
at  time  slot .  The  immediate  reward  for  each
medical task within the set  at time slot  is defined
as two punishment values  and  as follows:
 

r′ =

β1, d ⩽ dmax;
β2, d > dmax

(7)

ssum
t t

In  addition  to  considering  latency,  we  also  need  to
account for resource costs, such as communication and
computation  resources.  Hence,  we  calculate  the  total
cost  at time slot  in the following:
 

ssum
t = ρ1m1ct +ρ2m2 pt (8)

ρ1 ρ2

ct

pt

rt t
r′ At

ssum
t

where  and  represent  the  cost  coefficients  for
communication  and  computation,  respectively,  and

 represent  the  transmission  rate  and  computation
speed during the time step, respectively. Consequently,
the immediate reward  at time slot  can be calculated
as the sum of  values for all medical tasks within 
minus ,
 

rt = r (st, µθ (st)) =
∑
At

r′ − ssum
t (9)

Then,  according  to  Eqs.  (6)  and  (9),  the  average
reward is defined as follows:
 

J (µθ) = Es∼ρµ(s) [r (s, µθ (s))] (10)

ρµ (s)
µ

where  stands  for  distribution  of  the  states
following  policy ,  and  we  can  get  the  gradient  of
Eq. (10),
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∇θJ(µθ) = Es∼ρµ(s) [∇θµθ (s)∇aQµ (s,a) |a=µθ (s)] (11)

In  Eq.  (11),  the  expectation  is  taken  only  with
respective to state space and thus avoiding the problem
of state space explosion.

The  design  specifics  of  the  central  controller  are
outlined  in  the  subsequent  section. Figure  4 illustrates
the  four  components:  environment,  actor  network,
critic  network,  and  experience  replay  buffer.  In  the
actor  network,  the  input  consists  of  a  sequence  of
vectors  that  undergoes  two  hidden  layers  with  ReLU
activation,  each  comprising  32 neurons.  The  output
layer  of  the  actor  network  is  a  fully-connected  neural
network  activated  by  the  hyperbolic  tangent  function,
ranging from −1 to 1. However, since the transmission
rate  and  computation  speed  must  be  positive,  we
rescale  the  output  range  to  obtain  valid  values.
Additionally,  to  explore  potentially  high-reward
actions,  we introduce random noise to the final  output
and apply a clipping operation to satisfy conditions of
Eqs. (3) and (4).

In  contrast,  the  critic  network  takes  the  input  and
passes  it  through  a  fully-connected  network.  The
output  is  then concatenated with the output  of  another
linear  layer,  which  takes  the  action  outputted  by  the
actor  network  as  input.  The  resulting  concatenated
output  is  fed  into  another  hidden  layer  with  ReLU
activation. Unlike the actor network, the final output of
the critic network is activated by a linear function. The
training  process  is  described  in  the  following
paragraph.

It is important to note that the target network has the
same structure as the online network for both the actor
and the critic. As depicted in Fig. 4, the online network
overlaps  with  the  target  network.  The  optimization  of
network  parameters  for  the  actor  and  critic  networks
continues until the model converges. At each time slot,

at

µ (st)
st st+1

(st, at, rt, st+1)

N∗(si, ai, ri, si+1)

the  final  action  is  generated  by  the  actor  network
, with the addition of a noise value. Subsequently,

the  environment  transitions  from  state  to  and
provides  an  immediate  reward.  The  experience  replay
buffer  stores  tuples  for  later  sampling
and  learning  from  a  randomly-selected  batch  of
quadruples . Moreover, the buffer has
a  fixed  capacity,  meaning  it  only  retains  the  most
recent  experiences,  requiring  careful  selection  of  the
capacity  value.  the  critic  network,  actor  network,  and
their  corresponding  target  networks  are  updated  by
sampling  from  the  experience  replay  buffer.  To
stabilize  the  update  process,  we  employ  a  soft  update
approach  to  gradually  update  both  the  actor  target
network and the critic target network.

5　Experiment

In  this  section,  we  present  the  experimental  settings,
train the DRL model in a predefined environment, and
run  up  a  series  of  comparison  experiments  to
demonstrate the rationality and validity of our proposed
model.

5.1　Experiment settings

Maxsteps

dmax T

At  first,  we  employ  Python  to  simulate  a  two-stage
tandem  queue  environment.  In  this  simulation,  we
utilize the gamma distribution to model both the inter-
arrival times and service times. Given the absence of a
terminal  state  in  our  problem,  we introduce  a  variable

 to halt the learning process within an episode
if  the  number  of  time steps  exceeds  this  threshold.  At
the onset of each episode, we initialize the environment
to encompass a diverse range of states. Specifically, we
set  to 5 and  to 15 ms.

To address the limited applicability of static datasets,
we  adopt  dynamic  datasets  by  generating  the  arrival
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Fig. 4    Implementation of our proposed model.
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rates  and  service  times  of  medical  services  using
arbitrary  distributions,  as  discussed  in  previous
works[32, 33]. This approach allows us to tackle the issue
of a narrow range of application for static datasets and
ensures a more realistic representation of the healthcare
system dynamics.

γ = 0.99, τ = 0.01, number of episodes =
1000

θ = 0.15, µ = 0, σ = 0.5−0.05

The  DRL  algorithm  is  implemented  using  PyTorch
v1.0.  All  experiments  are  conducted  on  an  Ubuntu
server  equipped  with  an  Intel  Xeon  E5-2640v4 CPU,
128 GB of memory, and a Tesla M40 8 G GPU. More
training  parameters  can  be  found  in Table  1.  At  the
same time, we set 

,  and  adopt  Ornstein-Uhlenbeck  noise  with  the
settings ,  and  annealing
steps = 53 200.

In  our  subsequent  experiments,  we  define  four
metrics  to  evaluate  the  performance  of  our  proposed
model: average resource score, average service latency,
latency  violation  probability,  and  average  reward.
These metrics provide comprehensive insights into the
resource  utilization,  latency  management,  and  overall
system performance achieved by our model.

5.2　Experiment results

We  conduct  training  for  our  DRL  model  within  the
predefined environment, and the results are depicted in
Fig.  5,  which  illustrates  the  convergence  of  average
service  latency,  average  resource  score,  and  average
reward  per  time  step  as  a  function  of  episodes.  To

σ

dmax

ensure  robustness,  we  train  the  DRL  model  multiple
times  with  random  initialization  and  select  the  best-
performing result. To promote exploration, we employ
the  Ornstein-Uhlenbeck  random  process,  which
generates  noise  added  to  the  output  of  the  actor
network.  The  core  parameter  of  this  process, ,
gradually  decreases  from  0.5 to  0.05.  As  a  result,  the
blue curve exhibits significant fluctuations in the initial
350 episodes  and  gradually  stabilizes  thereafter.
Notably,  our  proposed  model  demonstrates  fast
convergence,  and  the  average  service  latency  remains
below the threshold of .

To  validate  the  efficacy  of  our  proposed  model,  we
compare it with two baselines. The first baseline, called
Adjusting  with  Queue  Length  (AQL),  adjusts  the
transmission  rate  and  computation  speed  based  solely
on queue  length.  Specifically,  when the  queue  lengths
of  communication  and  computation  queues  increase,
the  controller  increases  the  transmission  rate  and
computation  speed  to  expedite  the  processing  of
medical services,  and vice versa. The second baseline,
called  Mean  Value  with  Noise  (MVN),  instructs  the
controller  to  output  the  mean  value  of  available
resources  with  the  addition  of  random  noise.  We
conduct  performance  comparison  experiments  using
test  data  generated  from  the  predefined  environment
with identical parameters.

ηa = 1.5 ηa = 0.5

As depicted in Fig. 6, our proposed model achieves a
satisfactory  resource  allocation,  meeting  the  latency
requirements  of  medical  services  while  minimizing
resource usage. It  is evident that the Mean Value with
Noise  (MVN)  controller  wastes  a  significantly  larger
amount  of  resources  compared  to  the  other  two
methods. However, lower resource usage brings higher
violation  probability,  therefore,  we  evaluate  the
performance  of  all  methods  under  increased  arrival
rates ( ) and decreased arrival rates ( ) of

 

Table 1    Training parameters of DRL model.
Parameter Actor Critic

Numberof linear nodes 32 32
Activation function ReLU ReLu

Output function Tanh Linear
Learning rate 0.0001 0.001

Batch size 128 128
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Fig. 5    Results of average service latency, average resource score, and average reward per time step.
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medical services.

ηa = 1.5
ηa = 0.5

Figure  7 presents  the  results,  with Figs.  7a and 7b
depicting the outcome for  and Figs. 7c and 7d
for .  In  order  to  ensure  reliability,  we  conduct
five rounds of testing for each controller,  and the pale
region in the figure represents the standard error band.
Clearly,  our  proposed  model  consistently  satisfies  the
latency  requirements  of  medical  services  while
consuming  fewer  resources,  regardless  of  whether  the
arrival  rate  increases  or  decreases.  However,  we  also
observe that in Fig. 7a, the other two methods consume
more  resources,  particularly  the  AQL  controller,  even
with  a  slight  increase  in  arrival  rate.  In Fig.  7d,  we
notice  that  the  AQL  controller  exhibits  significantly
larger  fluctuations  compared  to  the  other  two
controllers.

In conclusion, based on all  experimental results,  our
proposed  model  proves  to  be  effective  and  efficient
once  training  is  completed,  even  in  the  face  of
changing  environments.  The  MVN  controller  satisfies

 

Av
er

ag
e 

re
so

ur
ce

 s
co

re
Vi

ol
at

io
n 

pr
ob

ab
ilit

y 
of

 la
te

nc
y

Time steps
(a)

Time steps
(b)

ub

 

ηa = 1.0
Fig. 6    Resource  score  of  each  method  and  short-term
violation  probability  of  latency  requirement  with 
(pub is  the  probability  that  the  end-to-end  task  latency
exceeds dmax).
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Fig. 7    Average  resource  score  of  each  method  and  short-
term  violation  probability  of  latency  requirement  with
increased/decreased arrival rate.
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latency  requirements  but  consumes  excessive
resources, while the AQL controller struggles to adapt
to environmental variations and may become unstable.

6　Conclusion
In the context of an IoT-cloud based healthcare system
that offers real-time and computation-intensive medical
services, a significant challenge arises in achieving the
dual  objectives  of  meeting  medical  service  latency
requirements  while  minimizing resource utilization.  In
this study, we address this challenge by formulating the
problem as a two-stage tandem queue and employing a
DRL  algorithm  to  learn  a  policy.  This  learned  policy
enables  automatic  adjustment  of  the  transmission  rate
and  computation  speed,  thereby  ensuring  the
fulfillment  of  latency  requirements  while  conserving
resources.

To  evaluate  the  effectiveness  and  efficiency  of  our
proposed  model,  we  conduct  extensive  comparison
experiments.  These  experiments  aim  to  validate  the
model’s  ability  to  appropriately  allocate  resources  and
demonstrate its superiority over alternative approaches.
Furthermore,  as  part  of  our  future  work,  we  intend  to
explore  the  feasibility  of  applying  our  model  to  a
cloud-fog  based  healthcare  system.  This  investigation
will  enable  us  to  assess  the  adaptability  and
performance  of  our  proposed  model  in  a  different
system  architecture.  A  more  stringent  medical  cloud
configuration encompasses factors such as strong real-
time  computing  requests,  on-demand  computing  for
workload  variations,  energy-efficient  computing,  and
others.  We  intend  to  further  explore  these  aspects  in
our future research endeavors.
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