
 

Improve GMRACCF Qualifications via Collaborative
Filtering in Vehicle Sales Chain
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Abstract: The  Vehicle  Allocation  Problem (VAP)  in  the  vehicle  sales  chain  has  three  bottlenecks  in  practice.

The  first  is  to  collect  relevant  cooperation  or  conflict  information,  the  second  is  to  accurately  quantify  and

analyze other factors affecting the distribution of cars, and the third is to establish a stable and rapid response

to the vehicle allocation management method. In order to improve the real-time performance and reliability of

vehicle allocation in the vehicle sales chain, it is crucial to find a method that can respond quickly and stabilize

the  vehicle  allocation  strategy.  Therefore,  this  paper  addresses  these  issues  by  extending  Group  Multi-Role

Assignment  with  Cooperation  and Conflict  Factors  (GMRACCF)  from a  new perspective.  Through the  logical

reasoning of  closure  computation,  the  KD45 logic  algorithm is  used to  find  the  implicit  cognitive  Cooperation

and Conflict Factors (CCF). Therefore, a collaborative filtering comprehensive evaluation method is proposed

to help administrators determine the influence weight of CCFs and Cooperation Scales (CSs) on the all-round

performance  according  to  their  needs.  Based  on  collaborative  filtering,  semantic  modification  is  applied  to

resolve  conflicts  among  qualifications.  Large-scale  simulation  results  show  that  the  proposed  method  is

feasible and robust, and provides a reliable decision-making reference in the vehicle sales chain.

Key words:  Vehicle  Allocation  Problem  (VAP); Group  Multi-Role  Assignment  with  Cooperation  and  Conflict

Factors (GMRACCF); KD45 logic algorithm; collaborative filtering; semantic modification; Cooperation

and Conflict Factors (CCFs); Cooperation Scale (CS)

1　Introduction

The  Chinese  vehicle  market  is  currently  one  of  the
largest  in  the  world,  making  the  profit  from  the
domestic market crucial for Chinese automakers. In the
vehicle  industry  chain,  automakers  and  dealers
collaborate closely, but the Vehicle Allocation Problem

(VAP)  has  become  an  unavoidable  issue  due  to  the
differences in consumer demand and purchasing power
across cities. Most automakers sell their cars primarily
in  city  clusters  near  their  manufacturing  sites,  causing
consumers in other  regions to either  wait  long periods
or pay high fees. Therefore, there is an urgent need for
a  strategy  that  can  meet  the  needs  of  consumers  in
different  regions  while  ensuring  profitability  for
automakers.

However,  implementing  such  a  strategy  faces  three
practical  bottlenecks.  The  first  is  the  collection  of
relevant  cooperation  or  conflict  information.  The
second  is  accurately  quantifying  and  analyzing  other
factors that influence vehicle distribution. And the third
is  establishing  a  stable  and  rapid  vehicle  allocation
management method.

 
   Beiteng Yang and Dongning Liu are with School of Computer

Science  and  Technology,  Guangdong  University  of
Technology,  Guangzhou  510000,  China. E-mail: Barton7yang
@163.com; liudn@gdut.edu.cn.

   Haibin  Zhu is  with Collaborative  Systems  Laboratory,
Nipissing  University,  North  Bay,  P1B  8L7,  Canada. E-mail:
haibinz@nipissingu.ca.

* To whom correspondence should be addressed.
    Manuscript  received: 2023-10-08;  revised: 2023-10-31;

accepted: 2023-11-30 

TSINGHUA  SCIENCE  AND  TECHNOLOGY
ISSN  1007-0214    18/31   pp247−261
DOI:  10 .26599 /TST.2023 .9010145
Volume 30, Number 1, February  2025

 
©  The author(s) 2025. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).



VAP is a many-to-many allocation problem between
an  automaker  and  a  city  dealer.  This  implies  that  an
automaker  can  sell  cars  to  different  city  dealers,  and
city  dealers  can  accept  cars  from multiple  automakers
at the same time. It is important to note that automakers
may have different preferences, and market preferences
may  vary  across  cities.  Additionally,  cooperation  and
competition  among  automakers  are  common  in  this
context.

This paper attempts to formalize and model the VAP
using Group Multi-Role Assignment with Cooperation
and  Conflict  Factors  (GMRACCF).  It  is  an  extended
form  of  Group  Multi-Role  Assignment  (GMRA)[1, 2]

and  an  important  step  of  Role-Based  Collaboration
(RBC)[3–7].  By  modeling  this  problem,  the  vehicle
allocation  problem  of  automakers  and  vehicle  dealers
can  be  effectively  solved,  but  it  does  not  address  the
three bottlenecks that are common in the vehicle sales
chain.

A new collaborative  filtering  method  is  proposed  to
solve  the  proposed  problems in  this  paper.  Firstly,  we
use  the  KD45  algorithm  to  mine  the  original
Cooperation  and  Conflict  Factors  (CCFs)  matrix.  For
the  cooperation  and  conflict  relationships  between
automakers,  the  KD45  algorithm  can  better  improve
and  explore  more  CCF matrices,  and  can  improve  the
GMRACCF  model  to  provide  a  more  precise  and
suitable vehicle allocation strategy.

Furthermore,  after  using  the  KD45  algorithm,  the
scale  of  historical  cooperation  is  a  crucial  factor  that
affects car supply for both automakers and car dealers.
Automakers  are  more  likely  to  offer  maximum
concessions  to  dealers  with  a  large  historical
cooperation scale in order to increase their own profits.
This  mutually  beneficial  relationship  highlights  the
importance  of  cooperation  scale.  In  addition,  it  is
necessary  to  measure  the  impact  of  CCF  and
Cooperation  Scale  (CS)  by  assigning  weight  values
based  on  the  commercial  support  and  market
preference  of  different  automakers  in  various  cities.
The  introduction  of  weights  allows  administrators  to
adjust  the  weight  values  more  accurately  according  to
the  specific  requirements.  This  is  why  collaborative
filtering plays a significant role.

Finally, to enhance the accuracy and perfection of the
qualification  matrix,  it  is  necessary  to  adjust  the
threshold  of  KD45  due  to  possible  anomalies  in  the
CCF  matrix  with  the  KD45  logic  algorithm.
Introducing a cooperation threshold among automakers

helps  resolve  conflicts  in  partial  Q-values  and enables
the decision maker to formulate a more precise vehicle
allocation strategy based on demand.

With regards to the allocation of vehicles in the sales
chain,  the simulation results  indicate  that  the model  is
not  only  applicable  to  the  vehicle  allocation  problem,
but  can  also  be  extended  to  various  many-to-many
assignment problems within the sales chain.

The contributions of this article include:
(1)  Through  the  extension  of  GMRACCF,  the  VAP

of  automakers  is  formalized  into  the  VAP  of  several
automakers.

(2)  To  ensure  the  stability  of  the  supply  for
automakers  and  city  dealers,  this  paper  presents  a
process for cooperation scale and considers this process
as a feedback mechanism for GMRACCF.

(3)  Through  allocation,  vehicles  from  various
automakers  can  be  assigned  to  different  city  car
dealerships,  allowing  for  quick  adjustments  to  the
vehicle  allocation  plan  based  on  the  strategy.  The
simulation  results  serve  as  a  valuable  reference  for
vehicle sales chain administrators.

This article is organized as follows. It describes a real-
world  scenario  to  illustrate  the  problem  in  Section  2.
The  problem  is  then  formally  defined  through
GMRACCF  in  Section  3.  In  Section  4,  an  extended
GMRACCF  based  on  cooperative  filtering  and
semantic  modification  is  proposed.  The  results  of
large-scale  simulation  experiments  are  shown  in
Section  5.  Section  6  introduces  the  related  research
work. The prospect of the future and the conclusion of
this paper are given in Section 7.

2　Real-World Scenario

Organization  X  is  specialized  in  the  study  of  vehicle
sales  chains.  Ann,  the  CEO,  wants  to  study  the
distribution  of  cars  and  establish  a  new  distribution
management center. She asked Bob, the CTO, to do so
based on historical data. Then, Bob recognizes that it is
a  typical  assignment  problem,  i.e.,  GMRA[8].  He  lists
the  number  of  automakers  required by dealers  in  each
city according to demand, as shown in Table 1.

At  the  same  time,  Bob  also  searches  for  the  right
automakers  for  the  city  dealer.  The  automakers  are
selected  based  on  their  previous  vehicle  distribution
performance.  After  that,  Bob  evaluates  the  ability
of each automaker to supply cars to the city according
to  the  past  performance  of  these  automakers[8] (see
Table 2).
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In  light  of  the  presence  of  commercial  cooperation
and  competition  among  certain  automakers,  such  as
Guangzhou  Automobile  Group  (GAC)  Co.,  Ltd.  and
Shanghai  Automotive  Industry  Corporation  (SAIC)

Co.,  Ltd.,  respectively,  conflicts  arise  among  these
automakers due to their different market preferences in
the  two  cities.  However,  since  both  Guangzhou  and
Foshan  are  situated  in  the  Pearl  River  Delta  region,
they  share  similar  market  preferences  towards  GAC
Co.,  Ltd.,  resulting  in  a  cooperative  relationship
between  the  automakers.  Now,  Bob  finds  that  the
problem has the properties of Group Role Assignment
(GRA) with CCF (GRACCF)[9].

In order to enhance the sustainability and balance of
the  new  vehicle  allocation  strategy  and  follow  the
formalization  of  a  GRACCF  problem,  Ann  and  Bob
collaborate  with  the  current  vehicle  allocation
administrators  during  the  process  of  assigning  urban
dealerships  to  automakers.  The  administrators  share
that  some  automakers  have  demonstrated  both
cooperative  and  conflicting  intentions  on  various
projects.  To  address  this,  Ann  mandates  that  the
administrators  gather  information  on  all  instances  of
cooperation  or  conflict  between  automakers.  The
administrators distribute questionnaires to collect these
details, which are summarized in Table 3. In Table 3, a
value  of  0  indicates  no  conflict  or  cooperation,  values
less  than 0 indicate  conflict,  and values greater  than 0
indicate  cooperation.  The  values  of  other  automaker-
dealer  pairs  not  in Table  3 are  all  0.  The  value  of  the
first  row  and  third  column  in Table  3 is −0.30,  this
indicates that when Automaker A1 supplies vehicles to
Dealer  D2,  Automaker  A1  also  supplies  vehicles  to
Dealer  D6,  resulting  in  a  conflict  relationship.  The
conflict value is –0.3.

 

Table 1    Number  of  automakers  required  by  city  vehicle
dealers.

City vehicle dealer Number of
automakers required

D1 2
D2 1
D3 2
D4 1
D5 3
D6 1
D7 2
D8 1
D9 2
D10 3

 

Table 2    Maximum  number  of  cities  supplied  by
automakers.

Automaker Maximum number of
cities required

A1 6
A2 9
A3 3
A4 5
A5 3
A6 1
A7 2
A8 1

 

Table 3    CCFs.
Automaker-Dealer A1-D2 A1-D3 A1-D6 A1-D7 A1-D8 A2-D8 A2-D9 A2-D10 A3-D1 A3-D2 A3-D4 D5-D5 D5-D7 D6-D1 D6-D2

A1-D2 0.00 0.00 −0.30 0.35 0.35 0.00 0.00 0.00 −0.40 0.00 0.00 0.00 0.00 0.80 0.90
A1-D3 0.00 0.00 −0.20 −0.20 0.20 0.00 0.00 0.00 −0.50 0.00 0.00 0.00 0.00 0.50 0.60
A1-D6 −0.20 0.20 0.00 0.00 0.00 0.20 0.20 0.30 0.00 0.00 0.00 −0.30 0.35 0.70 0.60
A1-D7 −0.35 −0.20 0.00 0.00 0.00 0.20 0.20 0.30 0.00 0.00 0.00 −0.20 −0.20 0.00 0.00
A1-D8 0.35 0.40 0.00 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00 −0.30 0.35 0.00 0.00
A1-D8 0.00 0.00 0.20 0.20 0.30 0.00 0.00 0.00 −0.50 −0.40 −0.30 0.00 0.00 0.60 0.70
A1-D9 0.00 0.00 0.20 0.20 0.30 0.00 0.00 0.00 −0.40 −0.45 −0.30 0.00 0.00 0.00 0.00
A1-D10 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00 −0.20 −0.20 −0.30 0.00 0.00 0.00 0.00
A3-D1 0.00 0.00 0.00 0.00 0.00 0.30 0.20 0.30 0.00 0.00 0.00 0.00 0.00 0.80 0.70
A3-D2 0.00 0.00 0.00 0.00 0.00 −0.40 −0.45 −0.20 0.00 0.00 0.00 0.00 0.00 0.60 0.60
A3-D4 0.00 0.00 0.00 0.00 0.00 −0.20 −0.20 −0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A5-D5 0.30 0.20 −0.30 0.35 0.35 0.30 0.20 0.10 −0.50 −0.40 −0.30 0.00 0.00 0.70 0.70
A5-D7 0.00 0.00 −0.20 −0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.60
A6-D1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.40 0.00 0.00 0.80 0.60 0.00 0.00
A6-D2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.30 0.00 0.00 0.80 0.60 0.00 0.00

  Beiteng Yang et al.:  Improve GMRACCF Qualifications via Collaborative Filtering in Vehicle Sales Chain 249

 



The  purpose  of  this  questionnaire  is  to  establish  a
long-term cooperative  vehicle  allocation  strategy.  It  is
important  to  consider  the  cooperation  and  conflict
among team members as it directly affects the interests
of the respondents. It is assumed that there is no bias in
the obtained questionnaire results[10–12].

Bob assures that the E-CARGO model, along with its
extension,  the  GRACCF  model,  has  proven  to  be  an
efficient solution for addressing the resource allocation
problem,  particularly  in  considering  the  CCFs  among
automakers.  Motivated  by  this,  Bob  decides  to  utilize
these  models  to  tackle  the  vehicle  allocation  problem.
He  follows  the  steps  outlined  in  the  GMRA  and
GRACCF  model,  and  successfully  obtains  the
allocation results for the vehicles.

Furthermore,  Bob  presents  his  statistics  to  Ann  and
shares  the  assignment  results  of  the  new  vehicle
allocation  strategy  obtained  by  GRACCF.  However,
Ann expresses dissatisfaction with the outcome of this
assignment  and  highlights  three  issues.  Firstly,  Ann
finds  Bob’s  method  of  obtaining  results  to  be  overly
complicated  and  suggests  finding  a  new  approach  by
combining  GMRA  and  GRACCF  to  achieve  vehicle
allocation  results.  Then,  Ann  observes  that Table  3
represents  a  sparse  matrix,  neglecting  potential
relationships  that  could  significantly  impact  the
efficiency of vehicle allocation. Thus, Ann expects Bob
to  not  only  identify  potential  relationships  among
automakers, but also quantify the relationship between
CS  and  CCFs.  This  will  enable  the  formation  of  a
sustainable team that  meets expectations.  Finally,  Ann
wants  Bob’s  vehicle  allocation  to  be  able  to  promptly
and  accurately  respond  to  different  policies,  whether
they  are  loose  or  strict,  while  also  addressing  the
cooperation  and  conflict  relationships.  Now,  Bob
encounters  new  challenges  in  his  research,  including
the following:

(1) To obtain car allocation results, a novel approach
can  be  adopted  by  integrating  GMRA  and  GRACCF
methodologies.

(2)  The questionnaire  he is  using is  incomplete,  and
he  needs  to  extract  information  regarding  potential
cooperation or conflict.

(3)  He  requires  a  clear  understanding  of  the
quantitative relationship between CS and CCFs.

(4) He is in search of a vehicle allocation method that
can  quickly  adapt  to  a  loose  or  strict  policy,  and  also
rectify  the  relationship  between  cooperation  and
conflict.

Fortunately,  we  can  address  these  issues  by
redefining  GMRACCF  and  expanding  upon  the
existing  GMRACCF  framework.  The  upcoming
sections  elaborate  on  the  specifics  of  our  proposed
solution,  which  can  greatly  assist  Bob  in  facing  the
above challenges.

3　Problem  Formalization  with  E-CARGO
Model

To solve the VAP, we first formalize it by revising the
E-CARGO model and its extended model GMRACCF.
In  the  following  descriptions,  we  clearly  put  citations
to the definitions presented in the previous work. Those
definitions  without  citations  are  coined  for  the  first
time or modified in this paper.

∑
::= <C, O,A,M, R, E, G, S 0

H > C O
A M R

E G
S 0 H

A H , E G

With  the  E-CARGO model[13–17],  the  system can  be
described  as  a  9-tuple ,

, where  is a set of classes,  is a set of objects,
 is a set of agents,  is a set of messages,  is a set

of  roles,  is  a  set  of  environments,  is  a  set  of
groups,  is the initial state of the system, and  is a
set  of users.  In such a system,  and  and  are
tightly  coupled  sets.  Every  group  should  work  in  an
environment. An environment regulates a group.

m = (|A|
A) A

n = |R| R
i ∈ {0, 1, . . . , m−1}

j ∈ {0, 1, . . . , n−1}

When  discussing  role  assignment  problems[18, 19],  it
is  common  to  simplify  environments  and  groups  into
vectors and matrices, respectively. Furthermore, we use
nonnegative integers ,  which is  the cardinality
of  set ,  to  express  the  size  of  the  agent  set ,  and

, which is the size of the role set . The indices
of  agents  and  roles  are  denoted  by 
and .

Here,  we  use  the  real-world  scenario  mentioned  in
Section  2  as  an  example  to  describe  RBC  and  its
extended  GMRACCF  model  better.  The  VAP  can  be
defined in the following manner.

r ::= < id, ® >Definition 1　A role[3–5] is defined as 
where  id  is  the  identification  of r and  ®  is  the  set  of
requirements of properties for agents to play r.

Note: In the VAP, the role is the city dealer who has
a  demand  for  the  car.  Therefore,  ®  represents  the
number  of  automakers  required  by  the  corresponding
dealer.

a ::=< >

a
Definition 2　An agent[20] is defined as  id, ,

where id is the identification of ,  represents the set
of a’s values corresponding to the abilities required in
the group.

Note:  In  the  scenario,  the  agent  refers  to  the
automakers  and  represents  the  agent’s  historical
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representation of ®.
L

e
g

Definition 3　A role range vector [1] is a vector of
the lower bound of the ranges of roles in environment 
of group .

L

L = [2121312123]

Note:  is  a  valuable  component  in  the  E-CARGO
model.  It  represents  the  minimum  number  of
automakers  that  dealers  in  each  city  need  to  supply
cars. As can be seen from Table 1, .

La m
La [i] (0 ⩽ i < m)

La

La

Definition 4　An ability limit vector [18] is an -
dimensional  vector,  where  indicates
the  maximum  number  of  dealerships  each  automaker
can supply vehicles to. The superscript of  indicates
that  is a definition for the agents.

La

L = [69353121]

Note:  Due  to  the  different  economic  strength,  the
supply capacity of automakers is different and limited.
For example, in our scenario, as shown in Table 2, 
represents  the  maximum  number  of  dealers  that  each
automaker can supply vehicles to. As can be seen from
Table 2, .

P m×n
P [i, j] ∈ [0,1]

i (0 ⩽ i < m) j (0 ⩽ j < n).
P [i, j] = 0

Definition  5　 A  preference  matrix  is  an 
matrix,  where  expresses  the  preference
value  of  agent  for  role 

 indicates the lowest value and 1 the highest.
Note:  It  indicates  that  the  preference  of  city  vehicle

dealers for automakers is primarily determined through
standardization based on factors, such as local income,
consumption level, and logistics distance.

Pa

m×n Pa [i, j] ∈ [0,1]
i (0 ⩽ i < m)

j (0 ⩽ j < n). Pa [i, j] = 0

Definition  6　 A  preference  index  matrix  is  an
 matrix,  where  expresses  the

preference  value  of  agent  for  role
  indicates the lowest value and

1 the highest.
Note:  It  indicates  that  the  preference  of  automakers

for  city  dealers  is  primarily  determined  through
standardization  based  on  local  sales  levels,  logistics
costs, and other relevant factors.

C
m×n C [i, j] ∈ [0, 1]

i j

Definition  7　A  criteria  evaluation  matrix  is  an
 matrix,  where  is  a  vector  that

expresses the values of quantitative criteria when agent
 is supplied to role .

i i
j j

Note: Represents the ability of automakers  (agent )
to provide vehicles to city vehicle dealer  (role ) after
normalization based on the market share of automakers
in cities.

Q m×n
Q [i, j] ∈ [0, 1]

i (0 ⩽ i < m) j (0 ⩽ j < n).
Q [i, j] =

Definition 8　A qualification matrix [3] is an 
matrix, where  expresses the qualification
value  of  agent  for  role 

 0 indicates the lowest value and 1 the highest.
QNote:  matrix  is  the  result  of  the  agent  evaluation

Q
Q

Q

step  of  RBC.  It  can  be  obtained  by  comparing  all  the
qualifications  of  agents  with  all  the  requirements  of
roles.  In  this  article,  since  PuLP’s[21] assignment
method  is  already  available,  creating  is  our  main
concern.  Note  that  the  relevant  matrix  in  the  VAP
requires  some corrections,  especially  if  the  criteria  for
measuring  the  allocation  of  vehicles  is  subject  to  a
variety  of  influences.  While  certain  quantitative
indicators have been suggested to evaluate automakers
based on historical sales data, other significant factors,
such  as  logistics  costs  and  car  prices,  have  not  been
taken  into  account.  Additionally,  the  preferences  of
automakers  and  city  dealers  in  evaluation  criteria
significantly  impact  the  sustainability  of  vehicle
allocation.  Therefore,  we  propose  a  more
comprehensive  agent  evaluation  method  to  create 
matrix.

C, Pa, and P
Q

Definition  9　 Given ,  the  VAP  is  a
GRACCF problem, where  is formed by
 

Q [i, j] = Pa ◦C ◦P, 0 ⩽ i < m, 0 ⩽ j < n (1)
Pa i j

P j i
◦

C, Pa P

Q

where  denotes  agent ’s  preference  for  the  role ,
and  represents  the  role ’s  preference  for  agent .
The  symbol “ ” represents  the  Hadamard  product  of
matrix.  Since  the  values  of  matrices  and  are
independent  and  identically  distributed,  we  use  the
Weighted Sum (WS) method to quantify [2],  because
WS  is  well  accepted  to  combine  many  numerical
factors  together  to  form  one  numerical  indicator.
Equation  (1)  aims  to  establish  a  more  reasonable
evaluation  standard  by  taking  into  account  the
preferences  of  agents  and  roles  towards  the
aforementioned criteria.

Ccf

nc×5 Ccf [k, 4] ∈ [−1, 0)∪ (0, 1]
(0 ⩽ k < nc

Ccf [k, 0] Ccf [k, 1]
Ccf [k, 2] Ccf [k, 3]. nc

Ccf

Definition 10　A compact CCF matrix [10] is an
 matrix,  where 

) expresses that the degree of cooperation or
conflict effect when agent  plays role 
and  agent  plays  role  represents
the total number of nonzero elements in .

T
m×n T [i, j] ∈ {0,1} (0 ⩽ i < m,

0 ⩽ j < n) i
j. T [i, j] = 1

Definition 11　A role assignment matrix  is defined
as  an  matrix,  where 

 indicates whether or not agent  is supplied to
role  means yes and 0 for no.

T
nc T [k] ∈ {0,1} (0 ⩽ k < nc)

T [k]
T [k] = 1

Definition  12　A  CCF  assignment  vector  is  an
-vector,  where  indicates

whether  or  not  cooperation  or  conflict  factor  is
chosen.  means yes and 0 means no.

σGMRACCF

Group (g)
Definition  13　 The  group  performance 

of  is  defined  as  the  sum  of  the  assigned
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agents’ qualifications, that is
 

σGMRACCF(T ) =
m−1∑
i=0

n−1∑
j=0

Q [i, j]×T [i, j]+

[ nc−1∑
k=0

Ccf [k,4]×Q
[
Ccf [k,0], Ccf [k,1]

]
×T [k]

]
.

σGMRACCFNote:  The  social  meaning  of  is  the  team
performance  when  considering  the  impact  of  CCFs.
The  first  part  on  the  right  side  of  the  equation
represents  individual  performance,  while  the  second
part represents the benefits of CCFs’ impacts.

j (g)Definition 14　Role  is workable[1] in Group  if
it has been assigned enough agents, that is
 

m−1∑
i=0

T [i, j] ⩾ L [ j], 0 ⩽ j < n.

T j
g T

Group (g)
L, La, Q, Ccf , T T

Definition  15　  is  workable  if  each  role  is
workable[1],  Group  is  workable  if  is  workable.
From the above definitions,  can be expressed
by , and ,
 

m−1∑
i=0

T [i, j] = L [ j], 0 ⩽ j < n.

Q, L, La Ccf

T
Definition  16　 Given ,  and ,  the

GMRACCF problem is to find a workable ,
 

σGMRACCF(T ) =
m−1∑
i=0

n−1∑
j=0

Q [i, j]×T [i, j]+

[ nc−1∑
k=0

Ccf [k,4]×Q
[
Ccf [k,0],Ccf [k,1]

]
×T [k]

]
,

subject to
 

T [i, j] ∈ {0,1}, 0 ⩽ i < m,0 ⩽ j < n (2)
 

m−1∑
i=0

T [i, j] = L [ j], 0 ⩽ j < n (3)

 

n−1∑
j=0

T [i, j] ⩽ La [i], 0 ⩽ i < m (4)

 

T [k] ∈ {0,1}, 0 ⩽ k < nc (5)
 

2T [k] ⩽T [Ccf [k,0],Ccf [k,1]]+

T [Ccf [k,2],Ccf [k,3]], 0 ⩽ k < nc (6)
 

T
[
Ccf [k,0],Ccf [k,1]

]
+T
[
Ccf [k,2],

Ccf [k,3]
]
⩽ T [k]+1, 0 ⩽ k < nc (7)

T [i, j]
T

where  Formulas  (2)−(4)  are  the  constraints  for  the
control  variables .  where  expressions  Formulas
(5)−(7) are the constraints for the vector .

σGMRACCF(T )

Now,  the  vehicle  allocation  problem  can  be
formulated  as  a  linear  programming  problem  like
Definition 11. To solve this problem, we can utilize the
PuLP  linear  programming  tool  kit[21],  which  is  an
industry-standard  optimization  tool.  PuLP  is  an  open-
source  package  in  Python.  By  using  PuLP,  we
calculated  the  optimal  group  performance

 to be 18.38.

4　Extended GMRACCF Model

As  mentioned  above,  there  are  still  three  important
bottlenecks  in  the  practical  application  of  the
GMRACCF  model.  The  first  is  that  the  distribution
result  is  affected  by  the  potential  CCF  among
automakers due to the sparse CCF matrix.  Thus,  more
CCF  needs  to  be  mined.  The  second  is  that  the
objective  function  of  GMRACCF  should  not  only
consider  the  relationship  between  cooperation  and
conflict,  but  also  take  into  account  the  impact  of
cooperation  scale.  This  makes  it  difficult  for
administrators  to  distinguish  between  the  relationship
between  CCFs  and  the  impact  of  CS.  The  third  is  the
need  for  a  way  to  quickly  and  accurately  respond  to
different policies, whether they are lax or strict, and to
correct  cooperative  and  conflicting  relationships
accordingly.  To  address  these  issues,  this  section
briefly  introduces  the  KD45  logic  algorithm  used  in
Ref.  [22],  which  can  identify  potential  CCFs.
Additionally,  a  collaborative  filtering  evaluation
method  is  designed  to  assist  administrators  in
determining  the  impact  weights  of  CCFs  and  CS  on
team  performance  as  required.  Finally,  semantic
modification  is  applied  to  address  conflicts  in  the
original part based on collaborative filtering.

4.1　KD45 logic algorithm

The  constraint  matrix  used  in  vehicle  allocation  is
obtained  from  a  voluntary  questionnaire  filled  by
automakers.  This  method  of  obtaining  the  matrix
results  in  it  being  sparse,  local,  and  asymmetric.  The
constraint  matrix  plays  a  crucial  role  in  vehicle
allocation as it helps in assigning group roles. Having a
more  complete  constraint  matrix  allows  for  a  more
comprehensive  consideration  in  the  group  role
assignment  process,  leading  to  faster  efficiency  and
more  benefits  in  vehicle  allocation.  Mining  potential
CCF  among  automakers  is  essentially  a  relationship
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reasoning  problem  involving  multiple  agents.  The
modal  logic  system is  an  effective  method for  solving
multi-agent  relationship  reasoning  problems[23].
However,  the  KD45  logic  system  is  widely  used  for
multi-agent  knowledge  and  belief  representation  and
reasoning[24]. Hence, in this study, we apply the KD45
logic system to explore potential relationships between
agents.  The  KD45  logic  system  consists  of  four
axioms, as shown in Table 4.

(1)  Axiom K is  presented  in  relations  that  adhere  to
the  semantics  of  Kripke  relations.  Axiom K is
applicable  to  the  specific  context  discussed  in  this
paper.

(2)  Axiom D also  represents  the  concept  of  sum
persistence,  highlighting  the  interconnectedness  of
everything.  Nothing  exists  in  isolation,  including  the
agent itself, which may have conflicting or cooperative
relationships with other agents.

(3) Axiom 4, also known as transitivity, states that if
the  relationship  between x and y is  equivalent  to  the
relationship between y and z, then the same relationship
exists between x and z.

(4)  Axiom 5,  also known as the Euclidean property,
states  that  if  the  same relation exists  between things x
and y as exists between things x and z,  then the above
relation also exists between things y and z.

Example: Here, we use the scenario in Section 2 as
an example to illustrate that the VAP satisfies the four
axioms of the KD45 logic system. In Table 3 there is a
cooperation  relationship:  [A1-D3,  A1-D8],  [A1-D8,
A2-D8], and [A1-D3, A6-D1]. Using Axioms 4 and 5,
we  can  capture  the  implied  relationship  [A1-D3,  A2-
D8],  [A1-D8,  A6-D1],  and  [A6-D1,  A1-D8].  The
specific process is shown in Algorithm 1.

Ccf

Ccf

After  applying  the  KD45  algorithm  to  extend  the
CCF  matrix  in  GMRACCF,  the  number  of
conflicts  and  collaborations  in  is  greater  than  the

σ (T )

17%

original  one.  Additionally,  the  group  performance
 of  the  extended  GMRACCF  model  is  21.58,

while  the  original  GMRACCF  model  achieves  18.38.
The  comparison  clearly  demonstrates  that  the  KD45
algorithm  has  a  significant  impact  on  group
performance,  with  an  increase  of  [(21.58−
18.38)/18.38].  It  is  important  to  note  that  the  original
GMRACCF,  which  solely  relies  on  CCFs,  may  have
lower  team  performance  in  practical  scenarios  as  it
fails  to  consider  implicit  cooperation  effects  and
potential  conflicts.  Therefore,  the  revised  GMRACCF
model  is  expected  to  yield  more  benefits  compared  to
the original version.

4.2　Collaborative filtering

In  addition  to  extending  the  GMRACCF  model,
another important aspect is quantifying the relationship
between  CS  and  CCF  to  assist  administrators  in
making informed decisions.  To address this challenge,
we  introduce  a  collaborative  filtering  evaluation
method.  To  provide  a  clearer  understanding  of  this

 

Table 4    Main parameters in experiment.
Axiom
name Axiom Meaning Condition on frames

K □ (A→ B)
→ (□A→ □B)Distributive Kriple’s relational

semantics
D □A→ ⋄A Serial ∀x,∃y→ xRy

4 □A→ □□A Transitive ∀x, y, z, xRy∧ yRz
→ xRz

5 ⋄A→ □⋄A Euclidean ∀x, y, z, xRy∧ xRz
→ yRz

□ ⋄Note: Symbols  and  represent necessity and possibility in
modal logic, respectively, A and B are both propositions, and
xRy represents that element x and y have a relationship R.

 

Algorithm 1　KD45 logic algorithm

Ccf , GInput: 

Ccf
KD45 Ccf

KD45Output:   /*  is the CCF matrix after KD45 logic
algorithm
Begin

Ccf
KD45← ∅　1: ;

Ccf
coop, C

cf
conf← (Ccf)　2:  classifyRelationship ;

Ccf
coop and Ccf

conf　/* Meeting the KD45 logic system,  are the
　cooperation matrix and conflict matrix after KD45 logic
　algorithm, respectively. Finding transitive closure first
　and then Euclidean closure can greatly avoid reflexivity*/

Ccf
coop← (Ccf

coop, G)　3:  transitiveClosure ;

Ccf
coop  　/* Whether  satisfies Axiom 4 */

Ccf
coop← (Ccf

coop, G)　4:  EuclideanClosure ;

Ccf
coop  　/* Whether  satisfies Axiom 5 */

Ccf
conf← (Ccf

conf, G)　5:  transitiveClosure ;

Ccf
conf  　/* Whether  satisfies Axiom 4 */

Ccf
conf← (Ccf

conf, G)　6:  EuclideanClosure ;

Ccf
conf  　/* Whether  satisfies Axiom 5 */

Ccf
KD45← (Ccf , Ccf

coop, C
cf
conf, G)　7:  integrateRelationship ;

Ccf
KD45  　/* The extended  matrix is obtained */

Ccf
KD45　8: Return 

end
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approach, we also introduce some new definitions.
CS

m×n CS [i, j] ∈ [0,1]

i j.CS [i, j] = 1

Definition 17　A cooperation scale matrix  is an
 matrix,  where  expresses  a  true

qualification  value  considering  the  cooperation  scale
when agent  is supplied to role  indicates
the highest value and 0 the lowest.

Q

Note:  In  considering  the  impact  of  the  cooperation
scale  between  automakers  and  dealers  on  vehicle
allocation  strategy,  we  propose  a  reasonable
hypothesis:  the  cooperation  scale  between  automakers
(agents)  and  city  dealers  (roles)  in  the  actual  vehicle
sales  chain  also  influences  the  agents’ actual
performance. This can result in the actual performance
being  lower  than  what  is  indicated  in .  To  analyze
this  further,  it  is  necessary  to  define  a  matrix  that
represents  the  cooperation  scale  between  automakers
(agents) and dealers (roles) in each city dealer based on
historical.

ω ∈ [0,1]

−ω ∈ [0,1]

Definition 18　Weight coefficient  indicates
how  much  administrators  attach  importance  to  the
CCFs  of  automakers,  and  the  coefficient  1
indicates  how  much  administrators  attach  importance
to the CS between automakers and city vehicle dealers.

ω

1−ω

Note:  To  evaluate  the  impact  of  cooperation  and
conflict  on  actual  performance,  we  introduce  the
parameter  to represent the degree of cooperation and
conflict,  while  represents  the  degree  of
cooperation scale on actual performance.

The  above  Definitions  17  and  18  introduce  the
extended GMRACCF model as follows:
 

σCF-GMRACCF(T ) =
m−1∑
i=0

n−1∑
j=0

Q [i, j]×T [i, j] +

[
ω×

nc−1∑
k=0

Ccf [k,4] ×Q
[
Ccf [k,0],Ccf [k,1]

]
×T [k]

]
+

[
(1−ω)×

m−1∑
i=0

n−1∑
j=0

CS [i, j] ×T [i, j]
]
,

σCF-GMRACCFwhere  represents  the  team  performance
of  the  extended  GMRACCF  model  based  on
collaborative filtering.

With the abovementioned Definitions 17 and 18 and
constraints,  we  propose  the  group  evaluation  method.
Here,  we  define  additional  symbols  as  follows  to
simplify our descriptions:

ω

(1) “step” represents  the  increasing  step  of  CCF
weight .  The  value  range  of  step  is  [0,  1].  In  our
scenario,  we  randomly  set  it  to  0.05.  Without  loss  of
generality,  we  will  conduct  large-scale  randomized
experiments in Section 5.

(2)  CF-GMRACCF  ( )  is  a  function  based  on
collaborative filtering extension GMRACCF to call the
Python PuLP solution. This section presents a proposed
collaborative  filtering  evaluation  method  that  aims  to
determine the impact of CCFs and cooperation scale on
team  performance,  as  per  the  requirements  of
administrators.  The extended GMRACCF model has a
time complexity that is NP-hard, which also applies to
the  team  evaluation  method.  However,  based  on
experiments,  it  has  been  found  that  the  PuLP
solution[21] is a practical approach for certain scales.

σ

ω σ

The  comparison  between  the  original  GMRACCF
and  the  collaborative  filtering  approach,  as  shown  in
Figs.  1 and 2,  reveals  that  changes in  the CCF weight
lead to corresponding changes in the team performance

.  This  suggests  that  adjusting  the  weights  of  CCFs
and  CSs  enable  effective  adjustment  of  the  vehicle
allocation  strategy  based  on  the  desired  level  of
strictness or looseness by administrators. When weight

 of CCFs increases, although the team performance 
decreases,  it  remains  higher  than  when  the  CS  is  not
considered.  This  indicates  a  positive  impact  of
cooperation  scale  on  team  performance  when
considering  cooperation  and  conflict.  Thus,  the
effectiveness  of  the  collaborative  filtering  method  is
also demonstrated.
 

 
Fig. 1    Group performance with different ω values.

 

GMRA
Sp-GMRACCF (ω = 0.4)

GMRACCF
Sp-GMRACCF (ω = 0.6)

Sp-GMRACCF (ω = 0.2)
Sp-GMRACCF (ω = 0.8) 

Fig. 2    Group  performance  with  different τ values
(different ω).
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4.3　Semantic modification

In  the  previous  section,  we  focus  on  collaborative
filtering  and  examine  how  cooperation,  conflict,  and
the  degree  of  cooperation  impact  group  performance.
In this section, we aim to determine the positive impact
on  group  performance  by  adjusting  the  threshold  of
cooperation  and  conflict.  We  also  aim  to  identify  an
assignment  method  that  benefits  both  automakers  and
dealers. This method will help protect their interests.

τ ∈ [0,1]
Definition  19　 The  automaker  cooperation

coefficient  represents the impact of the CCFs
that administrators expect among automakers.

ω

τ

τ

τ

τ

Note:  In  the  case  of  different  cooperation  and
conflict  weights  with  values,  the  sales  strategy
adopted by the automaker becomes more open as the 
value  decreases.  Conversely,  a  larger  value  of 
indicates  a  more  conservative  sales  strategy.  As
administrators  prefer  automakers  with  greater  CCF
influence,  we  introduce  the  automaker  cooperation
coefficient  to  help  identify  automakers  with  larger
CCF values. To further clarify the physical meaning of

, we provide the following Definitions 20 and 21.
τcoop

τcoop ∈ [0,1]

Definition  20　 The  cooperation  threshold 
represents  the  degree  of  cooperation  between  the
automakers expected by the administrator, 

τcoop = τNote:  In  this  paper,  we  set  to  find
automakers with a high degree of cooperation.

τconf

τconf ∈ [0,1]

Definition 21　The conflict  threshold  denotes
the  degree  of  conflict  between  automakers  acceptable
to the administrator, .

τconf = τ−1Note:  In  this  paper,  we set  to  find low-
conflict automakers.

τ τ = 0.3
τcoop = 0.3 τconf = −0.7 −0.7 < Ccf [i1, j1,

i2, j2
]
< 0.3 (0 ⩽ i1, i2 < m and 0 ⩽ j1, j2 < n)

Here,  we  adopt  the  defined  scenario  to  explain  the
meaning of . When the administrator sets , that
is,  and .  if  

,  then  the
relationship between them is ignored, such as [A1-D2,
A3-D1)] = 0, [A1-D8, A5-D7] = 0.

The  above  new Definitions  19  and  21  introduce  the
extended GRACCF model
 

σSP-GMRACCF(T ) =
m−1∑
i=0

n−1∑
j=0

Q [i, j]×T [i, j] +

[
ω×

nc−1∑
k=0

Ccf[k,4] ×Q
[
Ccf[k,0], Ccf[k,1]

]
×T [k]

]
+

[
(1−ω)×

m−1∑
i=0

n−1∑
j=0

CS[i, j] ×T [i, j]
]
,

subject to Formulas (2)−(7), and

 

Ccf[k,4] = 0, 0 ⩽ k ⩽ nc and Ccf[k,4] < τcoop (8)
 

Ccf[k,4] = 0, 0 ⩽ k ⩽ nc and Ccf[k,4] > τconf (9)

σSP-GMRACCFwhere  represents  the  group  performance
of  the extended GMRACCF model  based on semantic
modification,  and  Formulas  (8)  and  (9)  cooperatively
screen those automakers with high cooperation and low
conflict potentials in the extended GMRACCF model.

With the above mentioned Definitions 19 and 21 and
constraints,  we  propose  the  evaluation  method.  Here,
we define additional symbols as follows to simplify our
descriptions:

τ

[0,1]

(1) “step” is a value that expresses the increasing step
length of the automaker cooperatibn coefficient ,  and
the range of step is . In our scenario, we randomly
set it to 0.05. Without loss of generality, we will carry
out large-scale random experiments in Section 6.

)(2)  SP-GMRACCF (  is  a  function  that  extends  the
GMRACCF  solution  based  on  collaborative  filtering
and semantic modification.

Q

This  section  proposes  a  method  for  evaluating
semantic modifications based on collaborative filtering.
The method aims to  resolve  conflicts  in  values  and
assist in identifying automakers with a high CCF value.

σ

As  shown  in Figs. 2 and 3,  applying  semantic
modification based on collaborative filtering results  in
a decrease in group performance  as  the cooperation
coefficient  increases.  This  indicates  that  stricter
requirements  for  cooperation  and  conflict  have  a
negative  impact  on the  performance of  CCF,  although
it  still  outperforms when considering only cooperation
and  conflict  factors.  However,  administrators  can
effectively adjust whether a vehicle allocation strategy
should  be  aggressive  or  conservative  by  simply
adjusting the CCF threshold based on its current form.
This  section  demonstrates  that  the  semantics  provide
 

 
Fig. 3    Group performance with different τ values.
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administrators  with  more  suitable  vehicle  allocation
policies  and  effectively  ensure  a  minimum  level  of
group performance.

5　Simulation

In  order  to  verify  the  efficiency and robustness  of  our
proposed  method,  we  conduct  a  large-scale  random
simulation  experiment  on  a  configured  computer.  The
experimental  setup  includes  an  Intel  Core  i5-12600K
processor,  16.0  GB  of  memory,  and  the  Windows  11
Pro operating system.  We use  PyCharm 2023.1  as  the
editor and Python 3 as the programming language.

(m = 8 and n = 10) (m = 16
and n = 22) m

n

Q [i, j] L [ j] La [i] ω τ

In  the  simulation,  we  choose  two  different  typical
team  sizes,  namely  and 

,  where  represents  the  number  of
automakers  (agents)  and  represents  the  number  of
city dealers (roles). These two sizes of automakers and
city  dealers  correspond  to  the  number  of  large
automakers  and  vehicle  dealers  in  first-tier  cities  that
are well-known in the market, as well as the number of
automakers  with  high  sales  in  the  country  and  car
dealers  in  first-tier  and  second-tier  cities.  Since  our
proposed  solution  mainly  involves  predefined
parameters , , , ,  and ,  we  run
thousands  of  simulation  experiments  according  to  the
range of these parameters in Table 5.

In addition, to simplify the description, we introduce
the following symbols:

Ccf
kd45 Cf

kd451)  represents the compact CCF matrix of .
TGMRACCF T(2)  represents matrix  obtained from the

original GMRACCF model.
T
GMRACCF

T(3)  is  the  CCF  assignment  result 
obtained from the original GMRACCF model.

σSP-GMRACCF(4)  is  the  result  of  semantic
modification performance, which is formalized as
 

σSP-GMRACCF(T ) =
m−1∑
i=0

n−1∑
j=0

Q [i, j]×TGMRACCF[i, j] +

[
ω×
∑

Ccf
kd45[k,4] ×

Q
[
Ccf

kd45[k,0],Ccf
kd45[k,1]

]
×

T
GMRACCF

[k]
]
+[

(1−ω)×
m−1∑
i=0

n−1∑
j=0

CS[i, j] ×

TGMRACCF[i, j]
]
.

In  order  to  validate  the  effectiveness  of  cooperative
filtering  and  semantic  modification,  we  conduct  tests
using both team sizes mentioned earlier.

ω

ω

ω = 1

Collaborative  filtering  primarily  involves
determining the weight coefficient  for cooperation or
conflict  factors  and  the  parameter  step  size.  As  it  is  a
dynamic  search  for  the  optimal  value  of ,  we  begin
with  the  maximum  value,  i.e., . Figure  4
illustrates  the  variations  in  group  performance  with
respect to asynchronous long values, demonstrates that
in  order  to  establish  a  more  conservative  (positive)
sustainable  vehicle  allocation  strategy,  administrators
must  make  a  balanced  trade-off  by  sacrificing  the
impact  of  cooperation  scale  (cooperation  and  conflict
factors) appropriately.

τ

τ

τ = 1

Semantic  modification  mainly  involves  automobile
manufacturer  cooperation  coefficient  and  parameter
step  size.  Since  the  team  evaluation  method
dynamically  searches  for  the  best  value  of ,  we  start
with  the  maximum  value,  that  is, . Figure  5
illustrates  the  impact  of  asynchronous  long  values  on
group  performance.  The  results  show  that  when
administrators  aim  to  establish  a  sustainable
conservative (positive) vehicle allocation strategy with
a  high  CCFs  impact,  adjustments  lead  to  a  decrease
(increase)  in  group  performance  of  the  vehicle  sales
chain.

σSP-GMRACCF

σGMRACCF (KD45)
σGMRACCF

λ1

σGMRACCF (KD45)−σGMRACCF σGMRACCF λ2

σSP-GMRACCF−σGMRACCF (KD45)
σGMRACCF (KD45)

We compare the group performance of the extended
GMRACCF  after  collaborative  filtering  and  semantic
modification ( ),  the extended GMRACCF
after  completion  based  on  the  KD45  algorithm
( ),  and  the  original  GMRACCF
( )  under  two  different  sizes.  The  simulation
results  are  shown  in Table  6,  where  is  defined
as  ( )/ ,  and 
is  defined  as  ( )/

.  Our  findings  indicate  that  in  our
vehicle  allocation  scenario,  using  the  KD45 algorithm
to  complete  the  CCF  matrix  leads  to  an  increase  in
group performance, but it is not consistently stable. On
the  other  hand,  the  GMRACCF,  through collaborative

 

Table 5    Main parameters in simulation.
Parameter Range or numerical value

L [j] [1, 4]
La[i] [1, 10]
ω [0, 1]
τ [0, 1]

Q [i, j] [0, 1]
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filtering  and  semantic  modification,  consistently
ensures the improvement of group performance.

The  average  group  performance  comparison  of  the
three  models  of  two  different  sizes  is  illustrated  in
Fig.  6.  Additionally, Fig.  7 provides evidence that  our
proposed  collaborative  filtering  and  semantic

modification  algorithm  effectively  enhances  group
performance.  It  is  worth  noting  that  the  expanded
GMRACCF  model,  which  utilized  the  KD45  logic
algorithm,  took  longer  to  find  CCF  influences
compared  to  the  original  GMRACCF  model,  as
demonstrated in Fig. 7.

2.63% 39.86%

However, the time difference between the completed
model  with  the  KD45  algorithm  and  the  model  with
collaborative  filtering  and  semantic  correction  is  not
significant.  However,  when  compared  to  the  original
model,  the  average  vehicle  allocation  performance
improved  from  to ,  which  is  a
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Fig. 4    Change in the group performance  under different
values of  with different steps (m = 8, n = 10, 1 ≤ L [j] < 4
(0 ≤ j < 10), and 1 ≤ La[i] < 10 (0 ≤ i < 8)).
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Fig. 5    Change in the group performance  under different
values of  with different ssteps (m = 8, n = 10, 1 ≤ L [j] < 4
(0 ≤ j < 10), and 1 ≤ La[i] < 10 (0 ≤ i < 8)).

 

Table 6    Simulation results from various models and different scales.
Scale σGMRACCF σGMRACCF  (KD45) σSP-GMRACCF λ1  (%) λ2  (%)

m = 8, n = 10 16.05 16.41 23.75 2.24 44.68
m = 10, n = 13 25.13 25.51 35.86 1.52 40.59
m = 12, n = 16 33.27 34.02 47.08 2.26 38.40
m = 14, n = 19 41.14 42.78 58.84 3.99 37.54
m = 16, n = 22 48.62 50.28 69.46 3.14 38.14
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3.81%

particularly  significant  improvement.  Furthermore,  the
average  time  of  the  model  with  collaborative  filtering
and semantic modification is  shorter than that of
the  model  completed  by  the  KD45  algorithm,  and  the
vehicle allocation strategy can be generated within two
minutes.

From  the  above  experiment,  we  can  draw  the
following conclusions:

(1) Table 6 and Fig. 6 demonstrate the effectiveness
of  the  KD45  logic  algorithm  in  enhancing  the  overall
performance  of  the  sales  chain  through  the
identification  of  potential  relationships  among
automakers.

ω

(2) As shown in Fig.  4,  when the weight coefficient
 of  cooperation  or  conflict  factors  increases,  it

indicates  that  administrators’ demands  for  vehicle
allocation become increasingly strict.

τ

(3)  As  shown  in Fig.  5,  the  increase  in  the  weight
coefficient  of cooperation or conflict factors leads to
stricter  requirements  on  the  influence  of  CCFs,
resulting  in  lower  performance  of  CCFs.  This
corresponds  to  a  more  conservative  allocation  of
vehicles by administrators.

(4) Figures 4−6 demonstrate that  our proposed team

evaluation  method  can  effectively  consider  the
influence  of  CS  and  CCFs.  Additionally,  it  allows  for
setting  the  value  of  the  cooperation  or  conflict  factor
weight coefficient to evaluate the group performance in
relation  to  the  individual  performance  of  the
automakers and the city dealer.

ω

τ

(5)  As  demonstrated  in Fig.  8,  adjusting  the  weight
coefficient  of  cooperation  and  conflict  can  impact
the  vehicle  allocation  performance.  Increasing
(decreasing)  these  weights  will  result  in  lower
(increased)  performance.  However,  increasing
(decreasing)  the  thresholds  for  cooperation  and
conflict  can  mitigate  the  negative  impact  on
performance. This suggests that administrators have the
ability  to  fine-tune  the  coefficients  of  the  current
strategy  to  achieve  the  desired  vehicle  allocation
performance.

6　Related Work

The  VAP  is  a  resource  allocation  problem  that  has
gained  increasing  attention.  In  recent  years,  many
scholars have used various algorithms to study resource
allocation problems.

Wei  et  al.[25] employed  the  Non-dominated  Sorting
Genetic  Algorithm  Ⅱ (NSGA -Ⅱ)  to  address  the
resource  allocation  problem  in  Vehicular  Cloud
Computing  (VCC).  However,  this  algorithm  solely
focuses  on  resource  allocation  and  neglects  real-time
update  information,  making  it  unsuitable  for  vehicle
allocation strategies that require real-time performance.

On the other  hand,  Luong et  al.[26] utilized Deep Q-
Learning  (DQL)  and  Convex  Difference  Algorithm
(DCA)  to  tackle  the  resource  allocation  problem  in
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Unmanned  Aerial  Vehicles  (UAVs)  cooperative
wireless  networks.  However,  the  DQL  algorithm  only
requires  training  the  drone  based  on  a  smaller  set  of
variables,  such  as  the  drone’s  location,  rather  than  all
the  variables  involved.  In  the  context  of  automobile
distribution,  where  all  manufacturers  and dealers  need
to  be  centralized  for  distribution,  this  approach  is  not
applicable.

Many  scholars  have  focused  on  solving  the  task
allocation  problem  using  the  multi-agent  system,  also
known as the agent-based method[27–30]. Some scholars
have  proposed  a  solution  to  the  team  establishment
problem  using  RBC[31–33] and  its  basic  GRA
model[34–37].  This  model  is  known  for  its  centralized
modeling  and  distributed  execution[37].  Zhu  et  al.[1, 2]

proposed a  practical  solution  to  the  team management
problem  by  formalizing  the  GRA+  algorithm,  which
essentially  addresses  a  resource  allocation  problem.
These  findings  suggest  that  RBC  and  E-CARGO  are
effective  tools  for  formalizing  and  solving  complex
collaboration and management problems.

The  previous  studies  demonstrate  that  RBC  and  its
GRMA  model  have  emerged  as  a  practical  unified
model for addressing resource allocation problems.

In  the  VAP  examined  in  this  paper,  there  is  a
presence  of  commercial  cooperation  and  competition
among automakers. Merely utilizing the GMRA model
is  insufficient.  To  effectively  implement  GMRA,  it  is
necessary  to  also  take  into  account  the  CCF  among
automakers.

For  example,  Zhu  et  al.[9] proposed  the  GRACCF
model,  which  considers  both  CCF  and  addresses  the
assignment  of  conflicting  agents  in  optimization.
Extensive  simulation  experiments  demonstrate  that
GRACCF  can  assist  administrators  in  forming  high-
performing  teams  by  assigning  employees,  making  it
applicable  to  the  vehicle  allocation  problem  as  well.
However,  previous  methods  have  some  limitations.
Firstly,  They  used  a  questionnaire  to  construct  the
compact CCF matrix, which may not fully capture the
potential  relationship  between  automakers.  To  address
this,  Jiang  et  al.[22] developed  the  KD45  logic
algorithm[23] to  extend  the  GRACCF  model  and
considered  the  potential  relationship  between
automakers.  However,  Jiang  et  al.’s[22] algorithm
overlooks  the  impact  of  cooperation  scale  on
automakers  and  dealers  in  the  vehicle  allocation
problem. The scale of cooperation not only affects the
supply and demand between automobile manufacturers

and  dealers,  but  also  influences  factors  such  as  price
and  inventory.  In  this  study,  we  present  an  innovative
approach  called  collaborative  filtering  with  semantic
modification. This approach offers valuable insights for
administrators  in  formulating  effective  vehicle
allocation strategies.

7　Conclusion

This  paper  proposes  the  extended  GMRACCF  model,
which  is  based on collaborative  filtering  and semantic
modification  to  establish  a  practical  application  of
vehicle allocation.

Q

In this paper, we first formalize the vehicle allocation
problem  through  a  simplified  GMRACCF  model.
Then, we investigate the potential relationship between
automakers  and  the  cooperation  scale  between
automakers  and  car  city  dealers,  as  it  can  impact  the
sustainability  of  vehicle  allocation.  To  explore  this
relationship,  we  employ  the  KD45  logic  algorithm.
Additionally,  we  propose  an  evaluation  method  of
collaborative  filtering  to  assist  administrators  in
determining the weight  of  cooperation and conflict,  as
well  as  the  cooperation  scale,  on  team  performance
based  on  specific  requirements.  Finally,  we  apply
semantic modification to address conflict resolution of
partial  values,  building  upon  the  cooperative
filtering approach.

The  practicability  and  robustness  of  the  proposed
allocation  method  are  demonstrated  through  an
example.  The  simulation  results  provide  a  reliable
reference  for  administrators  to  assess  the  overall
performance  of  automakers  and  dealers  based  on
dynamic  demand  and  make  informed  decisions
regarding vehicle allocation.

From  this  paper,  further  research  on  the  extended
GMRACCF  model  can  be  explored  in  the  following
directions.

(1)  To  obtain  a  compact  CCF  matrix  between
automakers, a more scientific and detailed index-based
method can be employed.

Q
(2)  In  order  to  evaluate  the  performance  of  the

semantic  modification  algorithm  in  resolving -value
conflicts,  it  is  necessary  to  compare  it  with  other
machine learning algorithms.

(3)  Finding  Nash  equilibrium  with  collaborative
filtering and semantic modification.
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