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Abstract: With various service types including massive machine-type communication (mMTC) and ultra-reliable

low-latency communication (URLLC), fifth generation (5G) networks require advanced resources management

strategies. As a method to segment network resources logically, network slicing (NS) addresses the challenges

of  heterogeneity  and  scalability  prevalent  in  these  networks.  Traditional  software-defined  networking  (SDN)

technologies,  lack  the  flexibility  needed  for  precise  control  over  network  resources  and  fine-grained  packet

management. This has led to significant developments in programmable switches, with programming protocol-

independent packet processors (P4) emerging as a transformative programming language. P4 endows network

devices with flexibility and programmability, overcoming traditional SDN limitations and enabling more dynamic,

precise  network  slicing  implementations.  In  our  work,  we  leverage  the  capabilities  of  P4  to  forge  a

groundbreaking  closed-loop  architecture  that  synergizes  the  programmable  data  plane  with  an  intelligent

control plane. We set up a token bucket-based bandwidth management and traffic isolation mechanism in the

data  plane,  and  use  the  generative  diffusion  model  to  generate  the  key  configuration  of  the  strategy  in  the

control  plane.  Through  comprehensive  experimentation,  we  validate  the  effectiveness  of  our  architecture,

underscoring its potential as a significant advancement in 5G network traffic management.
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1　Introduction

With  the  advancement  of  fifth  generation  (5G)  and
Beyond  5G  (B5G)  technologies,  a  new  paradigm  in
mobile  communications  is  unfolding.  These
technologies are marked by a substantial  surge in data
traffic  and  an  extensive  variety  of  service  offerings,
posing  new  challenges  in  network  resources

management[1].  To  address  these  complexities,
particularly  when  diverse  applications  coexist  on  a
shared  network  infrastructure,  leading  to  issues  like
bandwidth  congestion  and  variable  connectivity
quality,  network  slicing  (NS)  emerges  as  a  strategic
solution[2].  By  segmenting  the  network  into  distinct
slices each tailored for specific services or applications,
NS  not  only  enhances  resource  efficiency  but  also
improves  user  experiences  by  reducing  latency  and
offering customized quality of service (QoS)[3].

Building  upon  the  network  management  challenges
brought  forth  by  the  surge  in  data  traffic  and  service
variety in 5G and B5G technologies, the integration of
software-defined  networking  (SDN)  with  network
slicing  emerges  as  a  crucial  innovation[4].
Characterized  by  its  distinctive  separation  of  the
control  plane  from  the  data  plane,  SDN  facilitates
dynamic resource management,  optimizing application
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performance  for  a  diverse  range  of  requirements.
However,  when  combined  with  network  slicing,
traditional  SDN  encounters  unresolved  challenges,
particularly in terms of adaptability and flexibility due
to  the  constraints  imposed  by  vendor-specific
hardware, which becomes especially pronounced when
addressing the dynamic and varied requirements of 5G
network  services[5].  The  advent  of  programmable  data
planes,  exemplified  by  programming  protocol-
independent  packet  processors  (P4),  introduces  a  new
level  of  programmability  across  diverse  network
devices[6].  As  a  domain-specific  language  tailored  for
orchestrating packet-forwarding mechanisms in various
networking  hardware,  P4’s  unique  strength  lies  in  its
ability  to  support  NS  with  high  precision,  thereby
overcoming  the  adaptability  constraints  of  traditional
data planes.

The  integration  of  P4  programming  with  network
slicing  marks  a  significant  shift,  enabling  precise
control  over various network segments within a single
physical infrastructure, addressing the diverse needs of
modern network services[7]. NS effectively partitions a
physical  network  into  several  virtual  segments,  each
optimized  for  specific  requirements.  P4’s  role  as  a
specialized  programming  language  extends  this
capability,  allowing  intricate  control  over  packet
processing from header modifications to priority-based
forwarding.  The  effectiveness  of  P4  in  supporting
network  slicing  is  evident  in  several  key  areas.  It
allows  for  dynamic  resource  distribution,  tailored
processing routines  for  each slice,  and efficient  use  of
hardware  resources[8].  Techniques  like  dynamic  table
updates and flexible packet modifications facilitated by
P4  lead  to  reduced  latency  and  enhanced  service
customization[9].  Some researches  focus  on  the  meters
in  P4  for  managing  network  resources  effectively,  as
they enable rate-limiting and bandwidth control within
each  slice,  isolating  traffic  to  prevent  resource
contention  between  slices[10].  By  incorporating
metering,  P4  facilitates  advanced  techniques  like
dynamic  table  updates,  flexible  packet  modifications,
and  priority  queuing,  all  while  ensuring  each  slice
operates  within  its  allocated  resources,  thereby
reducing latency and enhancing service customization.
However,  the  static  nature  of  meter  settings  in  P4 can
lead  to  suboptimal  resource  allocation,  as  they  cannot
dynamically  adjust  to  the  fluctuating  network
conditions and traffic patterns, especially in the context
of  the  ever-changing  demands  of  5G  and  B5G

networks.
To  address  the  limitations  of  static  meter

configurations  in  P4,  we  advocate  the  integration  of
generative  artificial  intelligence  (GAI)  algorithms
within  the  control  plane.  This  approach is  designed to
dynamically  predict  and  optimize  the  parameters  for
bandwidth  management  in  P4  meters,  significantly
enhancing  the  adaptability  and  efficiency  of  network
slicing. In the ever-evolving networking sphere, GAI is
poised  to  revolutionize  various  aspects  of  network
operations[11].  It  offers  a  breadth  of  capabilities,  from
facilitating  dynamic  responses  to  real-time  network
conditions to providing predictive insights for informed
decision-making.  Furthermore,  GAI  introduces
innovative  strategies  for  resource  allocation,  ensuring
optimal network performance. Amongst the generative
models,  diffusion  models  stand  out  for  their  unique
data  generation  process[12].  These  models  are  trained
by gradually adding Gaussian noise to the training data
and  then  learning  to  reverse  this  process,  effectively
denoising the data.  In  application,  this  involves taking
random noise samples and processing them through the
trained  denoising  mechanism  to  generate  new  data
instances.  This  technique  capitalizes  on  the  model’s
ability  to  reconstruct  original  data  from  noise-altered
states, offering a powerful tool for data generation and
analysis in network environments.

Within  the  networking  optimization,  GAI  exerts
substantial  influence  across  all  network  facets.  Its
impact  extends  from  fundamental  aspects  like  content
delivery  to  the  intricate  architectural  configurations  of
networks.  For  instance,  GAI  enhances  network
adaptability  by  enabling  dynamic  adjustments  that
respond  to  real-time  conditions.  It  offers  predictive
insights  that  support  informed decision-making,  and it
devises  strategic  resource  allocation  methods  that  are
crucial  for  achieving  optimal  network  performance.
Diffusion models are categorized as generative models,
designed to generate data akin to the data used for their
training.  Essentially,  these  models  operate  by
systematically  perturbing  the  training  data  with
successive  increments  of  Gaussian  noise  and
subsequently  learning  to  restore  the  original  data  by
reversing this noise application. Following the training
phase,  employing  the  diffusion  models  for  data
generation  becomes  a  straightforward  process−by
directing randomly sampled noise through the acquired
denoising  process,  the  model  generates  new  data
instances.  This  method  leverages  the  model’s  learned
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capacity to reconstruct the original data from the noise-
induced representations[13].

In  this  article,  we  introduce  an  innovative  network
slicing  framework  driven  by  P4  programming,  which
continuously monitors network traffic and performance
metrics  to  establish  dedicated,  independent  channels
within the network.  The key focus is  on utilizing P4’s
dynamic  capabilities  to  partition  network  resources,
ensuring  isolated  traffic  within  each  slice  and
preventing  any  interference  from  adjacent  slices.
Enhancing  this  framework,  we  integrate  GAI
algorithms,  particularly  diffusion  models,  into  the
control  plane.  This  integration  enables  the  system  to
predict  future  traffic  patterns  and  service  demands,
allowing  for  proactive  and  real-time  adjustments  in
slice  scaling  and  resource  allocation.  Such  predictive
capabilities  are  transformative,  ensuring  uninterrupted
service  during  peak  traffic  periods  and  avoiding  the
need  for  excessive  resource  provisioning.  The  major
contributions of this paper are summarized as follows.

(1)  We  introduce  P4’s  programmability  to  resource
management at the data plane level. This encompasses
detailed  information  management  and  the
implementation of innovative meter designs along with
token  bucket  mechanisms.  By  exploiting  the
programmable nature of P4, we achieve precise traffic
isolation and cater to diverse service requirements with
enhanced accuracy.

(2)  We  present  a  novel  methodology  that  integrates
generative  diffusion  model  within  the  control  plane.
This approach leverages the predictive power of AI to
anticipate  traffic  patterns  and  service  demands,
enabling dynamic adjustments in network slicing. This
predictive  approach  allows  for  more  efficient  and
responsive  resource  allocation,  ensuring  the  network
adapts to changing demands while maintaining service
quality.

(3)  To  evaluate  the  effectiveness  of  our  proposed
closed-loop  architecture,  we  develop  a  comprehensive
architecture using P4 meters. This architecture provides
a  practical  experimental  pathway  to  assess  the
performance and viability of our approach, showcasing
the enhanced adaptability and efficiency brought by the
integration of GAI.

The  rest  of  this  work  is  organized  as  follows.  In
Section  2,  we  review  the  pertinent  literature,
delineating  the  existing  challenges  and  current
methodologies.  In  Section  3,  we  formulate  the
mathematic  model  of  our  proposed  system  and

establish  the  problem.  In  Section  4,  we  propose  a  P4-
based  approach  to  traffic  isolation  and  bandwidth
management  for  the  network  slicing,  In  Section  5,  we
design  a  generative  diffusion  algorithm  for  the
bandwidth  management  strategy.  In  Section  6,
simulation  results  and  performance  analysis  are
presented, followed by a summary of our findings and
a discussion on potential future work in Section 7.

2　Related Work

In  this  section,  we  will  discuss  related  work  from  the
view  of  resource  management  of  the  network  slicing,
the  usage  of  the  programmable  data  plane,  and  the
generative AI algorithms for network optimization.

2.1　Resource management of the network slicing

Network  slicing  necessitates  sophisticated  resource
management  strategies  for  effectively  distributing
computational, storage, and bandwidth resources across
its  virtual  segments.  This  ensures  that  each  slice  is
adequately  resourced  while  maintaining  overall
network  efficiency  and  reliability.  In  Ref.  [14],  Bega
et  al. proposed  a  deep  learning  architecture  for
predicting  the  capacity  needed  to  meet  future  traffic
demands  within  a  single  network  slice,  taking  into
account  the  operators’ desire  to  strike  a  balance
between resource over-provisioning and service request
violations. In Ref. [1], Zhang et al. presented a logical
architecture  for  a  5G  system  built  on  network  slicing
and proposed a scheme for managing mobility between
different access networks. In Ref. [15], Jošilo et al. put
forward  a  game  theory-based  architecture  aimed  at
jointly  optimizing  the  dynamic  assignment  of
computational  tasks  to  slices  and  resource
management.  They  considered  a  slicing-enabled  edge
system  where  the  slice  resource  orchestrator  assigns
devices  to  slices  and  shares  radio  resources  among
them, with the objective of maximizing overall system
performance.  In  Ref.  [16],  Thantharate  et  al.  proposed
the  utilization  of  a  transfer  learning  approach  to
address  the  complex  network  load  estimation  problem
in network slicing.  Their  goal  was  to  promote  a  fairer
and  more  equitable  distribution  of  network  resources.
In  Ref.  [17],  Mai  et  al.  proposed  to  improve  the
performance  of  slicing  in  terms  of  quality  of  service,
energy  efficiency,  and  reliability  by  combining  the
capabilities  of  deep reinforcement  learning based on a
migration  learning  framework.  However,  much
existing  research  tends  to  treat  network  elements  as
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black-boxed entities with a relatively coarse granularity
of  control.  This  indicates  the  potential  for  further
advancements  in  more  granular  and  detailed  resource
management within network slicing.

2.2　Programmable  data  plane  assisted  the
network slicing

The  role  of  P4  programmable  data  planes  in  network
slicing  has  been  a  focal  point  in  recent  research.  In
Ref.  [7],  Chen  et  al. proposed  a  design  of  bandwidth
management for QoS with SDN and P4-programmable
switch based the function of the meter in P4 switch. In
Ref. [9], Wang et al. further designed and implemented
a TCP friendly meter in the packet processing pipeline
of the P4 switch to realize resource control and quality
of service assurance for specific flow services. In Ref.
[10],  Chen  et  al.  designed  the  programmable  switch’s
meter  to  flexibly  bandwidth-guarantee  and  manage
network slices by isolating different  types of  traffic  in
multiple  priority  queues  while  setting  appropriate
storage  bucket  sizes.  While  these  studies  concentrated
on  the  resource  management  capabilities  of  P4-based
programmable  switches,  they  mainly  emphasized
bandwidth  resources  rather  than  exploiting  the  full
potential  of  fine-grained  resources  provided  by  these
switches.  In  Ref.  [8],  Hauser  et  al.  proposed  P4-
programmable targets are capable of network slicing in
all  proposed  variants.  They  explored  the  different
aspects of inter-tenant interference due to differences in
targeting and slicing methods, and proposed hardware-
based slicing methods to eliminate these interferences.
In  Ref.  [18],  Pinto  et  al.  proposed  a  hierarchical  SDN
optical  packet  survivability  solution  based  on  network
slicing  is  proposed  to  provide  different  levels  of
reliability.  Slicing  is  implemented  in  a  P4
programmable  ASIC  for  traffic  prioritization  and
protection  switching.  Despite  these  advancements,  the
majority  of  existing  approaches  primarily  focused  on
managing  and  optimizing  bandwidth  resources,
utilizing programmable data planes, open switches, and
fine-grained storage, compute, and transport resources.
However,  many  of  these  management  schemes
predominantly targeted the data plane, often neglecting
the  powerful  control  and  decision-making  capacities
available in the control plane.

2.3　Generative  AI  methods  for  network
optimization

The  incorporation  of  GAI  methods  in  network

optimization represents a significant leap in the field of
network  slicing.  In  Ref.  [19],  Xu  et  al.  proposed  the
deployment  of  mobile  AIGC  networks  via
collaborative  cloud-edge-mobile  infrastructure  is
proposed to support wider AIGC services. In Ref. [20],
Huang  et  al.  proposed  a  novel  diffusion  model-based
learning  approach  to  dynamically  and  adaptively
generate  the  network  design  to  cope  with  the  time-
varying  environments  and  various  service
requirements.  In  Ref.  [21],  Huang  et  al.  proposed
distributed  learning  paradigms  to  enable  the  AIGC  in
the  wireless  network  supported  by  harmonious  cloud-
edge-mobile infrastructures to enhance a broader range
of  AIGC  services.  In  Ref.  [22],  Du  et  al.  proposed  a
novel  collaborative  distributed  diffusion  based  AIGC
framework,  which  uses  the  collaboration  among
devices  in  wireless  networks  and  optimizes  edge
computation  resource  utilization.  These  advanced  AI
algorithms,  including  diffusion  models,  bring
transformative potential in predictive analytics, leading
to more efficient and intelligent network management.

3　System Model and Problem Formulation

This  section  clarifies  the  mathematical  framework  of
our P4-based network slicing strategies.

3.1　Network architecture

As  depicted  in Fig. 1,  the  network  architecture  is
stratified  into  three  distinct  layers:  Application  plane
interfaces  with  user  applications,  cataloging  specific
service  demands  such  as  bandwidth,  latency,  and
resilience  against  packet  loss.  This  layer  is  pivotal  in
translating  user-centric  requirements  into  precise
network  configurations,  forming  the  nexus  between
demand  and  delivery.  Control  plane  orchestrates  the
network’s  operational  dynamics,  leveraging  advanced
generative  AI  algorithms  to  facilitate  informed
decision-making  processes.  It  is  the  linchpin  that
translates  high-level  service  policies  into  granular,
actionable  configurations  for  the  data  plane,  guiding
the  network’s  adaptive  behavior  to  align  with  service-
level  agreements  and  optimization  objectives.  At  the
foundation lies programmable data plane, the execution
layer  where  data  packets  are  actively  processed,
managed, and routed. This is facilitated by the intrinsic
programmability  of  P4  switches,  which  execute  the
policies  formulated  by  the  control  plane,  embodying
the  operational  instructions  in  real-time  traffic
management.
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3.2　User model

D(u) = {Bu,Lu,Pu} u
Bu Lu

Pu

D(u) Bu

Lu

Pu

Lu Pu

The  user  model  provides  a  mathematical
characterization  of  service  demands  that  informs  the
configuration  of  network  slices  to  meet  the  specific
QoE  objectives  for  varied  5G  applications.  We  use

 denote the demand of user  as a set
that includes bandwidth , latency , and packet loss
rate .  In  the  user  model,  each  application’s
requirements inform the network slice’s characteristics.
For  instance,  critical  applications  such  as  remote
surgery demand a  with high  for uninterrupted
high-definition  video streaming,  minimal  to  ensure
real-time  responsiveness,  and  a  near-zero  for  data
integrity.  In  contrast,  less  critical  services  like  smart
home  monitoring  may  present  a  more  lenient  set  of
demands,  allowing  for  higher  and  a  tolerable ,
reflecting  a  scalable  and flexible  approach to  resource
allocation.  These  models  are  essential  for  tailoring
network slices to the demands of 5G services.

3.3　Programmable switch model

Our  model  for  network  slicing  within  a  P4  switch
environment  emphasizes  the  vital  roles  of  in-band
network telemetry (INT) and metering.
3.3.1　INT information
INT is pivotal for providing granular, real-time insights
into  network  performance,  tailored  to  each  network

Fi = {B
′
i ,L

′
i ,P

′
i }

B
′
i L

′
i P

′
i

i Fi

slice.  As  delineated  in Fig. 2,  the  P4  processing
pipeline,  fundamental  to  INT,  progresses  through
parsing,  match-action  decision-making,  and  packet
reassembly,  enabling  the  extraction,  processing,  and
modification  of  packet  data  in  real-time[6].  This
pipeline not only mirrors the network’s current state to
the  control  plane  but  also  furnishes  the  predictive
analytics crucial for resource management and network
optimization.  We  denote  the  INT  metadata  as

,  where  INT  provides  real-time  data  on
bandwidth ,  latency ,  and packet  loss  for  each
slice .  not only informs the control plane about the
current state of the network but also enables predictive
analytics  for  anticipating  future  network  states.  These
indicators  not  only  reflect  the  current  network state  to
the control plane but also underpin predictive analytics,
essential  for  forecasting  network  conditions  and
preemptively  managing  resources.  Such  foresight  is
integral  to  proactive  resource  allocation  and  traffic
shaping.  Utilizing  INT  data,  the  control  plane
dynamically  orchestrates  network  slices  to  meet  their
respective  performance  objectives,  leveraging
sophisticated  algorithms  for  dynamic  slicing  that
ensures  each  slice  upholds  its  service  level  without
impacting others.
3.3.2　Meter configuration
The meter in P4 is a fundamental construct, functioning
to  monitor  the  rate  of  packet  or  byte  flow  over

 

 
Fig. 1    System model of the P4-based network slicing strategies.
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s
Meters = CIRs,CBSs,PIRs}

CIRs

s

CBSs

PIRs

designated  time  intervals  and  to  execute  specific
actions  contingent  on  the  measured  rates.  For  slice ,
the  meter  configuration, ,
functions  as  a  traffic  regulator  within  P4  switches,
aligning  traffic  flow  with  control  plane  policies. 
is the committed information rate, ensuring a consistent
bandwidth  rate  for  slice ,  which  is  vital  for  stable
performance  and  adherence  to  service  requirements.

 represents  the  committed  burst  size,  allowing
slices  to  maintain  performance  under  typical  traffic
loads.  signifies  the  peak  information  rate,
accommodating  maximum  bandwidth  usage  during
surge  conditions.  Effective  metering  enables  the  data
plane  to  uphold  each  slice’s  service  level  objectives,
including  bandwidth  limitations  and  latency  targets,
while  promoting  equitable  resource  sharing  among
slices.  P4  switches’ meter  configurations  are
instrumental in realizing these operational controls.
3.3.3　Table entries of P4 switches

Ei, j

i j
C

g(Ei, j)

P4  employs  tables  as  key  constructs  for  matching
packet headers and executing corresponding actions, as
depicted  in Fig. 2.  Each  entry  in  a  table  specifies  a
match  criterion  and  an  associated  action  with
parameters,  allowing for  dynamic  adaptability  to  meet
slicing  demands.  We  denote  as  the  allocation  of
table  entries  for  slice  in  switch ,  where  the  total
capacity  of  each  switch’s  table  entries  is .  This
dynamic  configuration  facilitates  efficient  routing,
bandwidth  management,  and  QoS  maintenance  for
each  slice,  ensuring  optimal  alignment  with  specific
traffic  profiles.  We  use  to  represent  the

utilization factor of the allocated table entries.

3.4　Problem formulation

u

Our  primary  objective  is  to  optimize  the  alignment
between  user  demands  and  actual  network
performance, a goal grounded in the need to maximize
user satisfaction within the constraints of finite network
resources.  By  effectively  balancing  these  aspects,  we
aim to create a network slicing environment that is not
only  responsive  to  user  needs  but  also  maintains
optimal  operational  efficiency.  The utility  function for
meeting the requirements of user  is defined as a sum
of  logarithmic  terms,  capturing  the  principle  of
diminishing  returns,  which  reflects  the  reality  that
incremental  improvements  in  network  performance
yield  progressively  smaller  increases  in  user
satisfaction,
 

Utility(D(u)) = αu log(1+
B
′
u
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)+βu log(1+
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)+γu log(1+

Pmax,u

P′u
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Subject to
  ∑

s∈S
B0

s ⩽ Btotal

αu βu γu
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′
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′
u P

′
u
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where , ,  and  are  weighting  factors  for
bandwidth, latency, and packet loss, respectively, each
reflecting  the  relative  importance  of  these  aspects  in
determining user satisfaction. , , and  represent
the  actual  bandwidth,  latency,  and  packet  loss
experienced by the user collected from INT, while ,

 

 
Fig. 2    Architecture of the P4[6].
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Lmax,u Pmax,u, and  denote their respective demanded or
acceptable levels. Our goal is to maximize user utility,
balancing  this  with  the  cost  of  P4  configurations  to
enhance resource utilization efficiency as
 

max
∑
u∈U

Utility(D(u))−
∑
s∈S

(κ1×CIRs+

κ2×CBSs+ κ3×PIRs)−λ
∑
j∈J

g(Ei, j)
(2)

Subject to
  ∑

i∈I
Ei, j ⩽C, ∀ j ∈ J,

0 ⩽ U t
i, j ⩽ 1, ∀i ∈ I, j ∈ J.

κ1, κ2, κ3 λWe  denote ,  and  as  cost  coefficients  for
CIR,  CBS,  PIR,  and  table  entry  utilization,
respectively.  The  cost  functions  for  meter
configurations  and  table  entries  in  the  objective
function  can  indeed  be  linear.  This  choice  simplifies
the  formulation  and  aligns  with  the  principles  of
mixed-integer linear programming (MILP).

4　P4-Based  Fine-Grained  Resources
Management Method

This  section  presents  a  comprehensive  examination  of
the  programmable  switch  components,  focusing  on
both  the  architecture  and  resource  modeling  of  the
programmable data plane. Our objective is to not only
ensure effective bandwidth guarantees but also to allow
for  the  interference-free  sharing of  residual  bandwidth
when design the meter in P4, as illustrated in Fig. 3.

4.1　Meter in P4

Fundamental  to  our  strategy  for  P4-based  bandwidth
management is the implementation of the differentiated
services  (DiffServ)  model.  This  approach  classifies
packets  based  on  distinct  code-points  indicating  their
service  level,  which  then  governs  their  forwarding
behavior and aligns traffic flow with predefined policy

constraints  and  service  level  agreements.
Complementing the DiffServ framework, we utilize the
two-rate, three-color marker (trTCM) mechanism. This
mechanism  segregates  packets  into  green,  yellow,  or
red  categories,  based  on  their  ingress  rates  relative  to
the established CIR and PIR, using a dual token bucket
algorithm to control the rate of transmission.

Figure  3 provides  a  detailed  representation  of  a  P4
switch,  highlighting  the  interconnection  between  its
software  programming,  table  resources,  and  hardware
infrastructure.  The  meter  pipeline  showcases  the
trTCM  methodology  in  bandwidth  management,
allocating  traffic  to  high  or  low  priority  queues  based
on specific  criteria.  Green packets,  compliant  with the
agreed  traffic  profile  by  not  exceeding  the  CIR,  are
typically given priority, supporting the network’s goals
of  minimizing  latency  and  maximizing  throughput.
Yellow  packets,  which  exceed  the  CIR  but  remain
below the  PIR,  indicate  a  tolerable  deviation  from the
committed  rate  and  are  usually  queued  with
intermediate  priority.  Red packets,  exceeding the  PIR,
represent  a  significant  deviation  and  are  frequently
subjected  to  lower  priority  handling  or  dropping,  as  a
measure to control excessive bandwidth usage.

Algorithm  1  shows  the  integration  of  trTCM  in  the
P4  environment  enables  network  administrators  to
dynamically  shape  traffic  and  enforce  policies
effectively,  a  crucial  aspect  in  managing  the  diverse
demands  of  modern  network  traffic  and  maintaining
service  integrity  across  various  network  segments.
Adjusting  the  CIR  and  PIR  thresholds  in  response  to
real-time  network  conditions  allows  for  fine-tuned
service delivery, aligning with changing traffic patterns
and  service  requirements.  In  order  to  provide  a
practical  understanding  of  the  metering  design  within
our  P4-based  approach,  we  present  a  key  segment  of
the P4 ingress control code. This code exemplifies how
the  trTCM  mechanism  is  applied  to  network  packets
for effective bandwidth management:

4.2　A  differentiated  resource  management
approach based onmeter in P4

We aim to devise a novel network slicing solution that
guarantees  and  manages  bandwidth  for  each  slice,
leveraging  the  scalable  resources  and  the  flexible
programmability  of  P4  switches.  From  our  earlier
discussions,  we  have  established  that  the  meter-based
component,  empowered  by  the  trTCM  scheme,
facilitates  effective  bandwidth  management  for

 

 
Fig. 3    Integrated  view  of  P4  switch  resources  and
bandwidth management.
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different  flows  and  efficient  slice  resource  allocation.
However,  the  advent  of  new  resources  necessitates
more  stringent  traffic  isolation  to  optimize  the  use  of
remaining bandwidth.

We  have  instituted  a  metering  mechanism  that
employs  P4’s  register  arrays  to  continuously  monitor
the  utilization  of  various  network  resources,  including
bandwidth,  storage,  and  computational  capacity.  This
dynamic  surveillance  permits  us  to  modulate  resource
allocations based on real-time measurements. For each

network slice, we configure a trTCM meter instance in
P4,  enforcing  the  committed  and  peak  information
rates (CIR and PIR).

Meters1 MetersN

Figure  4 illustrates  the  integrated  resource
management  approach  within  a  P4  switch,
incorporating  our  novel  design  of  metering  combined
with  token  buckets.  This  design  is  pivotal  for  fine-
grained bandwidth management  across  network slices,
as depicted by  through , and for traffic
that does not belong to a specific slice, labeled as non-
sliced.  Each  meter  is  associated  with  a  corresponding
token  bucket  that  regulates  the  passage  of  packets
based  on  their  priority  level.  High-priority  traffic  is
ensured  guaranteed  bandwidth  by  its  meter,  ensuring
compliance  with  predefined  service-level  agreements.
Low-priority traffic, which does not exhaust its meter’s
allocated  rate,  is  allowed  to  tap  into  unused  high-
priority bandwidth, thus utilizing the excess capacity in
an  interference-free  manner.  This  mechanism  is
illustrated  through  two  distinct  pathways  originating
from  each  meter:  one  directs  packets  that  meet  the
committed  rate,  encapsulated  within  the  token  bucket,
to  a  high-priority  queue  for  expedited  processing
(indicated  by  a  green  arrow  representing  guaranteed
traffic), while the other diverts to a low-priority queue.

The  token  buckets  serve  a  critical  function  in  this
architecture  by  dynamically  adjusting  to  traffic
conditions. They replenish their token count over time,
up to the maximum burst size, allowing for short-term
surges  in  traffic  to  be  accommodated  without
penalizing the overall network performance. The token
bucket  associated  with  each  meter  ensures  that  green-
coded  packets  are  transmitted  with  priority,  while
yellow-coded  packets,  which  exceed  the  committed
burst  size  but  not  the  peak  rate,  are  queued  for  later
transmission.  Red-coded  packets,  exceeding  the  peak
rate,  are  subject  to  possible  dropping,  as  indicated  by

 

Algorithm 1　P4 Ingress Control Code with trTCM settings
control Ingress {
apply {
if (ingress_port_acl.apply().hit) {
meter_result_t result = trTCM.execute_meter(
　packet_size, flow_index);
　　switch (result.color) {
　　　case GREEN:
　　　　// GREEN: For slice ID 1 with CIR of 100 Mbit/s
　　　　if (flow_index = = 1) {
　　　　　mark_packet_dscp(EXPEDITE_FORWARDING
　　　　　　);
　　　　　transmit_packet();
　　　　}
　　　　break;
　　　case YELLOW:
　　　　// YELLOW: For slice ID 2 with CIR of 50 Mbit/s, 　
　　　　enqueued to mid-priority
　　　　if (flow_index = = 2) {
　　　　　mark_packet_dscp(ASSURED_FORWARDING)
　　　　　　;
　　　　　enqueue_packet(mid_priority_queue);
　　　　}
　　　　break;
　　　case RED:
　　　　// RED: For slice ID 3 exceeding PIR, packets are 　
　　　　dropped
　　　　if (flow_index = = 3) {
　　　　　mark_packet_dscp(DEFAULT_FORWARDING)
　　　　　　;
　　　　　drop_packet(); // Assuming RED packets are 　　

　　　　　dropped
　　　　}
　　　　break;
　　　}
　　}
　}
}

 

 
Fig. 4    Token  bucket  assists  shared  bandwidth  allocation
and traffic isolation.

    178 Tsinghua Science and Technology, February 2025, 30(1): 171−185

 



the red “Drop” line, to prevent network congestion.
This  dynamic  bandwidth  sharing  is  especially

significant in scenarios where high-priority traffic does
not  fully  utilize  its  reserved bandwidth.  In  such cases,
the  unused  bandwidth  can  be  temporarily  allocated  to
low-priority  traffic,  enhancing  overall  network
throughput  without  compromising  the  QoS  of  high-
priority  slices.  The proposed method thus  ensures  that
each  network  slice  can  utilize  its  fair  share  of
resources, enhancing the fairness and ensuring optimal
resource  utilization  across  the  network.  We  different
slices can be managed with varying priorities within a
P4 programmable switch, utilizing metering and token
bucket algorithms for effective bandwidth management
in Algorithm 2.

set_dscp_and_transmit

enqueue_yellow

As  we  state  the  key  code  of  P4,  the
 action  within  the  code  sets  the

differentiated  services  code  point  (DSCP)  for  the
packet  and  designates  its  egress  port,  a  crucial  step  in
applying  the  QoS  policies.  The  subsequent

 action  showcases  the  token  bucket
mechanism  in  action:  tokens  from  the  committed
bucket  are  consumed  first,  allowing  packets  that
conform to the agreed-upon rate to be transmitted at  a
medium  priority  level.  If  the  committed  bucket  is
exhausted,  tokens  from  the  peak  bucket  are  used,
reflecting the allowance for traffic bursts.  Should both
buckets  be  depleted,  packets  may  be  dropped  or
enqueued at a lower priority, ensuring fair access to the
network while avoiding congestion.

5　Design  of  the  Generative  Diffusion
Algorithm

5.1　 Closed-loop of control plane and programmable
data plane

As  illustrated  in Fig. 5,  we  propose  an  end-to-end
resource management  architecture  for  network slicing,
comprising  P4  switches  and  open-source  controllers,
such  as  ONOS.  P4  switches  in  the  architecture  are
configured for rapid wire-speed forwarding, crucial for
maintaining  the  low-latency,  high-throughput
performance expected in 5G networks.

To  complement  their  forwarding  capabilities,  the
switches  are  outfitted  with  processing  cards  that
combine  computing  and  storage  functionalities.  These
cards  adeptly  manage  complex,  non-time-critical
processing  tasks,  striking  an  equilibrium  between
expeditious  data  handling  and  computational

proficiency. Upon entering the system, data is initially
processed  by  the  controller  and  subsequently  routed
through the internal processing card. Here, it is directed
to  the  application-specific  integrated  circuit  (ASIC)
based  on  predefined  specific  service  (SP)  conditions,
which  cater  to  specialized  services  or  protocols.
Compliant  data  streams  follow  the  SP  path,  while
others  proceed  along  the  normal  service  route.  This
bifurcation  ensures  that  resources  are  judiciously

 

Algorithm 2　P4 ingress control code with trTCM utilizing
metering and token bucket
control Ingress {
　action set_dscp_and_transmit(bit<6> dscp_value, bit<9>
egress_port) {
　　standard_metadata.egress_spec = egress_port;
　　　// Set the egress port for the packet
　　hdr.ipv4.dscp = dscp_value;
　}
　action enqueue_yellow(bit<3> queue_id) {
　　// The meter has a committed bucket (CB) and a peak
bucket (PB)
　　if (meter_cb.tokens > 0) {
　　　// Consume a token from the committed bucket
　　　　meter_cb.consume_token();
　　　set_dscp_and_transmit(ASSURED_FORWARDING,
MID_PRIORITY_EGRESS_PORT);
　　} else if (meter_pb.tokens > 0) {
　　　// Consume a token from the peak bucket for burst
allowance
　　　meter_pb.consume_token();
　　　set_dscp_and_transmit(ASSURED_FORWARDING,
MID_PRIORITY_EGRESS_PORT);
　　} else {
　　　　drop_or_enqueue_packet(queue_id);
　　}
　}
　apply {
　　if (ingress_port_acl.apply().hit) {
　　　// Execute metering with token buckets to determine the
packet’s color
　　　meter_result_t result = meter.execute(packet_size,
flow_index);
　　　// Actions are determined based on the color assigned by
the meter
　　　switch (result.color) {
　　　}
　　}
　}
}
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allocated and services meticulously tailored, bolstering
network slicing management.

Within  this  framework,  the  control  plane  employs  a
generative diffusion model (GDM) to analyze network
performance  feedback  from  the  data  plane.  This  AI-
centric  method  dynamically  refines  network  slicing
parameters,  optimizing  bandwidth  management  and
traffic  isolation  based  on  real-time  network  traffic
analysis and demand patterns.

5.2　 Generative  diffusion  algorithm  designed  to
solve bandwidth management

In  our  network  architecture,  the  GDM  is  deployed
within  the  control  plane,  applying  a  conditioned
diffusion  process  to  inform  decision-making.  This
approach  employs  a  sophisticated  machine  learning
model, designed to generate optimal decisions based on
the  existing  network  environment,  which  includes
incoming  user  tasks  and  the  status  of  network
resources. The primary aim of the GDM algorithm is to
maximize  overall  utility,  optimizing  the  allocation  of
key  network  resources,  particularly  bandwidth.  This
ensures effective traffic management and meets service
requirements efficiently.

xs

s
We  denote  the  original  strategy  for  meter  as  for

the  slice .  Diffusion-based  generative  models  frame
the process of creating data as a methodical reversal of
noise  addition.  Initially,  the  data  is  progressively

obscured by noise in a forward process.  These models
then  employ  a  reverse  operation,  iteratively  refining
and  restoring  the  data’s  structure.  This  approach  casts
the model in the role of a latent variable system, where
the data’s original form is gradually uncovered through
denoising steps.
 

pθ(x0) :=
w

pθ(x0:T )dx1:T (3)

{x1, x2, ..., xT }
pθ(x0:T )

We denote the latents of the same dimensionality as
.  The  reverse  diffusion  joint  distribution,

,  is  defined  as  a  Markov  chain  with  learned
Gaussian transitions, starting from a standard Gaussian
distribution, which can be expressed as
 

pθ(x0:T ) := p(xT )
T∏

t−1

pθ(xt−1|xt) (4)

where  each  transition  is  modeled  by  a  Gaussian
distribution:
 

pθ(xt−1|xt) :=N(xt−1;µθ(xt, t),
∑
θ

(xt, t)) (5)

{σ1,σ2, . . . ,σT }

Conversely,  the  forward  diffusion  chain
incrementally  adds  noise  over  time  through  a  Markov
process  according  to  a  variance  schedule

 as
 

q(x1:T |x0) :=
T∏

t=1

q(xt |xt−1) (6)

 

 
Fig. 5    An end-to-end sliced resource management architecture.
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where each step is described by
 

q(xt |xt−1) :=N(xt;
√

1−σt xt−1,σt I) (7)

xT

pθ(xt−1|xt,c)

Following  the  training,  the  model  generates  data  by
sampling  from  and  applying  the  reverse  diffusion
chain. The model can be adapted to specific conditions
by  incorporating  additional  contextual  information.
Diffusion  models  exhibit  a  versatile  architecture  that
allows for their extension to conditional models. This is
achieved  by  incorporating  conditions  into  the
probability  distribution,  denoted  as ,
thereby  guiding  the  model  to  generate  data  based  on
given conditions or parameters.

As shown in Fig. 6, decisions derived from the GDM
in the control plane are transformed into implementable
configurations  and  rules  within  the  P4  programmable
data  plane.  These  decisions,  formulated  through  the
conditioned diffusion process, aim to optimize resource
utilization  and  traffic  management  within  the  network
slices.  P4  switches  are  then  programmed  to  enforce
these  strategies,  encompassing  traffic  isolation,
prioritization,  and  rate  limiting  for  each  slice.  We
depict two key step in the GDM algorithm:

(1)  Forward  Diffusion:  In  our  system,  network
strategies for each slice begin as initial configurations,
which  are  then  subjected  to  a  controlled  forward
diffusion  process.  This  involves  the  systematic
introduction  of  Gaussian  noise  to  the  contractual
parameters,  akin  to  incrementally  blurring  an  image.

This  stepwise  increase  in  noise  level  gradually
obscures  the  original  data,  simulating  the  uncertainty
and variability inherent in network traffic patterns.

(2)  Reverse  Diffusion:  After  the  data  reaches  a
certain  noise  saturation,  the  reverse  diffusion  process
commences.  In  this  phase,  noise  is  methodically
removed, or the data is  denoised. This reverse process
is  critical:  as  the  noise  diminishes,  our  AI-driven
algorithm,  encompassing  the “Strategy  Quality
Network” and  the “Strategy  Generation  Network”
learns to reconstruct and refine the resource allocation.
This  iterative  learning  approach  guides  the  system
towards  generating  strategies  that  progressively  align
closer  to  the  ideal  solution  for  efficient  bandwidth
management  and  resource  allocation  in  network
slicing.

e

The  environment  essentially  encapsulates  the  static
and  dynamic  aspects  of  the  network  that  are  not
directly  controlled  by  the  bandwidth  management
strategies but instead influence or constrain them. This
includes  the  physical  network  infrastructure,  current
network  conditions  (like  congestion  or  failure  states),
and  user  requirements.  We  use  to  represent  the
environment, including both static and dynamic aspects
that  influence  or  constrain  bandwidth  management
strategies. This set of variables includes:
 

e = {Bu,Lu,Pu,B
′
i ,L

′
i ,P

′
i ,αu,βu,γu, J,C,σt} (8)

The  AI-driven  network  slicing  design  process
 

 
Fig. 6    Adaptive resource management in network slicing using generative diffusion models.
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f = {CIRs,PIRs,CBSs,Ei, j}

πθ( f |e)

analyzes  this  environment,  leveraging  data  from  P4
meters  to  create  and  optimize  network  slices.  We
represent  the  bandwidth  management  strategies  as

, which are adapted based on
the  environmental  conditions.  The  diffusion  model’s
policy, ,  which  maps  the  states  of  the
environment  to  specific  meter  designs.  This  policy
aims  to  output  a  deterministic  meter  design  that
maximizes  expected  cumulative  rewards  over  a  series
of  time  steps,  effectively  translating  complex
environmental  data  into  actionable  network
configurations.  The  intricate  process  of  reverse
diffusion in the conditional diffusion model is outlined
as
 

πθ( f |e) = pθ( f 0:N |e) =N( f N ;0, I)
N∏

i=1

pθ( f i−1| f ,e) (9)

pθ( f i−1| f ,e)
N( f i−1;µθ( f i,e, i),∑

θ( f i,e, i)) pθ( f i−1| f ,e)

This formulation clarifies the policy as a probability
distribution, evolving over multiple iterations to refine
the  meter  design  towards  an  optimal  state.  As
illustrated  in Fig. 6,  the  concluding  iteration  of  the
reverse  diffusion  chain  yields  the  selected  meter
configuration,  representing  the  optimized  design  for
network  resource  management.  Here,  can
be modeled as a Gaussian distribution 

.  can  be  modeled  as  a  noise
prediction model with the covariance matrix fixed as
  ∑

θ

( f i,e, i) = σiI (10)

and mean the mean is constructed to guide the reverse
diffusion towards the desired meter design:
 

µθ( f i,e, i) =
1

√
1−σi

(
f i− σi√

1−τ
εθ( f i,e, i)

)
(11)

τ =
∏i

s=1 as

i

f N

N(0, I)

θ

where  signifies the cumulative product of a
sequence  of  parameters  up  to  the -th  step,  which
influences the reverse diffusion process. To initiate the
reverse  diffusion,  we  begin  by  sampling  from  a
normal  distribution  with  a  mean  vector  of  zero  and  a
covariance  matrix  of  the  identity  matrix,  denoted  as

.  Subsequently,  this sampled point is  iteratively
refined  through  the  reverse  diffusion  chain,  which  is
parameterized  by ,  effectively  tracing  back  to  the
optimal meter configuration.
 

f i−1| f i =
f i

√
1−σi

− σi

(1−σi)(1−τi)
εθ( f i,e, i)+

√
σiε

(12)
This  network  is  pivotal  in  interpreting  and  optimizing

the  meter  configurations  for  each  network  slice,
adapting  to  varying  network  conditions  and
requirements.

Qv

{e, f }

We  introduce  the  slicing  strategy  quality  network,
,  drawing  inspiration  from  the  Q-function  used  in

deep  reinforcement  learning  (DRL).  This  network
maps  each  environment-meter  pair, ,  to  a  value
that  quantifies  the  expected  cumulative  reward.  This
process  of  quantification  is  pivotal  as  it  captures  the
anticipated  utility  from implementing  a  specific  meter
design policy. It takes into account the prevailing state
of the network and projects the benefits of adhering to
the  chosen  policy  in  future  operations.  Therefore,  the
ideal  meter  design  policy,  which  is  crucial  for
achieving  efficient  bandwidth  management  and
effective network slicing, is determined as the one that
optimizes  this  expected  cumulative  utility.  This
optimization  ensures  that  network  resources  are
allocated  and  managed  in  the  most  effective  manner,
aligning with the dynamic demands of modern network
environments.  Mathematically,  this  optimal policy can
be  obtained  by  solving  the  following  optimization
problem:
 

π = argmin
πθ

L(θ) = −E f0∼πθ
[Qv(e, f 0)] (13)

Qv(e, f )

π∗

As  shown  in Fig. 6,  the  strategy  quality  network,
, and the strategy generation network operate to

evaluate and generate resource strategies. They work to
map  the  environment-resource  pairs  to  an  expected
cumulative reward value, fostering an objective-driven
approach  to  network  resource  management.  As  the
process unfolds, the algorithm converges on an optimal
decision  for  resource  allocation  strategies,  denoted  as

. This strategy represents the culmination of iterative
learning  and  refinement,  aimed  at  achieving  the  best
possible  alignment  between  network  conditions  and
resource management objectives.

6　Experiment and Analysis

For  our  experimental  evaluation,  we  constructed  a
network within a Mininet environment,  operating on a
Linux 18.04 platform, that consists of two P4 switches,
each  establishing  connections  to  four  servers.  These
switches  conform  to  the  P4-16  architecture  and  are
intricately  configured  to  support  a  spectrum  of  up  to
eight  priority  queues.  This  configuration  mirrors  the
practical  bandwidth  constraints  of  contemporary
networks,  with  a  1  Gbit/s  bandwidth  per  link,  as
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dictated  by  the  capacity  of  local  network  interface
cards.

We  simulate  traffic  flows  using  iPerf,  generating
both  UDP  and  TCP  streams  to  mimic  a  variety  of
network traffic  scenarios.  The flows are initiated from
servers  attached  to  one  P4  switch  and  are  directed
towards servers on the corresponding switch. To glean
precise  measurements  of  TCP  flow  round-trip  times
(RTT),  we  employ  the  Flowgrind  tool.  This  tool  is
indispensable  for  our  analysis,  providing  granular
performance metrics that reveal the impact of different
traffic conditions and switch configurations on network
efficiency.

80
19

20th 39th

S (0.7,0.8)
0.7

S (0.2,1)
I[40,59]

N = 10
512 0.9
τ = 0.003 ε = 0.01

εθ = 10−5

Qv 10−5

Adhering to the experimental parameters set forth in
Ref.  [10],  each  of  our  tests  spans  a  duration  of 
seconds.  The initial  seconds are  characterized by a
baseline state where no slicing is implemented, serving
as a control for subsequent comparisons. Commencing
from the  second and extending to the  second,
we  activate  a  network  slice  designed  for  sliced  traffic
flows, applying a configuration denoted as —
indicative  of  a  Gbit/s  CIR  and  an  0.8  Gbps  PIR.
Subsequently,  we  introduce  a  variation  in  the  slicing
configuration to  during the interval marked as

,  simulating a  dynamic adjustment  of  network
policies. This change serves to evaluate the adaptability
and  responsiveness  of  the  P4  switch  under  modified
traffic  management  conditions.  Finally,  the  system  is
reverted  to  a  non-sliced  state,  allowing  for  a
comparative  analysis  against  the  predefined  slicing
intervals.  We  set  diffusion  step ,  batch  size  as

,  discount  factor ,  soft  target  update  parameter
,  exploration  noise ,  the  learning  rate

of  the  strategy  generation  network  as ,  and
learning rate of the strategy quality network  as .

Figure  7 presents  the  empirical  results  from  our
examination  of  traffic  management  via  P4  switch
metering  capabilities,  particularly  focusing  on  the
enforcement  of  CIR  and  PIR  parameters  across
network  slices.  The  graph  delineates  the  throughput
over  time  for  both  sliced  and  non-sliced  UDP  traffic
flows, capturing the nuanced behavior enforced by the
P4 switch’s metering logic. Figure 7 illustrates that the
sliced  UDP  stream  consistently  attains  a  throughput
that  surpasses  the  CIR  yet  remains  below  the  PIR
threshold.  This  phenomenon  is  attributed  to  the  P4
switch’s  priority  queueing  mechanism,  where  the  CIR
bandwidth  is  safeguarded  within  high-priority  queues,
ensuring that the minimum service level is always met.

Then, we evaluate the performance of the bucket for
different  flows. Figure  8 showcases  a  comparative
analysis  of  throughput  over  time  for  various  traffic
flows  under  our  P4-based  network  slicing  strategies.
This  experimental  insight  underscores  the  nuanced
traffic management capabilities of our P4-based slicing
system,  particularly  the  efficacy  of  its  bucket  strategy
in dynamically adjusting to varying load conditions. It
further  validates  the  system’s  capability  to  maintain
fidelity  to  slice  specifications,  guaranteeing  service
levels  while  ensuring  fair  bandwidth  distribution
among concurrent flows.

Then,  we evaluate  the  performance of  the  generated
algorithm  for  bandwidth  allocation  strategy.  As
depicted  in Fig. 9,  GDM  maintains  a  consistently
higher  reward  trajectory  throughout  the  iterations,

 

 
Fig. 7    Dynamic  throughput  allocation  for  sliced  and  non-
sliced traffic in P4 meter.

 

 
Fig. 8    Throughput evaluation of token bucket performance
across different flows.
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reflecting its superior capability to converge on optimal
network slicing strategies. In contrast, PPO and DDPG
exhibit  fluctuations  in  reward  optimization,  with
DDPG  demonstrating  more  significant  variance.  This
variability  might  indicate  a  sensitivity  to  initial
conditions  and  a  longer  path  to  convergence  for
traditional reinforcement learning approaches.

7　Conclusion and Future Work

In  this  research,  we  have  developed  an  integrated
framework  for  network  slicing  resource  management
that  exploits  the  dynamic  capabilities  of  P4
programmable  switches  and  open-source  controllers.
The  inclusion  of  a  generative  diffusion  model  within
the  control  plane  has  significantly  enhanced  our
system’s responsiveness to the diverse requirements of
5G  services.  This  novel  GAI-centric  approach  allows
for  dynamic  resource  allocation  that  is  adaptable  to
changing  network  conditions,  ensuring  optimal  traffic
differentiation  and  service  quality.  Looking  forward,
the  framework  will  need  to  be  expanded  to
accommodate the complexities of shared infrastructure
scenarios,  particularly  in  multi-operator  hardware
environments.  Additionally,  future  developments  will
focus  on  the  imperative  of  energy efficiency,  with  the
aim  of  designing  P4-based  mechanisms  that  optimize
network  operations  for  reduced  power  consumption
through smarter traffic shaping and resource allocation
strategies,  aligning  network  advancements  with
sustainable energy practices.
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