
 

Restage: Relation Structure-Aware Hierarchical
Heterogeneous Graph Embedding
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Abstract: Heterogeneous graphs contain multiple types of entities and relations, which are capable of modeling

complex  interactions.  Embedding  on  heterogeneous  graphs  has  become  an  essential  tool  for  analyzing  and

understanding such graphs. Although these meticulously designed methods make progress, they are limited by

model design and computational resources, making it difficult to scale to large-scale heterogeneous graph data

and hindering the application and promotion of these methods. In this paper, we propose Restage, a relation

structure-aware  hierarchical  heterogeneous  graph  embedding  framework.  Under  this  framework,  embedding

only  a  smaller-scale  graph  with  existing  graph  representation  learning  methods  is  sufficient  to  obtain  node

representations  on  the  original  heterogeneous  graph.  We  consider  two  types  of  relation  structures  in

heterogeneous  graphs:  interaction  relations  and  affiliation  relations.  Firstly,  we  design  a  relation  structure-

aware  coarsening  method  to  successively  coarsen  the  original  graph  to  the  top-level  layer,  resulting  in  a

smaller-scale  graph.  Secondly,  we  allow  any  unsupervised  representation  learning  methods  to  obtain  node

embeddings  on  the  top-level  graph.  Finally,  we  design  a  relation  structure-aware  refinement  method  to

successively  refine the node embeddings from the top-level  graph back to the original  graph,  obtaining node

embeddings  on  the  original  graph.  Experimental  results  on  three  public  heterogeneous  graph  datasets

demonstrate the enhanced scalability of representation learning methods by the proposed Restage. On another

large-scale graph, the speed of existing representation learning methods is increased by up to eighteen times

at most.

Key words:  heterogeneous graph; graph embedding; relation structure; hierarchical

1　Introduction

Heterogeneous  graphs,  characterized  by  their  multiple
types of entities (nodes) and relations (edges), excel at

modeling  intricate  real-world  systems[1, 2].  Performing
embedding (or representation learning) on these graphs
has  emerged  as  a  vital  tool  for  analyzing  their
structures  and  semantics,  finding  applications  in
diverse  domains  such  as  social  media[3] and  e-
commerce[4, 5].  In  heterogeneous  graphs,  the  majority
of  representation learning methods  adopt  meticulously
designed  strategies  to  explore  potential  relationships
between  nodes.  To  preserve  these  potential
relationships,  researchers  typically  utilize  shallow
models and graph neural network models. However, in
large-scale graphs, shallow models are associated with
a  higher  time  expense  due  to  their  sampling  methods,
while  deep  models  are  constrained  by  computational
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resources.  This  hinders  the  widespread  adoption  of
these meticulously designed methods.

Recently,  in  the  field  of  homogeneous  graph
embedding,  some  studies  attempt  to  address  this
problem.  MILE[6] innovatively  proposes  a  hierarchical
graph  embedding  framework.  As  depicted  in Fig. 1,
this  framework  consists  of  three  components.  The
coarsening  process  progressively  diminishes  the  scale
of the original graph, layer by layer, until it reaches the
top level, which is notably smaller in size compared to
the  original  graph.  Next,  any  unsupervised  graph
representation  method  can  be  employed  to  learn  node
embeddings  in  the  top-level  graph.  Finally,  the
refinement  process  transfers  the  learned  node
embeddings across layers, utilizing the correspondence
between nodes in different layers, until the embeddings
are  refined  back  to  the  original  graph.  As  node
embeddings  only  need  to  be  learned  at  the  top-level,
where the graph’s scale is even close to the magnitude
of common datasets (such as Cora, PubMed, etc.) used
in the majority of graph machine learning methods, this
framework  enables  numerous  meticulously  designed
graph  representation  learning  methods  to  be  extended
to large-scale graphs. Building upon this, Graphzoom[7]

and  HANE[8] devise  coarsening  and  refinement
strategies that take into account node attributes, giving
rise  to  a  category  of  frameworks  called  hierarchical
attribute graph representation learning methods.

Embedding  methods  on  heterogeneous  graphs
confront  an  analogous  problem.  Our  focus  lies  on

hierarchical  heterogeneous  graph  representation
learning,  which  entails  certain  design  challenges.
Heterogeneous  graphs,  unlike  homogeneous  ones,
possess  distinct  relation  structures.  These  relation
structures  stem  from  the  RHINEs[9–11],  which  identify
two  types  of  relation  structures  in  heterogeneous
graphs:  interaction  relations  (IRs)  and  affiliation
relations  (ARs).  IRs  represent  peer-to-peer  structures,
exemplified  by  connections  between  papers  and
authors  in  an  academic  graph.  For  instance,  in  an
academic  graph,  multiple  papers  are  often  linked  to
multiple authors. In contrast, ARs imply one-centered-
by-another  structures,  such  as  the  association  between
products  and  brands  in  an  e-commerce  graph  where
multiple  products  belong  to  a  single  brand.
Consequently,  handling  the  relation  structures  during
the  coarsening  and  refinement  processes  respectively
constitutes two challenges of this work.

To  address  the  two  aforementioned  challenges,  we
separately  consider  graph  coarsening  and  refinement
strategies under the relation structures. The core of the
coarsening  is  determining  topologically  similar  nodes
and merging them into super  nodes.  For IRs,  different
types  of  nodes  usually  exhibit  a  tendency  to  cluster.
For instance, certain authors frequently collaborate and
publish  papers  together,  creating  robust  connections
between  these  papers  and  authors,  while  maintaining
weaker links with other authors and papers. We utilize
the  community  detection  method  to  quantify  the
similarity  of  nodes  in  IRs.  For  ARs,  nodes  centered
around  a  single  entity  demonstrate  similarity,  such  as

 

(b)

(a) (c) 
Fig. 1    Hierarchical  graph representation learning framework:  (a)  Coarsening the original  graph to  the  top-level  graph.  (b)
Any existing graph representation method is applied to embed the top-level graph. (c) Refining the node embeddings from the
top-level graph back to the original graph. This framework enhances the scalability of graph representation learning methods.
However, in the case of heterogeneous graphs, due to the presence of two types of relation structures, interaction relations (IRs)
and affiliation relations (ARs), it is not appropriate to consider both relations equally. This poses challenges for coarsening and
refinement on heterogeneous graphs.
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different  products  under  a  specific  brand  or  papers
published  at  an  identical  conference.  We  utilize
second-order neighbors to identify similar nodes under
ARs.  Regarding  the  refinement  strategy,  we  continue
the  strategy  of  MILE  which  using  graph  neural
networks  to  reinforce  the  node  representations  within
layers.  To  accommodate  heterogeneous  graphs,  we
additionally  consider  the  information  aggregation
methods individually under the two relation structures.

In  this  paper,  we  propose  Restage,  a  relation
structure-aware  hierarchical  heterogeneous  graph
embedding  framework,  that  effectively  improves  the
scalability  of  current  representation  learning  methods
on heterogeneous graphs. First, by fully considering the
similarity  of  nodes  in  IRs  and  ARs,  we  merge  similar
nodes  to  achieve  a  relation  structure-aware  graph
coarsening  method.  Second,  existing  unsupervised
graph representation methods are application to obtain
node  embeddings  in  the  top-level  graph.  Finally,  we
design a relation structure-aware refinement method to
transfer  node  embeddings  of  the  top-level  graph  layer
by  layer  back  to  the  original  graph.  The  contributions
of our work are as follows:
• To  address  the  coarsening  problem  of

heterogeneous graphs, we propose a relation structure-
aware  graph  coarsening  method.  For  the  two  types  of
relation  structures  that  exist  in  heterogeneous  graphs,
we  separately  consider  the  similarity  of  nodes  under
different  relation  structures  during  the  graph
coarsening  process  to  identify  and  merge  the  most
similar nodes into the next layer.
• To  address  the  refinement  problem  of

heterogeneous graphs, we propose a relation structure-
aware  graph  refinement  method.  This  method  allows
node embedding to be transferred across layers through
the  correspondence  between  nodes  in  different  layers.
Furthermore,  we  design  different  information
propagation  ways  for  the  two  relation  structures  to
further reinforce the node embeddings at each level.
• The  proposed  Restage  framework  enhances  the

scalability  of  existing  representation  learning  methods
on heterogeneous graphs. Experiments on a large-scale
heterogeneous  graph  show  that,  compared  to  directly
applying  representation  learning  methods  to  the
original  graph,  the  speed  is  improved  by  five  to
eighteen times within the proposed framework.

2　Related Work

Embedding  methods  on  heterogeneous  graph.
Model  design  plays  a  critical  role  in  representation

learning  on  heterogeneous  graphs,  with  the  field
predominantly divided into two primary classifications:
shallow  models[12–14] and  deep  models[15, 16].  In  the
initial  stages,  heterogeneous  graph  representation
learning  methodologies  were  chiefly  shallow  models,
which sought to quantify node similarities through the
design  of  various  metric  methods.  The
Metapath2vec[13],  for  instance,  implements  meta-paths
for  guidance  in  sampling  while  introducing  the
heterogeneous skip-gram to maximize same type node
similarity within a sliding window. HHNE[17] migrates
metapath2vec  to  the  hyperbolic  space,  and  the  metric
of  nodes  is  replaced  by  the  Poincare  distance.
HERec[18] takes into account nodes of a particular type
during  the  sampling  phase  and  introduces  a  weighted
fusion  method  for  different  meta-path  node
embeddings.  RHINE[9] delves  into  the  relation
structures  found  in  heterogeneous  graphs,  proposing
unique strategies for modeling nodes association within
various  relation  structures.  Shallow  model-based
methods  establish  a  strong  base  for  heterogeneous
graph  analysis.  However,  they  suffer  from  the
increased  complexity  brought  about  by  sampling  on
large-scale  graphs.  These  challenges  make  these
models  difficult  to  apply  to  extensive  graphs  and
simultaneously drive the motivation for this work.

As  graph  neural  networks  evolve[19–21],  the  studies
start  to  delve  into  the  realm of  convolution operations
on  heterogeneous  graphs.  RGCN[22] sets  adaptable
weight  matrices  for  distinct  relation  types,  thereby
modeling  diverse  node  attribute  aggregation  methods.
On the other hand, HAN[16] advocates for two attention
mechanisms that deal with heterogeneity by node-level
and  semantic-level  view.  GATNE[23] fully  considers
the  node  types  and  edge  types  and  learns
representations  for  each  node  in  different  edge  types.
MAGNN[24] not only considers the nodes at the ends of
the  meta-path  in  designing  node-level  aggregation  but
also  includes  the  influence  of  nodes  within  the  meta-
path.  NSHE[25] capitalizes  on  network  schemes  to
retain  the  local  information  of  nodes.  Deep  models
become the  prevailing  approach  at  present,  but  due  to
computational  resource  constraints,  they  exhibit  high
complexity  when  operating  on  large-scale  graphs.
Recent  advancements  include  a  series  of  decoupled
graph  neural  network  methodologies[26–29] aim  at
augmenting  the  efficiency  of  representation  learning,
and  they  have  found  successful  applications  in  large-
scale  graphs.  Despite  their  innovative  modeling,  they
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cannot  expand  the  current  meticulously  designed
representation  learning  methods  on  heterogeneous
graphs  to  a  large-scale  format.  This  limitation  makes
these  methods  difficult  to  apply  in  real-world
scenarios.

Graph  embedding  with  hierarchical  approaches.
Hierarchical  structures  offer  multiple  layers  of
perspective  for  analyzing node relationships,  and their
exploration aids in preserving the global information of
the  graph.  The  HARP[30] generates  hierarchical
structures via edge folding and employs Deepwalk[3] to
extract  embeddings  at  each  layer,  which  are
subsequently combined. Utilizing community detection
algorithms, HSRL[31] applies progressive coarsening to
construct  hierarchies  and  deploys  existing
representation  learning  techniques  at  each  level,
integrating them through concatenation. LouvainNE[32]

employs  a  top-down  strategy  for  constructing
hierarchical structures,  identifying communities within
each  subdivided  community  to  form  a  tree-like
configuration.  MILE[6],  in  contrast  to  the
aforementioned  methods,  designs  a  hierarchical  graph
representation  learning  framework  that  reduces  the
original  graph  to  a  top-level  graph  of  smaller  scale
using edge folding. The reduced graph is embedded to
attain  node  representations  within  it,  and  a  refinement
method is developed to relay these representations back
to the original graph, thereby enhancing the efficiency
of  graph  representation  learning.  GraphZoom[7] and
HANE[8] examine the hierarchical community structure
in  attribute  graphs,  thus  forming  hierarchical  attribute
graph  representation  frameworks.  However,  these
hierarchical  frameworks,  designed  for  homogeneous
graphs,  are  not  readily  adaptable  to  heterogeneous
graphs.  The  existence  of  two  types  of  relationship
structures in heterogeneous graphs presents coarsening
and  refinement  challenges,  as  these  structures  cannot
be addressed uniformly.

3　Problem Statement

In  this  section,  we  delineate  the  problem  to  be
addressed,  furnish  essential  definitions,  and  offer  the
necessary  background  knowledge  to  facilitate  a
comprehensive understanding of this work.

G = (V,E,ϕ,φ) V
E

ϕ : V −→ ϕV

Definition  1    Heterogeneous  graph.　 A  hetero-
geneous graph is defined as , in which 
and  are the sets of nodes and edges, respectively. It
is  also  associated  with  a  node  type  mapping  function

 and  an  edge  type  mapping  function

φ : E −→ φE ϕV φE

|ϕV | >= 1
|φE | >= 1

, where  and  denote the sets of node
and  edge  type,  respectively.  There  exist  and

.
By coarsening the heterogeneous graph,  the scale of

the  graph  is  reduced  layer  by  layer  until  the  top-level
layer  is  reached.  The  all-levels  graphs  form  a
heterogeneous hierarchical structure.

G =
(V,E,ϕ,φ) G

G0 ≻G1 ≻ · · · ≻GL G0 =G
HG =

{
G0,G1, . . . ,GL

}
L

≻

HG
(l+1)-th

Gl+1 = (V l+1,El+1,ϕ,φ)
l-th Gl = (V l,El,ϕ,φ)

Gl ≻Gl+1 l ∈ {0,1, ...,L}
V l+1 El+1

V l El |V l| > |V l+1| |El| > |El+1|

Definition  2        Heterogeneous  hierarchical
structure.　 Given  a  heterogeneous  graph 

.  Utilize  to  construct  a  series  of  different
hierarchical  levels  of  heterogeneous  graphs:

,  where .  The  resulting  set
 represents  the -layer

heterogeneous  hierarchical  structure,  where 
represents  the  structural  transformation  between
graphs. In the heterogeneous hierarchical structure ,
the  heterogeneous  graph  at  the  layer,

,  is  coarsened  from  the
heterogeneous graph at the  layer, ,
denoted as , where . Specifically,
the  node  set  and  edge  set  are  constructed
from  and , satisfying  and .

By embedding the  top-level  graph and subsequently
refining  it  back  to  the  original  graph,  we  obtain  the
node embeddings on the original graph.

G
ρ : Gl→Gl+1

Gl ≻Gl+1

L
HG

ZL ∈ R|VL |×d

GL ∈mathrmHG
ξ : Zl+1→ Zl

ZL ≻ ZL−1 ≻ · · · ≻ Z0

Z = Z0 G Z ∈ R|V |×d d≪ |V |

Definition  3    Hierarchical  heterogeneous  graph
embedding.　 Given  a  heterogeneous  graph ,  we
design  a  mapping  function  to  achieve
structural  transformations  between  graphs: ,
and  thus  construct  an -layer  heterogeneous
hierarchical  structure .  The  goal  of  hierarchical
heterogeneous  graph  representation  is  to  utilize
existing  graph  embedding  methods  to  learn  the  node
embeddings  of the top-level heterogeneous
graph , and design a mapping function

,  so  that  the  top-level  layer  node
embeddings  are  refined  back  to  the  original  graph

,  obtaining  the  node  embeddings
 for graph . Here, , .

According  to  the  above  definition,  we  provide
detailed  introductions  to  the  aspects  of  hierarchical
heterogeneous  graph  embedding  in  the  following
sections.

4　Methodology

We  implement  hierarchical  heterogeneous  graph
embedding based on relation structure and propose the
Restage  framework.  This  framework  uses  relation

  Huanjing Zhao et al.:  Restage: Relation Structure-Aware Hierarchical Heterogeneous Graph Embedding 201

 



structure-aware  graph  coarsening  to  progressively
reduce  the  size  of  the  heterogeneous  graph  to  a  top-
level  graph  with  smaller  scale  while  retaining  the
correspondence  between  nodes  at  different  layers.
Existing  graph  embedding  methods  for  heterogeneous
graphs  can  be  applied  to  the  top-level  graph.
Subsequently, the top-level embeddings are transferred
to  the  original  graph  through  the  proposed  relation
structure-aware  refinement  method,  and  further
reinforcing  the  transferred  embeddings  in  each  layer
during  this  process.  The  proposed  Restage  framework
shown in Fig. 2 that improves the efficiency of existing
representation  learning  methods  for  heterogeneous
graphs and enhances their scalability.

4.1　Relation structure-aware graph coarsening

In terms of form, graph coarsening methods belong to
structural  transformations  between  graphs,  which
reduce  the  size  of  large-scale  graphs  to  smaller-scale
ones while preserving the structure and features of the
original  graph  as  much  as  possible.  Graph  coarsening
can  be  achieved  through  matrix  operations  on  the

Al Gl l

adjacency matrix of a graph, which has been applied in
many  graph  pooling  works[33, 34].  Specifically,  given
the  adjacency  matrix  of  the  graph  at  the -th
layer,  the  graph  coarsening  process  is  represented  as
follows:
 

Al+1 = MT
l,l+1AlMl,l+1 (1)

Ml,l+1

l l+1
Ml,l+1

l l+1
Ml,l+1

Ml,l+1

l
l+1 vl

i vl
j

l vl+1
k l+1

mi,k = 1 m j,k = 1
l+1 vl

i vl
j

vl+1
k

where  is  the  cluster  assignment  matrix  between
layer  and  layer ,  which  guides  the  graph
coarsening  process.  The  construction  of  is  the
key  task  in  this  section.  The  essence  of  the  graph
coarsening problem is the node merging problem. The
heterogeneous  hierarchical  structure  proposed  in  this
paper merges nodes from the lower layer  to the 
layer  through  the  cluster  assignment  matrix .
Specifically,  the  rows  of  represent  the  nodes  in
the  layer, and the columns represent the nodes in the

 layer.  For  instance,  if  two  nodes  and  from
layer  are  merged  into  node  in  level ,  then
there exists  and . From the perspective
of  layer ,  nodes  and  should  have  some
commonalities,  as  they  are  replaced  by  node  in

 

 

S S
M G1

G2

Fig. 2    Restage  overall  framework.  Taking  an  academic  graph  as  an  example,  which  is  coarsened  twice,  the  original  graph
contains three types of  nodes:  authors,  papers,  and conferences,  as  well  as  two relation structures:  IRs between authors and
papers, and ARs between papers and conferences. In the coarsening part, we separately calculate the similarity of nodes in IRs
and ARs, then merge the two similarity matrices to obtain , find the most similar nodes in  to merge, construct the cluster
assignment matrix , and obtain the next-level graph . Any graph representation learning (GRL) method can be used for
embedding on the top-level graph . During the refinement process, first, a RestGNN is fitted on the top-level layer, and the
node  embeddings  in  the  top-level  graph  serve  as  both  input  and  supervision.  Then,  according  to  the  inter-layer  cluster
assignment  matrix,  the  node  embeddings  from  the  upper  layer  are  transferred  to  the  current  layer,  and  the  parameters  of
RestGNN are fixed to reinforce the transferred embeddings. In this process, RestGNN models message passing both IRs and
ARs.
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l+1layer .  Therefore,  selecting  similar  nodes  for
merging  in  the  graph  is  an  essential  step  in  the  graph
coarsening problem.

l
S IR ∈ R

∣∣∣V l
∣∣∣×∣∣∣V l

∣∣∣

com
Gl l K

In  heterogeneous  graphs,  there  exist  two  relation
structures:  IRs  and  ARs.  During  the  graph  coarsening
process,  these  two  relations  should  be  discussed
separately. First, we introduce a method for calculating
node similarity under IRs. In the  layer, the similarity
matrix  based  on  IRs  is  denoted  as .  As
previously  discussed,  IRs  resemble  a  peer-to-peer
structure, and we use community detection methods to
partition  the  connections  between  nodes  under  this
structure.  Nodes  within  the  same  community  interact
more  closely  and  have  some  similarities,  while  nodes
between  communities  interact  sparsely  and  have
weaker  associations.  Heterogeneous  graphs  contain
multiple  types  of  nodes,  and  using  community
detection for IRs preserves the semantic information of
the  heterogeneous  graph  to  some  extent.  Specifically,
by  using  the  community  detection  algorithm  we
divide  the  heterogeneous  graph  at  layer  into 
communities,  with  each  community  serving  as  a  new
heterogeneous graph:
  {

Gl
1,G

l
2, . . . ,G

l
K

}
= com

(
Gl
)

(2)

Gl =
{
Gl

1,G
l
2, . . . ,G

l
K

}

K

After  applying  the  community  detection  algorithm
com,  we  obtain  the  heterogeneous  graph

.  In  this  work,  we  adopt  the
Louvain  algorithm[35] as  the  community  detection
method,  which  has  better  time  efficiency  and  is  more
suitable  for  the  application  scenarios  of  our  study.
Notice  that,  Louvain  algorithm  is  a  community
detection  method  based  on  modularity  gain[36, 37] and
the  number  of  communities  cannot  be
predetermined.

Gl
k

vi v j Tt sIR(i, j)
S IR ∈ R

∣∣∣V l
∣∣∣×∣∣∣V l

∣∣∣

In heterogeneous graphs, there are different types of
nodes.  Under the premise of merging the most  similar
nodes  in  the  graph,  we  adopt  the  strategy  of  only
merging  nodes  of  the  same  type.  Therefore,  when
calculating the similarity  of  nodes under  the IRs,  only
the  similarity  between  nodes  of  the  same  type  is
considered.  Specifically,  in  the  community ,  nodes

 and  of  node  type ,  the  element  in  the
similarity matrix , which is denoted as
 

sIR(i, j) = |Ni∩N j|∑
k∈
{
k|vk∈Gl

k ,ϕ(vk)=Tt
} |Ni∩Nk | (3)

Ni viwhere  means  the  neighbor  nodes  of  in  the

Gl
k

∣∣∣Ni∩N j
∣∣∣

vi v j ϕ(vk)
vk

community ,  represents  the  number  of
common  neighbors  between  nodes  and , 
represents  the  node  type  of  node .  The  equation
indicates  that  the  similarity  between  two  nodes  of  the
same  type  is  dependent  on  the  quantity  of  their
common  neighbors  within  the  community  that  share
that same type.

vi v j

Tt sAR(i, j)
S AR ∈ R

∣∣∣V l
∣∣∣×∣∣∣V l

∣∣∣

The ARs are described as a one-centered-by-another
structure.  We  suggest  that  the  similarity  based  on  the
second-order  structure  can  better  reflect  the  relevance
between  peripheral  nodes  that  belong  to  the  same
central  node.  For  example,  with  the  conference  as  the
central  node,  papers  published  at  the  same conference
have similarities. Specifically, given nodes  and  of
node  type ,  the  element  in  the  similarity
matrix , which is denoted as
 

sAR(i, j) =
1∣∣∣∣sub

(
sup
(
vi,v j
))∣∣∣∣ (4)

sup
(
vi,v j
)

vi v j sub(v)
v

where  represents  the  common  center  of
nodes  and , and  means the peripheral nodes
of .  As  seen  from  the  equation,  all  peripheral  nodes
belonging to the same center have the same similarity.
For  ARs,  the  similarity  between  central  nodes  is  not
calculated,  as  we  assume  that  there  is  no  way  to
establish  potential  connections  between  central  nodes
under the ARs.  For example,  in  the affiliation relation
between  papers  (peripheral)  and  conferences  (central),
it  is  impossible  to  establish  the  similarity  between
conferences  based  solely  on  these  two  types  of  nodes
because  a  paper  is  not  published  at  two  conferences
simultaneously.  Spatially  speaking,  the  graph
composed  of  paper  and  conference  is  discrete,  and
there  is  no  reachable  path  between  conferences.
Although  semantics  such  as “authors  who  have
published papers at one conference have also published
papers at another conference” (meta-path: CPAPC) can
establish  connections  between  conference  nodes,  we
think  that  introducing  IRs  (relationships  between
authors  and  papers)  in  the  ARs  may  increase  model
uncertainty. Therefore, our work does not consider this
aspect for now.

S IR S AR

S

After  obtaining  the  similarity  matrices  and 
for  nodes  under  the  two  types  of  relation  structures,
using  a  weighted  summation  method  to  fuse  the  two
similarities.  The  calculation  method  of  similarity
matrix  is as follows:
 

S = ωIRS IR+ωARS AR (5)
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ωIR ωAR

S
l

Ml,l+1

where  and  are  two  hyper-parameters,
representing the weights of IRs and ARs, respectively.
Based  on  the  similarity  matrix ,  traversing  all  nodes
in  the  current  layer ,  selecting  the  node  with  the
highest similarity to merge. If a node has already been
selected as the most similar node by another node, then
this node will be skipped in this iteration. Specifically,
if  a  node’s  most  similar  node  has  already  formed  a
super-node  with  other  nodes,  then  this  node  will  join
them.  Finally,  based  on  the  merged  results,  construct
the cluster assignment matrix .

4.2　Embedding on the top-level graph

G
HG = {G0,G1, ...,GL}

GL

According  to  the  coarsen  method  introduced  in  the
previous  section,  for  a  heterogeneous  graph ,  a
hierarchical  structure  is
constructed  through  layer-by-layer  coarsening.  Next,
existing  graph  embedding  methods  to  embed  the  top-
level  heterogeneous graph .  It  can be formalized as
follows:
 

ZL = emb
(
GL
)

(6)

ZL ∈ R|V
L|×d L

emb

emb

where  means the node embedding of the 
layer,  means  the  embedding  function.  In  the
proposed  hierarchical  heterogeneous  graph  embedding
framework,  can  be  any  unsupervised  graph
embedding method, which learns the node embeddings
only  utilizing  the  topology  of  the  top-level
heterogeneous  graph.  The  graph  coarsening  method
constructs  a  top-level  graph,  which  to  some  extent
preserves  the  structural  information  in  the  original
heterogeneous graph.

4.3　Relation structure-aware graph refinement

Ml−1,l

Zl l l−1

By  obtaining  the  node  embedding  through  graph
embedding method on the  top-level  graph,  we acquire
the embeddings for the top-level nodes. In this section,
we  introduce  a  relation  structure-aware  graph
refinement method to refine these embeddings layer by
layer to the original heterogeneous graph, obtaining the
node  representation  of  the  original  heterogeneous
graph.  An  obvious  way  is  to  use  the  cluster  assign-
ment  matrix  between  layers  to  transfer  the
embeddings  from  the  layer  to  the  layer,
specifically as follows:
 

Zl−1 = Ml−1,lZl (7)

However,  this  way  cannot  preserve  the  interactions
among  intra-layer  nodes.  Moreover,  such  a  transfer

l−1
method causes nodes belonging to the same community
within  the  layer  to  have  the  same  representation,
leading  to  the  vector  of  nodes  in  the  graph  becoming
more homogenized.

l−1
Zl−1

ZL

RestGNN

MILE proposes an intra-layer enhancement strategy,
which  allows  the  graph  topology  at  layer  to  be
integrated  with  the  node  embeddings  during  the
refinement  process.  Theoretically,  this  enhancement
strategy  can  be  any  model,  even  a  simple  multi-layer
perceptron (MLP). To accommodate node embeddings
and topology, while also considering the characteristics
of  heterogeneous  graphs,  we  design  a  relation
structure-aware graph refinement method. Specifically,
this  method  first  fits  the  node  embeddings  with  a
relation structure-aware graph neural network model at
the  top-level  graph.  Then,  during  the  refinement
process,  the  model  parameters  are  fixed,  and  the
inference step is performed at each layer, allowing the
transformed embeddings  of  the  nodes  within  the  layer
to  be  integrated  with  the  topology  structure.  The  loss
function of fitting process of  at the top-level
graph is represented as follows:
 

L = argmin
Θ

(ZL −RestGNNΘ
(
ZL,GL

)
) (8)

Θ

RestGNN
vi

where  represents  the  trainable  parameters  of  the
model.  is  a  relation  structure-aware  graph
neural network, and the specific process for node  is
as follows:
 

h(q+1)
i = σ

 ∑
t∈{IR,AR}

∑
j∈N t

i

W(q)
t h(q)

j +W(q)
0 h(q)

i

 (9)

{AR, IR}

W(q)
t

t q
W(q)

0

N t
i

vi

t σ

where  represents the combination of two types
of  relation  structures,  interaction  relations  and
affiliation  relations;  is  the  weight  matrix
corresponding to relation structure  in the -th layer of
the  RestGNN  network,  while  represents  the
weight  matrix  for  the  node’s  own representation,  both
of  which  are  learnable  parameters.  denotes  the  set
of  neighbor  nodes  of  node  under  the  relation
structure ;  represents the activation function.

RestGNN

emb
vi h(0)

i = zL
i zL

i ∈ ZL

As  the  equation  shows,  the  aggregation  process  in
 is  determined  by  two  relation  structures.

Different  message  passing  ways  are  set  for  different
relation  structures.  The  fitting  process  initializes  the
node attributes by the embedding of the top-level graph
using  the  existing  graph  representation  method ,
i.e.,  for  node ,  there  exists ,  where .
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ZL

GL
This  fitting  process  also  utilizes  the  embedding  of
the  top-level  graph  as  supervision.  Taking  a  two-
layer RestGNN as an example, the loss from Eq. (8) is
calculated as follows:
 

L = 1
|VL|

∑
i∈{i|vi∈VL}

∥∥∥∥zL
i −h(2)

i

∥∥∥∥2 (10)

h(2)
i vi

RestGNN
where  means the embedding of  after aggregating
through two layers of .

RestGNN
Θ

l l−1

After  fitting  on  the  top-level  graph,  the
model  will  fix  the  parameters .  In  the  subsequent
refinement process, the model only performs inference
and no longer trains. the relation structure-aware graph
refinement  method  from  the  layer  to  the  layer
can be described as
 

Zl−1 = Ml−1,lZl,

Z′l−1 = RestGNNΘ
(
Zl−1,Gl−1

)
,

Zl−1 = Z′l−1

(11)

Z0

Repeat  this  process,  and  ultimately  obtain  the  node
embeddings ,  which  serves  as  the  final
representation  for  the  original  heterogeneous  graph.
The overall steps of Restage are shown in Algorithm 1.

N
EIR EAR

K

O(EIRlogEIR+EIR+EAR)

O(N2+N ∗K)

O(EIR+EAR+N ∗2)

O(N2+K ∗N)

The  Restage  framework  is  primarily  composed  of
two  main  components:  coarsening  and  refinement.
Given the number of nodes  within the current layer,
the  number  of  IRs ,  the  number  of  ARs ,  and
the number of communities , the complexity analysis
is  as  follows.  In  the  coarsening  phase,  community
detection  is  employed  to  calculate  the  similarity  of
nodes  of  the  same  type  within  a  community  for  IRs.
For ARs, nodes sharing the same central node possess
identical  similarity.  Using  the  Louvain  algorithm,
which is applied in this work, as an example, the time
and space complexity of a single coarsening operation
is .  This  phase  also
necessitates consideration of the space occupied by the
adjacency  matrix  and  the  cluster  assignment  matrix,
leading  to  a  corresponding  space  complexity  of

. During the refine-ment phase, RestGNN
is  employed  to  adapt  the  node  embeddings  using  any
graph  representation  methods.  Given  the  two  types  of
relation structures, the time complexity of this phase is

.  In  terms  of  space  occupancy,  it
necessitates  the  consideration  of  the  transfer  and
reinforcement  of  embeddings,  resulting  in  a
corresponding complexity of .

5　Experiment

In this section, we conduct experiments and analyses to

validate  the  proposed  method.  The  effectiveness  of
Restage  is  verified  on  four  publicly  available
heterogeneous graph datasets.

5.1　Datasets

To  demonstrate  the  effectiveness  of  our  model,  we
conduct  experiments  on  publicly  available
heterogeneous graph datasets that cover interactions in
various  complex real-world systems.  For  example,  the
ACM[25] and  AMiner[38] datasets  describe  the
relationships between papers  and authors  in academia,
while  the  Freebase[39] dataset  describes  the
relationships between movies, authors, and directors in
the  film  industry.  The  overall  information  of  the  four
datasets is shown in Table 1.
• ACM  (Association  for  Computing  Machinery)  is

an  international  association  for  computer  science  and
information  technology.  The  data  is  collected  and
extracted  from  the  open-source  heterogeneous  graph
toolkit,  openHINE*,  and  has  been  used  in  many
heterogeneous graph research works.

 

Algorithm 1    Restage framework
Input: A heterogeneous graph G and its corresponding
adjacency matrix A, the number of coarsening layers L, and an
arbitrary graph embedding algorithm emb.
Output: The representation Z of the graph G.

G0 :=G,A0 := A1: .
l = 0 L2: for  to  do

S IR3: 　　construct the similarity matrix under IRs, , based
　on Eq. (3).

S AR4: 　　construct the similarity matrix under ARs, , based
　on Eq. (4).

S Gl5: 　　compute the similarity matrix  for nodes in  based
　on Eq. (5).

Ml,l+16: 　　construct the cluster assignment matrix 

Al+1 := MT
l,l+1AlMl,l+17: 　　

8: end for

ZL := emb
(
GL
)

9: 
Θ10: fitting the parameters  of RestGNN with Eq. (8)

l = L 011: for  to  do
Zl−1 := Ml−1,lZl12: 　　

Z′l−1 := RestGNNΘ
(
Zl−1,Gl−1

)
13: 　　

Zl−1 := Z′l−114: 　　

15: end for
Z := Z016: 

Z17: return 

 
 

* https://github.com/BUPT-GAMMA/OpenHINE
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• Freebase  is  an  open-knowledge  graph-based
database[40] that  aims  to  structure  all  the  world’s
knowledge.  The  graph  composed  of  four  types  of
entities  from  Freebase  as  the  dataset,  which  includes
movies, directors, actors, and editors.
• AMiner  is  an  academic  search  and  academic  data

analysis  platform[41].  The  dataset  used  is  a  subgraph
extracted  from  a  citation  network,  containing  three
types of nodes: articles, authors, and references.
• AMiner_L  and  AMiner  come  from  the  same

citation  graph,  with  AMiner_L  being  larger  in  scale.
The use of this dataset allows for further validation of
the  scalability  of  the  proposed  framework  for  existing
heterogeneous graph representation learning methods.

5.2　Baselines

emb

To  validate  the  scalability  of  Restage,  we  utilize  two
classic  representation  learning  methods,  Node2vec[42]

(N2V)  and  Metapath2vec[13] (MP2V),  as  foundation
methods.  These  two  methods  are  applied  to  the
embeddings  of  the  top-level  heterogeneous  graphs,
corresponding  to  the  function  in  Eq. (6).
Simultaneously,  we  introduce  several  baselines  for
evaluation.  For  heterogeneous  graph  embedding,  in
addition  to  the  classic  MP2V,  we  consider  methods
based  on  meta-paths,  such  as  HERec[18] and  HAN[16],
as  well  as  methods  based  on  network  schemes  like
NSHE[25] and  HeCo[43].  For  homogeneous  graph
embedding, we adopt for MILE[6], which also employs
a  hierarchical  framework.  Notice  that  N2V,  MP2V,
HERec,  and  the  proposed  Restage  adopt  unsupervised
training  without  features.  NSHE  and  HeCo  are  also

unsupervised training but utilizes node attributes. HAN
is a semi-supervised training method using features and
partly node labels.  Implementation details of baselines
are described as follows:
• Node2vec is an unsupervised graph representation

method  by  leveraging  random  walks  and  optimizing
these  representations  using  the  skip-gram  from
word2vec[44].
• Metapath2vec is  the  classical  heterogeneous

representation  method.  It  is  based  on  meta-path
sampling and the heterogeneous skip-gram model.
• HERec employs multiple meta-paths for  sampling

and  integrates  node  representations  under  different
meta-paths,  making  it  suitable  for  recommendation
tasks on heterogeneous graphs.
• HAN  is  a  deep  model  based  on  graph  neural

networks  that  learn  embeddings  of  a  node  based  on
node-level and semantic-level attentions.
• NSHE uses network scheme sampling and designs

a  multi-task  learning  task  to  maintain  the
heterogeneous structure of each schema instance.
• HeCo  employs  a  contrastive  learning  setup  that

compares  network  schemes  and  meta-paths,  thereby
facilitating  a  self-supervised  representation  learning
approach.
• MILE is a notable work in the homogeneous graph

representation  domain  that  investigates  hierarchical
structures.  Its  proposed  coarsening  and  refinement
framework  effectively  improves  the  efficiency  of
existing representation learning algorithms.

5.3　Implementation details

Running  environment.　 The  experiments  in  this
paper  are  conducted  on  Intel(R)  Core(TM) i5-10210U
CPU@1.60 GHz, 16 GB of RAM, and 512 GB HDD.
In order to ensure a fair comparison with all baselines,
the  proposed  Restage  framework,  including  both  the
coarsening,  embedding  and  refinement  processes,
operates  entirely  on  the  CPU,  including  the  fitting  of
RestGNN  on  the  top-level  graph.  Although  we
acknowledge  that  using  a  GPU  for  RestGNN  fitting
could  further  reduce  the  time  consumption,  we  avoid
doing  so  in  the  interest  of  ensuring  the  framework’s
scalability.

com

10−5

Parameter configuration.　The community detect-
ion  algorithm  used  in  this  work  is  the  Louvain
algorithm, which includes a modularity gain threshold.
In  the  coarsening  process,  the  threshold  value  is  kept
constant  at .  The  results  presented  in  the

 

Table 1    Statistics of the datasets.

Dataset Node Relation Relation
structure

ACM
#Paper(P): 4019 #P-S: 4019

AR
IR#Author(A): 7167

#Subject(S): 60 #P-A: 13 407

Freebase

#Movie(M): 3492 #M-A: 65 341

#M-D: 3762

#M-W: 6414

AR
IR
IR

#Actor(A): 33 401
#Director(D): 2502

#Writer(W): 4459

AMiner
#Paper(P): 6564 #P-A: 18 007

IR
IR#Author(A): 13 329

#Reference(R): 35 890 #P-R: 58 831

AMiner_L
#Paper(P): 127 623 #P-A: 355 072

IR
IR#Author(A): 164 473

#Reference(R): 147 251 #P-R: 392 519
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d
experiments  are  the  average  values  obtained  from  ten
runs.  The  embedding  dimension  for  all  baseline
methods is set to 128 to ensure a fair comparison.

5.4　Scalability of Restage

In  the  proposed  Restage  framework,  the  original
heterogeneous  graph  is  compressed  into  a  top-level
graph  with  a  smaller  scale  through  graph  coarsening.
The  node  embeddings  are  obtained  on  the  top-level
graph  using  existing  graph  embedding  methods,  and
then  the  node  embeddings  on  the  top-level  graph  are
transferred  back  to  the  original  graph  using  the  graph
refinement  method.  In  this  section,  we  use  two
classical  graph  embedding  methods,  N2V  and  MP2V,
to  embed  the  top-level  graph.  We  adopt  node
classification  as  the  downstream  task  to  evaluate  the
performance of the model, in order to better understand

l

the  effectiveness  and  performance  of  the  proposed
method  in  practical  applications.  We  input  the  final
node embeddings obtained on the original graph into a
logistic  regression  classifier  and  set  the  training  ratios
to 20%, 40%, 60%, and 80%. The experimental results
are shown in Table 2, where  represents the number of
times the graph is coarsened.

The results  on the  three  datasets  further  confirm the
effectiveness  of  the  Restage  framework.  Compared  to
directly  using  N2V  or  MP2V  on  the  original  graph,
better  results  are  obtained  using  these  two  methods
under  the  Restage  with  the  time  consumption  is
significantly  reduced.  This  demonstrates  that  the
Restage  framework  has  enhanced  the  scalability  of
existing  graph  embedding  methods  on  heterogeneous
graphs  to  some  extent.  On  the  AMiner  and  ACM
datasets,  the  MP2V method in  the  Restage framework

 

Table 2    Macro-F1 and  Micro-F1 scores (%) and  time  consumption  (seconds)  for  the  node  classification  task  on  the  three
datasets.

Dataset Metric Train N2V
L

Restage
(N2V)
( =1) L

Restage
(N2V)
( =2) L

Restage
(N2V)
( =3)

MP2V
L

Restage
(MP2V)
( =1) L

Restage
(MP2V)
( =2) L

Restage
(MP2V)
( =3)

ACM

Mi-F1

20% 81.27 84.79 82.96 81.19 73.91 82.65 83.40 81.59
40% 82.66 84.99 83.79 81.22 75.66 83.42 84.00 81.76
60% 82.75 85.82 83.40 80.10 74.32 84.39 84.14 80.53
80% 83.51 86.69 84.08 81.34 77.61 84.58 83.71 79.10

Ma-F1

20% 81.02 84.24 82.78 79.91 71.55 82.15 83.02 80.36
40% 82.23 84.86 83.42 80.44 73.67 83.04 83.76 80.87
60% 82.41 85.54 82.76 79.93 72.19 83.99 83.64 79.39
80% 83.28 86.48 83.38 80.80 75.94 84.29 83.24 78.26

Time (SpeedUp) ×257 (6.9 ) ×74 (2.0 ) ×46 (1.2 ) ×37 (1.0 ) ×1251 (6.7 ) ×565 (3.0 ) ×257 (1.3 ) ×185 (1.0 )

AMiner

Mi-F1

20% 83.98 85.61 84.84 82.96 75.77 85.05 85.93 85.57
40% 85.22 86.29 85.25 83.93 77.71 86.47 86.19 84.16
60% 85.26 87.09 86.63 84.84 78.32 86.94 86.84 84.39
80% 81.45 87.66 87.51 84.46 77.75 86.98 87.36 84.23

Ma-F1

20% 73.29 75.63 73.90 69.07 55.42 73.34 72.89 64.41
40% 74.49 75.79 73.45 69.13 58.27 74.86 72.83 65.25
60% 74.62 77.29 75.53 71.05 58.65 75.58 74.19 65.34
80% 73.52 77.81 77.49 70.53 58.17 75.73 75.38 66.36

Time (SpeedUp) ×1634 (22.0 ) ×315 (4.2 ) ×120 (1.6 ) ×74 (1.0 ) ×3250 (9.3 ) ×2069 (5.9 ) ×834 (2.3 ) ×348 (1.0 )

Freebase

Mi-F1

20% 66.03 67.22 65.86 68.43 64.76 65.21 67.97 63.14
40% 68.10 69.13 69.08 68.32 65.62 68.23 67.94 63.93
60% 68.36 71.01 70.15 69.08 64.49 69.22 67.34 63.35
80% 66.70 71.24 70.53 70.24 63.23 70.96 67.10 63.23

Ma-F1

20% 61.42 62.30 58.50 60.38 54.05 59.57 54.14 46.28
40% 63.03 63.97 60.77 60.69 55.19 62.60 54.07 46.99
60% 64.04 66.21 62.34 61.49 54.52 63.49 53.53 46.48
80% 62.83 66.62 63.05 63.63 54.14 65.86 53.72 46.49

Time (SpeedUp) ×1358 (16.3 ) ×255 (3.0 ) ×123 (1.4 ) ×83 (1.0 ) ×7876 (77.2 ) ×1021 (10.0 ) ×249 (2.4 ) ×102 (1.0 )
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Lwhen  coarsen  one  times  ( =1)  has  an  8% to  19%
improvement over directly using MP2V on the original
heterogeneous graph, which is likely due to the positive
effect of the refinement method proposed in this paper.
MP2V can  only  retain  the  semantics  represented  by  a
given  meta-path,  while  the  refinement  method
proposed  in  this  paper  enhances  the  representation
within  each  layer  when  refining  the  top-level  node
representation  back  to  the  original  heterogeneous
graph,  making  up  for  the  semantic  deficiencies  of
MP2V.

L

L

In the experiments, the number of coarsening steps 
has a positive effect on reducing the time consumption,
and the more coarsening steps, the less time consumed.
However,  this  is  not  linearly related.  For example,  the
time  consumption  of  coarsening  three  times  on  the
Freebase  and  AMiner  datasets  is  not  much  different
from coarsening two times, which is likely because the
community  structure  in  the  graph  is  relatively  stable,
and further coarsening does not significantly reduce the
graph’s  scale.  In Fig. 3,  we  further  illustrate  the
positive  impact  of  the  number  of  coarsening  steps  on
the compression of  the graph.  Our coarsening strategy
aims  to  merge  the  most  similar  nodes  in  the  graph,
usually when coarsening once, the scale of the original
graph  is  successfully  reduced  to  less  than  50%.
However,  as  the  number  of  coarsening steps  increases
( =2,  3),  the  changes  in  the  scale  of  the  graph  are
relatively  small.  This  may  be  because  the  community
structure  in  the  graph  becomes  stable,  and  nodes  with
topological  differences  will  not  converge  due  to  the
increase in the number of coarsening steps. Due to the
relative  stability  of  the  graph  scale,  the  time
consumption  of  coarsening  three  times  is  not  much

different  from  that  of  coarsening  twice  on  the  three
datasets. Excessive times of coarsening may lead to the
loss  of  information  in  the  graph,  which  is  also
confirmed  in  the  experiments.  The  best  results  on  the
three datasets are mainly concentrated when coarsening
one  or  two  times.  Notably,  when  coarsening  once,
although  the  scale  of  the  network  is  significantly
reduced,  the  results  of  the  classification  even  slightly
improved  under  the  Restage  framework,  and  the  time
cost  is  effectively  reduced.  This  further  proves  that
Restage  is  beneficial  to  enhance  the  scalability  of
existing  representation  learning  methods  on
heterogeneous graph.

5.5　Quality of Restage

L 1

Restage  not  only  enhances  the  scalability  of  existing
graph  representation  learning  methods  but  also
improves their performance. In this section, we further
demonstrate  the  excellent  quality  of  Restage  through
comparisons  with  graph  representation  learning
baseline  methods  on  two  downstream  tasks,  node
classification  and  node  clustering.  For  the  node
classification task, we adopt the same settings as in the
previous  section.  For  node  clustering,  we  use  the
obtained  node  representations  to  train  KMeans,  using
normalized  mutual  information  (NMI)  as  the
evaluation metric. Restage uses N2V as the embedding
method  for  the  top-level  graph.  The  number  of
coarsening  steps  is  set  to .  As  observed  from  the
analysis in the previous section, significant graph scale
reduction  and  relatively  better  results  are  achieved
when the graph is coarsened once.

Node  classification.　Table  3 shows  the  results  of
node  classification  tasks  on  three  datasets,  Overall,

 

 
x

y
Fig. 3    Percentage of node and edge counts compared to the original graph as coarsening steps increase. The -axis represents
the number of coarsening steps, and the -axis represents the percentage of the number of nodes (edges) at the current level
compared to the number of nodes (edges) in the original graph.
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Restage  achieves  the  best  or  second-best  results  in
most  cases  and  significantly  outperforms  other
baselines in terms of speed. The classical methods N2V
and  MP2V  perform  stably  on  all  three  datasets,  but
their  sampling  and  shallow  model  learning  strategies
lead  to  higher  time  overheads.  HAN  uses  node
attributes  and  labels  for  semi-supervised  learning,  and
its  results  are  close  to  the  best  results  on  all  three
datasets. Baselines based on network schemes, namely
NSHE and HeCo,  have  shown substantial  competence
across  all  three  datasets,  particularly  on  Freebase  and
AMiner. This indicates to some extent the advantage of
network  schemes  in  preserving  local  information  for
handling  more  complex  interactions  within  the  graph.
However, this comes with a considerable time expense,
as  clearly  exhibited  by  NSHE,  whose  training  time

even  exceeds  six  days.  In  contrast,  our  Restage  not
only achieves similar, but in some cases even superior
results,  while  utilizing  the  least  amount  of  time.
Compared  with  MILE,  a  hierarchical  graph
representation  learning  method  in  homogeneous
networks,  Restage  achieves  further  speed
improvements,  which  may  be  due  to  the  higher  edge
folding  efficiency  brought  by  the  relation  structure-
aware  coarsening  method  adopted  in  this  study.
Moreover, Restage performs slightly better than MILE
on  Freebase  and  AMiner  datasets,  which  can  be
attributed  to  the  relation  structure-aware  refinement
method.

Node  clustering. We  perform  node  clustering  tasks
on three datasets, with results displayed in Table 4. The
running times of each algorithm remain consistent with

 

Table 3    Macro-F1 and Micro-F1 scores (%) and time consumption (seconds) for all baselines on node classification task.
Dataset Metric Train N2V MILE MP2V HERec HAN NSHE HeCo Restage

ACM

Mi-F1

20% 81.27 83.37 73.91 81.30 81.56 81.62 64.30 84.79
40% 82.66 84.41 75.66 82.28 81.76 81.75 79.27 84.99
60% 82.75 84.71 74.32 82.40 82.89 82.67 83.33 85.82
80% 83.51 85.32 77.61 82.74 83.77 84.45 85.07 86.69

Ma-F1

20% 81.02 83.94 71.55 81.07 80.81 80.85 52.32 84.24
40% 82.23 84.75 73.67 82.16 81.43 81.18 75.49 84.86
60% 82.41 85.12 72.19 82.31 82.18 82.48 81.47 85.54
80% 83.28 85.62 75.94 82.76 83.30 84.36 83.77 86.48

Time 257 191 1251 342 212 1556 481 74
(SpeedUp) ×(3.4 ) ×(2.5 ) ×(16.9 ) ×(4.6 ) ×(2.8 ) ×(21.0 ) ×(6.5 ) ×(1.0 )

AMiner

Mi-F1

20% 83.98 83.99 75.57 80.52 82.23 84.77 85.95 85.61
40% 85.22 84.89 77.71 82.06 82.42 84.85 86.49 86.69
60% 85.26 85.65 78.32 82.63 82.57 84.72 86.75 87.09
80% 81.45 86.15 77.75 81.71 81.82 83.81 84.92 87.66

Ma-F1

20% 73.29 68.74 55.42 67.69 66.09 71.61 74.28 75.63
40% 74.49 70.57 58.27 69.75 66.84 71.85 75.09 75.79
60% 74.62 72.12 58.65 69.72 66.16 71.95 75.14 77.29
80% 73.52 73.64 58.17 68.29 65.40 71.11 71.98 77.81

Time) 1634 684 3250 412 693 > 6 days 2736 315
(SpeedUp) ×(5.1 ) ×(2.1 ) ×(10.3 ) ×(1.3 ) ×(2.2 ) (/) ×(8.6 ) ×(1.0 )

Freebase

Mi-F1

20% 66.03 68.46 64.76 62.34 68.29 70.01 69.36 67.22
40% 68.10 69.06 65.62 64.04 69.08 70.04 69.51 69.13
60% 68.36 68.66 64.49 64.96 68.46 69.85 68.58 71.01
80% 66.70 68.99 63.23 65.17 66.92 68.55 66.81 71.24

Ma-F1

20% 61.42 59.73 54.05 57.69 60.79 64.53 61.58 62.30
40% 63.33 61.14 55.19 59.83 61.77 64.49 62.05 63.97
60% 64.04 61.05 54.52 61.17 62.11 65.41 62.23 66.21
80% 62.83 62.20 54.14 61.78 61.07 64.92 60.93 66.62

Time 1358 773 7876 275 263 > 6 days 9542 255
(SpeedUp) ×(9.6 ) ×(5.4 ) ×(55.8 ) ×(1.9 ) ×(1.6 ) (/) ×(67.6 ) ×(1.0 )
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those  in Table 3,  as  we  simply  apply  the  node
representations  learned  by  these  baselines  to  different
downstream  tasks.  Restage  demonstrates  superior
performance  on  both  the  AMiner  and  Freebase
datasets.  On  the  ACM  dataset,  HeCo  yields
significantly  higher  clustering  results  than  other
baselines, likely due to its utilization of node attributes
which  are  particularly  apt  for  clustering  tasks.
However,  as  seen  in Table 3,  this  method  does  not
stand  out  in  the  classification  experiment.  Evaluating
MILE’s  results  in  both  classification  and  clustering,  it
consistently exhibits a robust performance, not far from
the optimal results. This demonstrates the effectiveness
of the hierarchical  framework for graph representation
learning methods in some extend. Restage, specifically
designed  for  hierarchical  heterogeneous  graph
representation,  achieves  better  results  with  less  time
overhead.

5.6　Performance of Restage on large-scale graph

AMiner_L  is  a  subgraph  extracted  from  the  AMiner
citation network,  which includes  about 400 000 nodes,
740 000 edges,  and  three  types  of  nodes:  papers,
authors,  and  references.  In  this  work,  we  use  this
dataset to analyze the application effect of the proposed
Restage  on  the  large-scale  graph.  We  also  adopt  the

L

node  classification  task  and  train  a  classifier  with  the
obtained  node  representations  at  different  ratios.  We
employ N2V as the representation learning method on
the  top-level  graph  and  set =1,  2,  3 as  the  three
numbers of times of coarsening for comparison.

Table  5 shows  the  results  of  the  node  classification
task  on  the  AMiner_L  dataset.  In  this  case,  MILE’s
coarsest  graph  chooses  N2V  as  the  node  embedding
method,  with  two  layers  of  coarsening.  HAN  is  not
included  in  the  comparison  because  their  required
runtime  environment  exceeds  memory  limitations.
NSHE is not included in the comparison due to training
times  exceeding  six  days.  HeCo  is  not  considered
because  the  dataset  does  not  include  node  attribute
information.  The  proposed  Restage  achieves  the  best
results when coarsened once, although its performance
decreases relatively after three times of coarsening, its
speed  is  improved.  Restage,  like  MILE,  applies  N2V
for  embedding  in  the  top-level  graph.  Compared  to
utilizing  N2V directly  on  the  original  graph,  its  speed
is  increased  by  about  eighteen  times,  and  the
classification performance remains basically the same.

5.7　Ablation analysis

Restagecom

RestageGCN Restagecom

Restagecom

RestageGCN

The proposed Restage framework consists of two main
components: relation structure-aware graph coarsening
and  relation  structure-aware  graph  refinement.  To
demonstrate  the  contribution  of  each  part  to  the
framework,  we  design  two  variants,  and

.  does  not  account  for  the
relation  structures  of  heterogeneous  graphs  during  the
coarsening  process.  Instead,  it  employs  community
detection  methods  to  partition  the  original  graph  into
multiple  blocks.  It  then  computes  the  similarity  of
nodes  of  the  same type  within  each  block  and merges
the  most  similar  nodes.  implements  the
coarsening  layer-by-layer  in  this  manner.  During  the
refining  phase,  does  not  take  into  account

 

Table 4    NMI values (%) for all baselines on node clustering
task.

Method ACM AMiner Freebase
N2V 44.60 37.83 16.58
MILE 45.00 40.86 16.49
MP2V 27.24 34.16 18.88
HERec 15.76 15.84 4.04
HAN 40.62 26.73 18.13
NSHE 37.71 36.12 16.36
HeCo 62.87 33.36 20.14

Restage 51.81 47.94 21.09

 

Table 5    Node classification task on AMiner_L dataset.
Metric Micro-F1 (%) Macro-F1 (%) Time (min)
Train 20% 40% 60% 80% 20% 40% 60% 80% /

N2V 59.52 59.72 59.99 60.03 54.37 54.19 54.41 54.53 (18.86×)415 
MP2V 56.17 56.52 56.73 56.38 50.54 51.13 51.46 51.39 (5.94×)131 
HERec 52.55 52.91 53.07 53.52 45.52 46.03 46.52 47.13 (13.13×)289 
MILE 61.67 61.95 62.11 61.91 56.53 56.98 57.38 57.43 (5.59×)123 

LRestage ( =1) 61.84 62.24 62.33 62.05 56.55 57.01 57.30 57.30 (3.27×)72 
LRestage ( =2) 60.68 61.12 61.15 61.24 55.01 55.38 55.61 55.98 (1.45×)32 
LRestage ( =3) 57.40 57.65 57.83 57.54 50.03 50.24 50.47 50.56 (1.00×)22 
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the  relation  structures.  It  utilizes  GCN  instead  of
RestGNN to  fit  the  node  embeddings  at  the  top  layer.
Subsequently, it refines back to the original graph.

Restagecom

L

Table 6 shows  the  results  of  two  ablation
experiments  on  ACM  dataset,  where  all  three
frameworks  use  N2V as  the  embedding method at  the
top-level  graph.  Restage,  which  considers  the  relation
structure  in  both  coarsening  and  refinement,  performs
better  than  the  two  variants,  demonstrating  the
necessity  of  perceiving  relation  structures  in
hierarchical  heterogeneous  graph  representation
learning.  This  point  is  also  corroborated  by  the
comparison  with  MILE  in  Sec. 5.5.  Moreover,

 incurs  lower  computational  overhead
compared  to  the  other  two  frameworks.  This  is
attributed  to  the  utilization  of  community  detection
during  the  coarsening  process,  which  significantly
reduces  the  graph size.  However,  this  also results  in  a
notable performance decline, particularly at =3.

5.8　Parameter analysis

ωIR ωAR

ωIR, ωAR ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

In  the  process  of  relation  structure-aware  graph
coarsening,  it  is  necessary  to  merge  the  similarity  of
nodes  under  two kinds  of  relation structures  as  shown
in  Eq.  (5).  For  this  purpose,  parameters  and 
are  set  to  represent  the  weights  of  IRs  and  ARs
respectively.  In  the  previous  experiments,  we  set  both
parameters to 0.5, assuming they are equally important.
In  this  section,  we discuss  the  sensitivity  of  these  two
parameters. Figure 4 illustrates  the  results  of  node
classification  on  the  ACM  dataset  with  different
coarsening  steps.  We  attempt  to  enumerate  potential
values  for  these  two  parameters,  having  combinations
of .

L
L

As observed from Fig. 4, the F1 score under different
weight  combinations  decreases  as  the  number  of
coarsening iterations ( ) increases. The decline is most
significant  when  coarsening  occurs  three  times  ( =3).
This  is  consistent  with  previous  experimental  results,

 

Table 6    Ablation analysis on ACM dataset.
Metric Micro-F1 (%) Macro-F1 (%) Time (s)
Train 20 40 60 80 20 40 60 80 /

Restagecom L ( =1) 84.32 83.99 85.75 85.44 84.17 83.68 85.24 85.12 67

RestageGCN L ( =1) 83.64 83.58 83.27 83.70 83.24 83.32 83.00 83.44 75
LRestage ( =1) 84.79 84.99 85.82 86.69 84.24 84.86 85.54 86.48 74

Restagecom L ( =2) 81.25 82.91 81.71 82.33 80.42 82.14 80.71 81.74 28

RestageGCN L ( =2) 82.24 82.62 81.84 82.33 81.45 82.12 81.22 81.93 52
LRestage ( =2) 82.96 83.79 83.40 84.08 82.78 83.42 82.76 83.38 46

Restagecom L ( =3) 75.68 77.28 77.05 76.86 72.76 75.67 75.18 75.13 10

RestageGCN L ( =3) 80.56 80.88 80.97 81.09 79.09 79.52 79.68 79.97 61
LRestage ( =3) 81.19 81.22 80.10 81.34 79.91 80.44 79.93 80.80 37

 

L=2 L=3L=1

 
ωIR ωAR

ωIR ωAR

Fig. 4    Node classification results  corresponding to  different  weight  parameters ,  under  different  coarsening steps.
The evaluation metrics are as follows, in order: Micro-F1 and Macro-F1 values using 20% of samples as training, and Micro-
F1 and Macro-F1 values using 80% of samples as training. The combinations of the values of parameters  and  range
between {0.1, 0.3, 0.5, 0.7, 0.9}, and the corresponding Micro-F1 and Macro-F1 values are listed in the violin plot.
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ωIR ωAR

ωIR

0.06

where an increase in layers leads to a reduction in the
graph’s  scale,  which  accelerates  the  model  speed  but
compromising accuracy due to information loss during
the coarsening process. Simultaneously, as  increases,
the length (upper and lower bounds) of  the violin plot
gradually  extends,  indicating  an  increased  model
susceptibility  to  these  two  parameters  and .
This  might  be  attributable  to  the  gradual  stabilization
of  the  graph’s  community  structure,  causing  the
similarity  of  nodes  under  IRs  to  converge  towards  a
certain  value,  thereby  amplifying  the  impact  of  the
weight .  Upon  holistic  analysis,  the  fluctuation
range  of  the  F1 score  with  the  changes  in  these  two
parameters  remains  within  approximately ,  which
we  deem  acceptable.  This  variation  range  suggests  a
certain degree of robustness in the model.

6　Conclusion

In  this  paper,  we  propose  a  relation  structure-aware
hierarchical  heterogeneous  graph  embedding
framework,  Restage,  which  allows  existing
representation  learning  methods  to  obtain  the  node
embeddings  of  the  original  graph  by  a  smaller-scale
graph.  Restage  first  designs  a  relation  structure-aware
coarsening method,  calculating  the  similarity  of  nodes
under different relation structures, and merging similar
nodes.  Then,  in  the  top-level  graph,  any  unsupervised
graph  representation  method  is  allowed  to  use  for
embedding.  Finally,  a  relation  structure-aware
refinement  method  is  designed  to  transfer  the  node
embeddings  from  the  top-level  graph  to  the  original
graph.  During  the  refinement  process,  within  each
layer,  the  transferred  node  embeddings  are  reinforced
utilizing  the  topology  of  the  current  layer  graph.
Experiments  on  three  public  datasets  demonstrate  that
Restage  enhance  scalability  for  existing  graph
representation  learning  methods  on  heterogeneous
graphs.
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