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Abstract: As  one  of  the  most  crucial  topics  in  the  recommendation  system  field,  point-of-interest  (POI)

recommendation aims to  recommending potential  interesting POIs to  users.  Recently,  graph neural  networks

(GNNs)  have  been  successfully  used  to  model  interaction  and  spatio-temporal  information  in  POI

recommendations, but the data sparsity of POI recommendations affects the training of GNNs. Although some

existing  GNN-based  POI  recommendation  approaches  try  to  use  social  relationships  or  user  attributes  to

alleviate the data sparsity problem, such auxiliary information is not always available for privacy reasons. Self-

supervised learning gives a new idea to alleviate the data sparsity problem, but most existing self-supervised

recommendation  methods  cannot  be  directly  used  in  the  spatio-temporal  graph  of  POI  recommendations.  In

this paper, we propose a novel heterogeneous spatio-temporal graph contrastive learning method, HestGCL, to

compensate  for  existing  GNN-based  methods’ shortcomings.  To  model  spatio-temporal  information,  we

generate  spatio-temporally  specific  views  and  design  view-specific  heterogeneous  graph  neural  networks  to

model  spatial  and  temporal  information,  respectively.  To  alleviate  data  sparsity,  we  propose  a  cross-view

contrastive strategy to  capture differences and correlations among views,  providing more supervision signals

and  boosting  the  overall  performance  collaboratively.  Extensive  experiments  on  three  benchmark  datasets

demonstrate the effectiveness of HestGCL, which significantly outperforms existing methods.
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1　Introduction

In  recent  years,  with  the  rise  of  location-based  social
networks  (LBSNs),  many  users  record  and  share  their

check-in histories  on websites  such as  Foursquare and
Gowalla.  Based  on  users’ check-in  data,  service
providers  can  suggest  locations  for  users  that  may
interest  them,  i.e.,  point-of-interest  (POI)
recommendation.  Point-of-interest  recommendations
can be divided into two categories[1]: One is focused on
the sequential information of user behavior modelling,
called  next-POI  recommendation  (or  successive  POI
recommendation)[2].  The  other  focuses  on  the  spatial
and  temporal  patterns  of  user-POI  interactions  and  is
called  general  POI  recommendation[3].  In  this  paper,
we  study  general  POI  recommendation  task  and  refer
to it as POI recommendation.

Different  from other  recommendation  tasks,  the  key
characteristic of general POI recommendation is to take
not only collaborative signals but  also the spatial  (i.e.,
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geographical)  and  temporal  influence  into
consideration.  Take Fig.  1 as  an  example,  visited

 and  in  different  spatio-temporal  contexts  (i.e.,
),  and  was  visited  by U1,

U2,  and U3  in  different  time  points.  Therefore,  many
existing  works  tried  to  capture  geographical  and
temporal  influence  on  POI  recommendation.  Earlier
approaches[4, 5] design  time-enhanced  or  geographical-
aware  matrix  factorization  (MF),  which  can  be
regarded as variants of the classical MF method. With
the rise of graph embedding (GE) methods, many GE-
based  POI  recommendation[6–8] have  been  proposed,
which regard user and POI as nodes in a bipartite graph
and  adapt  existing  graph  embeddings  methods  (e.g.,
LINE[9],  node2vec[10],  TransE[11])  to  learn  their
embeddings  for  recommendation.  Recently,  with  the
widespread use of graph neural networks (GNN), some
researchers  applied  GNNs[12, 13] or  spatio-temporal
graph  neural  networks  (STGNNs)[14] for  POI
recommendation,  and  have  achieved  better  results  on
recommendation performance.

Although  current  GNN-based  methods  show  their
superior performance, we argue that they are flawed in
two aspects:

● Coarse granularity for modelling heterogeneity
in POI recommendation data.　Existing approaches
tend  to  construct  only  a  bipartite  graph  of  users  and
POIs  to  capture  their  node  heterogeneity  and  simple
interaction  between  them.  Nevertheless,  due  to  the
existence of time and space factors, there are more kind
of  heterogeneities  and  more  complex  relationships  in
POI  recommendation,  which  is  often  overlooked  by
existing GNN-based methods[12]. To deal with the wide
variety  of  heterogeneity,  some  work[14] constitutes  a
complex  multi-layer  graph  to  cover  various

heterogeneities, but the newest work[13] argues that this
may reduce  the  recommendation performance because
it  mixes  too  much  information  while  message  passing
and  introduces  additional  noise.  Therefore,  how  to
reduce  the  impact  of  noise  on  GNN  training  while
using  various  heterogeneous  information  is  still  a  key
topic that needs to be explored.

● Insufficient  consideration  of  interaction
sparsity  issues.　Recommender  systems  often  suffer
from  data  sparsity,  making  GNN-based  models
challenging  to  learn  high-quality  node  representations
or  susceptible  to  interaction  noise.  In  other
recommendation  scenarios,  some  recent  works[15, 16]

have  focused  on  reducing  the  impact  of  data  sparsity
problems  on  GNN  models.  However,  for  POI
recommendations,  this  issue  still  receives  little
attention.

To address these two limitations, we propose a novel
POI  recommendation  method,  named  heterogeneous
spatio-temporal graph contrastive learning (HestGCL).
To  model  the  heterogeneity  in  POI  recommendation
scenarios  at  a  finer  granularity,  we  build  a
heterogeneous  spatio-temporal  graph  including  three
kinds of nodes (i.e., User, POI, and Location) and three
kinds of relations, which helps uncover the influence of
heterogeneous  information  on  recommendations.  To
address  the  challenges  posed  by  data  sparsity  and
spatio-temporal  noises  to  GNN  models,  inspired  by
self-supervised  learning[17],  we  propose  a  cross-view
contrastive  learning  technique  for  spatio-temporal
heterogeneous  graphs.  Specifically,  we  first  split  the
complete heterogeneous graph into a spatial view and a
temporal  view.  Then,  we  design  spatial-aware  and
temporal-aware  graph  neural  networks  for  spatial  and
temporal views, respectively. Finally, we use the node
representations obtained from each view for contrastive
learning.

Experimental  results  on  three  public  datasets
demonstrate  that  our  HestGCL  model  achieves
consistent  and  significant  improvement  over  state-of-
the-art  baseline  methods  on  the  POI  recommendation
task.  The  relative  improvements  of  Recall@50 are
8.83%,  14.61%,  and  6.86% on  Foursquare,  Gowalla,
and Meituan, respectively. Ablation studies and hyper-
parameter  experiments  further  demonstrate  the
effectiveness and robustness of our model.

The  contributions  of  this  paper  are  summarized  as
follows:

(1) Different  from  traditional  GNN-based  POI

 

 
Fig. 1    Toy  example  of  POI  recommendation  data,
including four types of information (i.e., user, POI, location,
and  time).  Note  that  the  modelling  granularity  of  location
and  time  can  be  specified,  for  example,  by  encoding  the
latitude  and longitude  of  the  area  according  to  the  geohash
algorithm, or encoding the time by hour.
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recommendation models which are usually modelled as
a  user-POI  bipartite  graph  or  multi-layer  graph,  we
model  the  POI  recommendation  task  as  a  dual-view
heterogeneous spatio-temporal graph, which allows for
better  exploitation  of  data  heterogeneity  and  mitigate
data noise.

(2) We  propose  a  novel  cross-view  heterogeneous
spatio-temporal  graph  contrastive  learning  model  (i.e.,
HestGCL),  which  combines  spatio-temporal
heterogeneous  graph  neural  networks  with  contrastive
learning  to  provide  self-supervision  signals  and
mitigate  data  sparsity  problems.  To  the  best  of  our
knowledge,  this  is  the  first  attempt  to  utilize
heterogeneous  spatio-temporal  graph  contrastive
learning on POI recommendation.

(3) We  conduct  extensive  experiments  on  three
benchmark  POI  recommendation  datasets,  and  the
performances  outperform  existing  state-of-the-art
baselines,  demonstrating  the  proposed  model’s
effectiveness.

2　Related Work

In  this  section,  we  review  some  related  works  of  this
paper, including POI recommendation and GNN-based
recommendation.

2.1　Point-of-interest recommendation

POI  recommendation  can  be  divided  into  two
categories: Next-POI recommendation and general POI
recommendation.  The  former  focuses  on  sequence
information  modeling,  while  the  latter  pays  more
attention to spatial-temporal information modeling. As
for  general  POI  recommendation,  earlier  approaches
are  improved  based  on  matrix  decomposition
algorithms.  For  example,  LRT[4] designs  time-
enhanced  matrix  factorization  by  modeling  users’
preferences  at  different  times,  and  IRenMF[5] designs
geographical-aware  matrix  factorization  by  modeling
location-level  and  region-level  influence.  Recently,
thanks to the rise of graph embedding (GE) technology,
more  and  more  GE-based  POI  recommendation
algorithms  are  proposed.  For  example,  GE[6] builds
four  bipartite  graphs  (i.e.,  POI-POI  graph,  POI-region
graph,  POI-Time  graph,  and  POI-word  graph),  and
uses  a  variant  of  LINE[9] to  get  the  embedding  of  the
POI  node  in  each  graph,  and  then  makes  a  linear
combination  of  them  to  get  the  final  embedding.
LBSN2Vec[7] builds a hypergraph including four kinds
of nodes (i.e.,  POI, user,  tag, time), and uses a variant

of  node2vec[10] to  get  users’ and  POIs’ embeddings.
Spatiotemporal  context-aware  and  translation-based
recommender  framework  (STA)[8] treats  location-time
pair  as  a  translation  from  user  to  POI,  and  uses
TransE[11] to  learn  embeddings.  More  recently,  graph
neural  networks,  especially  spatio-temporal  graph
neural  networks,  have  achieved  significant
performance  in  various  graph-related  tasks,  and  have
also been used for POI recommendation. For example,
graph  neural  network-based  POI  recommendation
model  (GPR)[12] builds  user-POI  graph  and  POI-POI
graph, and uses graph convolutional network (GCN)[18]

to  learn  embeddings.  Spatial-temporal  aware  graph
convolutional  neural  network  (STGCN)[14] builds  a
multi-layer  graph  including  three  kinds  of  nodes  (i.e.,
POI,  user,  region),  and  uses  a  method  similar  to
relational  graph convolutional  networks (RGCN)[19] to
consider  the  various  information  in  the  graph  without
difference.  After  GNN’s  aggregation  process,
MPGRec[13] designs  additional  memory  modules  to
model  the  space  consistency  in  POI  recommendation.
However, existing works mostly model basic user-item
interaction  as  bipartite  graphs,  not  considering  data
heterogeneity  and  the  potential  effect  of  spatio-
temporal information. In this paper, we design a cross-
view  heterogeneous  spatio-temporal  graph  learning
model to address this challenge.

2.2　GNN-based recommendation

As  an  effective  tool  for  modeling  interactions,  graphs
are  widely  used  in  recommender  systems.  Especially
with  the  rise  of  graph  neural  networks,  GNN-based
recommendation  algorithms  have  achieved  the  best
results  in  many  recommendation  tasks.  For  example,
neural  graph  collaborative  filtering  (NGCF)[20] and
LightGCN[21] apply graph neural  network to explicitly
model  the  high-level  connection  between  user  and
item. DiffNet[22] models users’ interest preference from
their  social  relationships  and  historical  behaviors,  and
uses GraphSAGE[23] to simulate how users are affected
by  social  communication.  Data  sparse  and  interaction
noise  bring  great  challenges  to  the  training  of  graph
neural networks, and therefore self-supervised learning
(SSL)  is  used  for  GNN-based  recommendation[24].
Before  that,  SSL  shows  its  potential  to  solve  data
sparsity  problem  on  computer  vision  (CV)[25],  natural
language  processing  (NLP)[26],  and  graph-related
tasks[27].  To  combine  SSL  with  GNN-based
recommendation,  self-supervised  graph  learning
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(SGL)[16] uses  dropout  and  random  walk  strategy  to
generate  different  views  of  the  initial  graph,  and
maximizes the consistency between the different views
of  the  same  node  and  the  view  of  other  nodes.
Neighborhood-enriched  contrastive  learning  (NCL)[17]

introduces  the  neighbors  of  users  (or  items)  from  the
structure  and  semantic  space,  respectively,  and  uses
them  as  positive  (or  negative)  contrastive  pairs.
Compared  to  traditional  recommendation  tasks,  POI
recommendation  has  complex  and  heterogeneous
spatial-temporal  information,  so  it  brings  more  noise.
However,  existing  self-supervised  GNN-based
recommendation methods do not take into account the
spatio-temporal  characteristics  of  the  data,  and  there
are  no  existing  works  to  apply  the  SSL  method  to
general  POI  recommendation  task.  In  this  paper,  we
design  the  first  SSL-enhanced  spatio-temporal  graph
learning  model  for  general  POI  recommendation,  to
mitigate  the  impact  of  data  sparsity  and  interaction
noise.

3　Preliminary

In  this  section,  we  formally  define  some  significant
concepts related to our work.

U = {u1,u2, . . . ,uM}
M P = {p1, p2, . . . , pN} N

P

POI recommendation. 　Let  be
a  set  of  users  and  be  a  set  of 
POIs.  The  POI  recommendation  task  aims  to
recommend a list of ranked POIs from  for each given

u U Pu

LP

TUP

user  in ,  based  on  their  historical  POI  visits ,
POIs’ locations ,  and  their  interaction  timestamps

.

G = (V,E,L,T )
V E L

T L T V E

ϕ : V → A φ : E→ R
|A|+ |R| > 2

Heterogeneous  spatio-temporal  graph  (HeSTG).
HeSTG refers to  consisting of an object
set , a link set , a location set , and a timestamp set

,  where  and  are  associated  with  either  or ,
and  there  exists  a  node  type  mapping  function

 and a link type mapping function ,
satisfying .

4　Proposed Model

In  this  section,  we  introduce  our  proposed  model,
heterogeneous  spatio-temporal  graph  contrastive
learning  (HestGCL),  a  heterogeneous  spatio-temporal
graph  contrastive  learning  method  for  POI
recommendation.  The  overall  architecture  is  depicted
in Fig. 2. More specifically, we first generate the graph
topology  and  features  from  raw  data,  and  extract  the
full  graph  into  dual-view  subgraphs.  Secondly,  we
propose  dual-view  heterogeneous  spatio-temporal
graph  neural  networks  to  generate  spatial-based  and
temporal-based  embeddings,  and  then  fuse  them  to
obtain spatio-temporal embeddings. Finally, we design
contrastive learning modules to provide self-supervised
signals for the recommendation.

4.1　Graph construction and data preprocessing

As  for  the  POI  recommendation  task,  the
 

 
Fig. 2    Overall architecture of HestGCL.
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G = (VP, VU ,

VL, ET
UP, ELP, ELL) VP

VU VL

ET
UP

T ELP

ELL VL

corresponding  HeSTG can  be  defined  as 
 consisting of  a  POI node set ,  a

user  node  set ,  a  location  node  set ,  a  user-POI
interaction  edge  set  with  check-in  timestamp  set

, a location-POI geographical mapping edge set ,
and a location-location geographical proximity edge set

. Note that location nodes  refer to the region of
POI  and  have  their  IDs  that  can  be  obtained  by  the
geohash encoding algorithm.

However, such a complex HeSTG mixes information
from  multiple  aspects,  and  using  GNN  directly  may
introduce  a  lot  of  noise[13].  Besides,  the  POI
recommendation  task  usually  has  just  ID  information
on  users  (or  POIs),  but  GNN  depends  on  nodes’
features  as  inputs.  Therefore,  in  this  section,  we
introduce  our  graph  extraction  and  data  preprocessing
strategies.
4.1.1　Dual-view  graph  extraction  and  view

masking

G
GS = (VP,VU ,VL,EUP,ELP,ELL)

GT = (VP, VU , ET
UP)

Inspired  by  multi-view  representation  learning  which
can  learn  higher  level  representation  in  view-specific
modules[28],  we  extract  the  full  HeSTG  into  two
view-specific subgraphs 
and ,  representing  spatial  view and
temporal view separately:

GS

VP, VU , VL EUP, ELP, ELL

EUP

●  Spatial  view :  Includes  three  kinds  of  nodes
 and  three  kinds  of  edges ,

where  doesn’t consider the influence of time.
GT

VP,VU ET
UP

●  Temporal  view :  Includes  two  kinds  of  nodes
 and one kind of  edge  that  has  timestamps

as  edge  features,  not  considering  the  influence  of
geography.
4.1.2　Node feature initialization

VU

XU = [xu1 , . . . , xuN ] N
xu ∈ Rd d

XP XL

X(0)

Following  Refs.  [12, 21],  we  only  use  ID  features  as
input  without  considering  other  information  (e.g.,
category,  social  connection),  and  build  an  embedding
lookup  table  based  on  the  parameterized  matrix.  Take
user  nodes  as  an  example,  we  initialize  their
features  as ,  where  represents  the
number of users, and  is an embedding vector (
denotes the embedding size). Similarly, we obtain POI
and location nodes’ feature matrices  and . All of
these  features  are  also  represented  as  inputs  of
GNN model.

4.2　Dual-view  heterogeneous  spatio-temporal
graph neural network

In this section, we introduce the backbone GNN of our
method,  that  is,  a  dual-view  heterogeneous  spatio-

temporal  graph  neural  network,  named  HestGNN.  In
detail,  we design view-specific GNNs (i.e.,  HestGNN-
S and HestGNN-T) for spatial and temporal views.
4.2.1　Spatial-aware graph neural network

(k+1)

For  the  spatial  view,  we  design  a  spatial-aware  graph
neural  network,  named  HestGNN-S.  The  spatial  view
contains  multiple  types  of  nodes  (i.e.,  user,  POI,
location)  and  their  relations,  and  each  relation  has  a
different  impact  on  the  nodes.  Therefore,  we  design
message passing functions for each type of nodes. We
firstly  define  node  updating  functions  of  the 
layer for them:
 

x(k+1)
u = fagg

(
x(k)

u , {x(k)
p |p ∈ Nu}

)
(1)

 

x(k+1)
p = fagg

(
x(k)

p , {x(k)
u |u ∈ Np}, {x(k)

l |l ∈ Np}
)

(2)
 

x(k+1)
l = fagg

(
x(k)

l , {x
(k)
p |p ∈ Nl}, {x(k)

l |l ∈ Nl}
)

(3)

xu xp xl

u p l fagg(·)
Nu Np Nl

where , , and  are the aggregated embeddings of
User ,  POI ,  and  Location ,  and  is  the
aggregation function of them. , , and  are their
corresponding neighbors. Note that for user nodes, they
are  only  connected  to  the  POI  nodes  which  are
interacted in check-in history. For POI nodes, they are
not  only  connected  to  user  nodes  but  also  location
nodes  which  they  are  located  in.  For  location  nodes,
they are connected to not only POI nodes but also their
geographical-neighboring location nodes.

fagg(·)Next  we  define  the  aggregation  functions  for
each type of nodes as follows:
 

fagg
(
x(k)

u , {x(k)
p∈Nu
}
)
=
∑
p∈Nu

1
|Nu|

x(k)
p (4)

 

fagg

(
x(k)

p , {x(k)
u,l∈Np

}
)
= bp

∑
u∈Np

1∣∣∣Np
∣∣∣ x(k)

u +

(1−bp)
∑
l∈Np

1∣∣∣Np
∣∣∣ x(k)

l

(5)

 

fagg
(
x(k)

l , {x
(k)
p,l∈Nl
}
)
= bl

∑
p∈Nl

1
|Nl|

x(k)
p +

(1−bl)
∑
l∈Nl

1
|Nl|

x(k)
l

(6)

bp blwhere  and  are  node-specific  learnable  attention
coefficients.  Note  that  for  user  nodes,  we  use  the
similar  aggregation  strategy  to  LightGCN[21] by
averaging their  POI neighbors  because they have only
one type of neighbors. As for POI and Location nodes,
we  design  a  dual-level  aggregation  strategy,  that  is,
node-level  and  semantic-level  aggregation.  As  for
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node-level  aggregation,  we aggregate neighbors of  the
same relation by averaging them. As for semantic-level
aggregation,  we  use  an  attention  coefficient  to  to
aggregate  information  of  different  relations,  and
therefore  distinguish  the  impact  of  different  relations
and obtain the embeddings on each layer.
4.2.2　Temporal-aware graph neural network
For  the  temporal  view,  we  design  a  temporal-aware
graph  neural  network,  named  HestGNN-T.  The
temporal  view  contains  check-in  timestamps  on  user-
POI  edges,  and  these  timestamps  help  model  users’
interest  preferences.  Therefore,  we  consider  time
information  by  time-encoding  on  edges  and  fusing
edge embeddings during aggregation.

t
et

To be more specific, we first use an hour-level time-
encoding  strategy  to  transform  a  timestamp  to  an
embedding .  The  encoding  strategy  is  to  build  an
embedding lookup table as follows:
 

eT = [σ(et1 ), . . . ,σ(etN )] (7)

N et1 ∈ Rd

d
σ(·)

where  is the number of hours (i.e., 24),  is an
embedding vector (  denotes the embedding size), and

 is the Sigmoid function.

(k+1)

Then,  we  use  a  gating  strategy  to  aggregate  time
embeddings  and  neighbor  embeddings  for  each  node
on the  layer:
 

x(k+1)
u = cu(x̂(k+1)

u ⊙ x̃u)+ (1− cu)x̂(k+1)
u (8)

 

x(k+1)
p = cp(x̂(k+1)

p ⊙ x̃p)+ (1− cp)x̂(k+1)
p (9)

⊙ cu cp

x̂(k+1)
u x̂(k+1)

p (k+1)
u p

x̃u x̃p

u p
x̂(k+1)

u x̂(k+1)
p x̃u x̃p

where  is  the  element-wise  product,  and  are
learnable  node-specific  attention  coefficients  for
aggregating  time  and  neighbor  information,
respectively  and  are  the -th  layer
nighbor-based embeddings of user  and POI , while

 and  are  layer-independent  time-based
embeddings  for  user  and  POI .  The  calculation
process  of , , ,  and  are  defined  as
follows.

u x̂(k+1)
u

p ∈ Nu x(k)
p

x̃u

(u, p)

Take  user  as  an  example,  is  calculated  by
averaging the neighbors  embeddings , while
the  calculation  process  of  is  to  average  the
timestamp  embeddings  on  node  pairs ,  which  is
layer-independent and calculated only once:
 

x̂(k+1)
u =

∑
p∈Nu

1
|Nu|

x(k)
p (10)

 

x̃u =
∑
p∈Nu

1
|Nu|

etup (11)

tup u p
etup tup

x̂(k+1)
p x̃p

where  is  the  timestamp of  between  node  and ,
and  is  the  embedding  of  timestamp .  Since  the
roles  of  user  and  POI  are  reciprocal  in  the  temporal
view,  we can obtain  POI embeddings  and  in
the same way.

4.3　Prediction and optimization

In  this  section,  we  introduce  our  prediction  and
optimization  strategy.  Based  on  the  embeddings
obtained  from  HestGNN-S  and  HestGNN-T,  we
generate a recommendation list based on a time-aware
prediction module, and use an extra contrastive module
to  enhance  self-supervised  signals.  We  name  the
complete model as HestGCL.
4.3.1　Time-aware prediction module

k ∈ K
xS

u xS
p xT

u xT
p

We  average  the  embeddings  of  each  layer  and
obtain  the  final  embeddings  ( , )  and ( , )  for
spatial and temporal view. For example,
 

xS
u =

∑
k∈[0,K]

1
|K +1| x

(k)
p (12)

xS

xT xF
Then, we use the attention mechanism to fuse  and
 to obtain the final embeddings .

 

xF = afinalxS + (1−afinal)xT (13)
afinalwhere  is a learnable attention coefficient.

xF
u xF

p

Because the user’s decision is closely related to time,
we  consider  the  time  encoding  obtained  from  Eq.  (7)
when  computing  the  similarity  of  users’ embeddings

 and  POIs’ embeddings ,  and  then  sort  the
similarity scores of POIs to generate a recommendation
list.
 

yup = (xF
u ⊙ etup )⊤ · (xF

p ⊙ etup ) (14)

· ⊙
etup

tup u p

where  is  the  inner  product,  is  the  element-wise
product,  and  is  the  embedding  of  interaction
timestamp  between user  and POI .

As  for  optimization,  we  use  Bayesian  personalized
ranking  (BPR)  loss  to  encourage  the  prediction  of
observed pairs to be higher than unobserved pairs:
 

LBPR = −
|U |∑
u=1

∑
i∈Nu

∑
j<Nu

lnσ(ŷui− ŷu j) (15)

4.3.2　Cross-view graph contrastive module
i ∈ {VP,VU}

xS(i)

xT (i)

xS(i)

xT (i)

For  each  node ,  we  have  generated  its
spatial-view  embeddings  and  temporal-view
embeddings . To better use the information of two
views,  we  propose  a  cross-view  contrastive  strategy,
which regards the corresponding embeddings  and

 as  positive  pairs,  while  others  as  negative  pairs.
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Formally, we also adopt InfoNCE[29] loss:
 

LCL =
∑
i∈V

∑
j,i

−log( f (xS (i), xT (i))− log(1− f (x(i), x( j)))

(16)

f (·)
x(i)

xS (i) xT (i)

where  measures the cosine similarity between two
embeddings,  and  can  be  spatial-view  embeddings

 or temporal-view embeddings .
4.3.3　Overall
We  unify  the  prediction  module  and  cross-view
contrastive  learning  module  into  a  primary&auxiliary
learning  framework,  where  the  prediction  module  is  a
primary task and the contrastive learning module is an
auxiliary  task.  Formally,  the  overall  optimization
function is
 

L = LBPR+β∗LCL +γ ∗ ∥Θ∥22 (17)

β γ

Θ

where  and  are trade-off parameters to balance three
parts, and  is the set of embeddings obtained from the
model.

5　Experiment

In  this  section,  we  conduct  experiments  on  three  real-
world  datasets,  which  aims  to  answer  the  following
research questions (RQs):

●  RQ1:  How  does  the  proposed  HestGCL  method
perform  compared  to  the  start-of-the-art  baselines  in
POI recommendation?

●  RQ2:  How  does  each  component  of  HestGCL
contribute to the overall performance?

●  RQ3:  How  do  different  hyper-parameters  affect
the performance of HestGCL?

5.1　Experimental setup

5.1.1　Datasets
To  evaluate  the  performance  of  the  proposed  method,

we  employ  the  following  three  real-world  LBSN
datasets.  Foursquare[30] and  Gowalla[30] are  two
benchmark  POI  recommendation  datasets,  where  we
use the geohash algorithm to generate location ID and
location  neighbors.  Meituan†  is  a  recent  take-out
delivery  dataset,  consisting  of  users’ order  histories
obtained from Meituan APP, including orders’ location
ID  and  POIs’ location  ID.  In  our  setting,  we  ignore
orders’ region  ID  to  keep  information  consistent  with
other  datasets.  The  statistical  information  of  these
datasets is summarized in Table 1.

For all datasets, we split them into training/validation/
test  sets  in  chronological  order,  where  the  oldest  70%
check-ins are used as the training set, more recent 20%
check-ins  are  used  as  the  validation  set,  and  the  most
recent 10% check-ins are used as the test set.
5.1.2　Baselines
To  validate  the  effectiveness  of  our  proposed  model,
we  compare  it  with  five  kinds  of  baselines,  as
illustrated  in Table 2:  Non-GNN  general
recommendation  models  (i.e.,  BPRMF[31] and
NeuMF[32]);  Non-GNN  POI  recommendation  models
(i.e.,  LGLMF[33] and  STACP[34]);  GNN-based  general
recommendation  models  (i.e.,  NGCF[20] and
LightGCN[21]);  GNN-based  state-of-the-art  POI
recommendation  model  (i.e.,  GPR[12]);  GNN+CL-
based  recommendation  models  (i.e.,  SGL[16] and
NCL[17]).  For  all  these  baselines,  we  set  the  optimal
hyper-parameter settings reported in their papers.

Note  that  in  our  paper,  we  focus  on  the  spatial-
temporal  information  under  data  sparsity  scenario  in
POI recommendation, and thus we do not choose those
sequence  models[35–37] for  next-POI  recommendation
task as baselines.
5.1.3　Implementation detail
We  implement  our  framework  based  on  Recbole[38],

 

Table 1    Dataset statistics.
Dataset #check-ins #POI #User Sparsity Time span

Foursquare 1 196 248 28 593 24 941 99.900% Apr.2012–Sep.2013
Gowalla 1 278 274 32 510 18 737 99.865% Feb.2009–Oct.2010
Meituan 602 331 3182 38 904 99.51% Mar.1st 2021–Mar.28th 2021

 

Table 2    Category of baselines and HestGCL.
Architecture General item recommendation General POI recommendation
Non-GNN BPRMF[31], NeuMF[32] LGLMF[33], STACP[34]

GNN NGCF[20], LightGCN[21] GPR[12], STGCN[14], MPGRec[13]

GNN+SSL SGL[16], NCL[17] HestGCL (Ours) 
 

†https://www.biendata.xyz/competition/smp2021_1/
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L 0.05

β γ

0.000 05

K ∈ {1,2,3,4,5}
dGNN ∈ {64,128,256}

and  employ  the  Adam[39] optimizer  to  minimize  the
overall  loss ,  where  the  learning  rate  is  set  as .
Same  as  baselines,  we  employ  an  early  stopping
strategy with a patience of 10, i.e., we will stop training
if the Recall@5 metric does not increase for 10 epochs.
For  the  optimization  function,  we set  both  and  as

.  For  hyperparameter  tuning,  we  conduct  a
heuristic  search  by  exploring  the  number  of  layer

 and  embedding  size  in  HestGNN
.

5.1.4　Evaluation metrics

N

To  validate  the  performance  of  the  recommendation
models,  we  use  the  following  two  widely-used
evaluation  metrics:  Recall@N and  MAP@N,  where N
is  the  number  of  POIs  in  the  ranked  list.  For  a  more
comprehensive  comparison  of  results,  we  report  the
results for  = 5, 10, 20, and 50.

5.2　Performance comparision (RQ1)

We  present  the  results  of  top-N recommendation  on
three  datasets  in Table 3.  Based  on  the  experimental
results, we can observe that:

(1)  HestGCL  outperforms  all  baseline  methods
across  three  datasets  in  terms  of  all  metrics.  More
specifically, it achieves relative improvements than the
strongest  baselines  on  Recall@50 by  8.83%,  14.61%,
and  6.86% on  Foursquare,  Gowalla,  and  Meituan
datasets, respectively. This demonstrates the validity of
our model.

(2) For both Foursquare and Gowalla datasets, GNN-
based  methods  tend  to  work  better  than  NeuMF.  This
indicates  that  the  GNN-based  methods  can  propagate
higher-order  information  and  thus  learn  better  node
representations.  For  the  Meituan  dataset,  NeuMF  can
also  achieve  similar  performance  as  the  GNN-based
baselines. This may be since the Meituan dataset is the
least  sparse  and  has  a  much  fewer  number  of  POIs,
which  makes  it  less  necessary  to  aggregate  higher-
order information for GNNs.

(3)  Compared  with  traditional  GNN  models  (e.g.,
LightGCN,  NGCF),  general  self-supervised  GNN
models  (e.g.,  SGL,  NCL)  can  enhance  the  models  in
some  cases,  but  they  are  unstable.  For  example,  the
Recall  score  of  SGL  (Recall@5  =  0.3373)  is  worse
than  LightGCN  (Recall@5  =  0.3456)  on  Meituan
Dataset.  However,  our  model  can  achieve  better
results,  probably  because  it  is  designed  explicitly  for
spatio-temporal  data  and  therefore  provides  a  more
efficient self-supervised signal.

5.3　Ablation study (RQ2)

To investigate the effect of each module on the overall
effect of the model, we designed three model variants:
HestGNN-S,  HestGNN-T,  and  HestGNN,  where
HestGNN-S excludes temporal-view GNN module and
CL  module,  HestGNN-T  excludes  spatial-view  GNN
module  and  CL  module,  and  HestGNN  excludes  only
CL module.

From  the  results  of  the  ablation  study  in Fig.  3,  we
obtained the following findings:

(1)  The  complete  HestGCL  model  consistently
achieves  the  best  performance,  which shows that  each
component of HestGCL contributes to performance.

(2)  Compared  to  HestGNN-S  and  HestGNN-T,
HestGNN  does  not  improve  performance,  while
HestGCL  does.  This  indicates  that  the  contrastive
learning  module  mitigates  the  impact  of  data  sparsity
on  GNN  training,  and  therefore  enhances  the  model
performance collaboratively.

(3)  For  the  Foursquare  and  Gowalla  datasets,
HestGNN-T  outperforms  HestGNN-S;  while  for  the
Meituan  dataset,  HestGNN-S  outperforms  HestGNN-
T.  This  indicates  that  temporal  modelling  is  more
important  for  the  Foursquare  and  Gowalla  datasets,
while  spatial  modelling  is  more  important  for  the
Meituan dataset.

5.4　Influence of hyper-parameters (RQ3)

L dGNN

Our  model  contains  two  key  hyperparameters  (i.e.,
layer  number  and  embedding  size ).  In  this
section,  we  will  explore  the  effects  of  these  two
hyperparameters on the model.
5.4.1　Effect of layer numbers of HestGNN

LTo analyze the influence of layer number , we vary it
from 1 to 5 and illustrate the performance comparisons
on  three  datasets.  As  shown  in Fig.  4a,  we  make  the
following observations:

(1)  The  performance  on  Foursquare  and  Gowalla  is
not  sensitive  to  the  number  of  layers.  In  the  range  of
1 to  5,  the  model  performance  is  slightly  enhanced  as
the  number  of  layers  increases.  This  indicates  that
aggregating  higher-order  information  is  helpful  for
both datasets.

L = 2
(2) The Meituan dataset is relatively sensitive to the

number  of  layers.  The  model  works  best  when .
This  indicates  that  neighbors  within  2-hops  are  most
helpful  for  the  Meituan  dataset,  while  higher-order
information  introduces  noise.  This  is  consistent  with
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the  observation  of  the  performance  of  NeuMF  in  the
main experiment.

5.4.2　Effect of embedding size of HestGNN
dGNNTo  explore  the  impact  of  embedding  size ,  we

 

Table 3    Overall performance and the corresponding ranking (in parentheses) of HestGCL and baselines on Foursquare (FS.),
Gowalla (GW.), and Meituan (MT.) datasets.
Dataset Model Recall@5 Recall@10 Recall@20 Recall@50 MAP@5 MAP@10 MAP@20 MAP@50 Avg. Rank

FS.

BPRMF 0.0359 (8) 0.0604 (8) 0.0976 (8) 0.1706 (7) 0.0220 (8) 0.0226 (8) 0.0256 (8) 0.0294 (8) 7.875
NeuMF 0.0368 (7) 0.0610 (7) 0.0981 (6) 0.1727 (6) 0.0235 (7) 0.0241 (7) 0.0271 (7) 0.0310 (7) 6.750
LGLMF 0.0284 (11) 0.0459 (11) 0.0729 (11) 0.1284 (9) 0.0192 (9) 0.0190 (11) 0.0212 (11) 0.0242 (10) 10.375
STACP 0.0274 (12) 0.0450 (12) 0.0700 (12) 0.1275 (10) 0.0187 (10) 0.0186 (12) 0.0206 (12) 0.0235 (11) 11.375
NGCF 0.0390 (6) 0.0627 (6) 0.0980 (7) 0.1688 (8) 0.0249 (6) 0.0250 (6) 0.0278 (6) 0.0314 (6) 6.375

LightGCN 0.0469 (3) 0.0721 (4) 0.1076 (5) 0.1796 (5) 0.0317 (3) 0.0312 (3) 0.0341 (3) 0.0378 (3) 3.625
GPR 0.0316 (9) 0.0502 (9) 0.0763 (9) 0.1272 (11) 0.0183 (11) 0.0205 (9) 0.0224 (9) 0.0243 (9) 9.500

STGCN 0.0309 (10) 0.0487 (10) 0.0758 (10) 0.1225 (12) 0.0173 (12) 0.0195 (10) 0.0215 (10) 0.0231 (12) 10.750
MPGRec 0.0592 (1) 0.0848 (1) 0.1200 (2) 0.1915 (2) 0.0366 (1) 0.0398 (1) 0.0425 (1) 0.0452 (1) 1.250

SGL 0.0452 (5) 0.0707 (5) 0.1080 (4) 0.1852 (3) 0.0300 (5) 0.0299 (5) 0.0330 (5) 0.0371 (5) 4.625
NCL 0.0463 (4) 0.0723 (3) 0.1083 (3) 0.1839 (4) 0.0313 (4) 0.0310 (4) 0.0338 (4) 0.0378 (3) 3.625

HestGCL 0.0571 (2) 0.0847 (2) 0.1254 (1) 0.2084 (1) 0.0334 (2) 0.0371 (2) 0.0399 (2) 0.0425 (2) 1.750

GW.

BPRMF 0.0303 (7) 0.0494 (8) 0.0806 (8) 0.1442 (8) 0.0229 (7) 0.0210 (8) 0.0229 (8) 0.0263 (8) 7.750
NeuMF 0.0302 (8) 0.0497 (7) 0.0808 (7) 0.1478 (6) 0.0227 (8) 0.0211 (7) 0.0231 (7) 0.0267 (7) 7.125
LGLMF 0.0241 (11) 0.0398 (11) 0.0646 (11) 0.1156 (11) 0.0209 (9) 0.0188 (11) 0.0201 (11) 0.0230 (11) 10.750
STACP 0.0176 (12) 0.0302 (12) 0.0509 (12) 0.0964 (12) 0.0142 (12) 0.0131 (12) 0.0143 (12) 0.0168 (12) 12.000
NGCF 0.0308 (6) 0.0500 (6) 0.0810 (6) 0.1458 (7) 0.0235 (6) 0.0216 (6) 0.0234 (6) 0.0268 (6) 6.125

LightGCN 0.0352 (3) 0.0564 (3) 0.0897 (5) 0.1593 (5) 0.0271 (3) 0.0247 (3) 0.0267 (3) 0.0305 (3) 3.500
GPR 0.0302 (8) 0.0483 (9) 0.0766 (9) 0.1310 (9) 0.0183 (11) 0.0196 (10) 0.0216 (9) 0.0238 (9) 9.250

STGCN 0.0294 (10) 0.0454 (10) 0.0691 (10) 0.1181 (10) 0.0187 (10) 0.0199 (9) 0.0215 (10) 0.0234 (10) 9.875
MPGRec 0.0471 (2) 0.0706 (2) 0.1050 (2) 0.1718 (2) 0.0308 (1) 0.0325 (1) 0.0349 (1) 0.0377 (1) 1.500

SGL 0.0338 (5) 0.0557 (5) 0.0911 (3) 0.1657 (3) 0.0259 (5) 0.0240 (5) 0.0262 (5) 0.0305 (3) 4.250
NCL 0.0344 (4) 0.0561 (4) 0.0902 (4) 0.1631 (4) 0.0267 (4) 0.0244 (4) 0.0264 (4) 0.0305 (3) 3.875

HestGCL 0.0496 (1) 0.0770 (1) 0.1171 (1) 0.1969 (1) 0.0283 (2) 0.0320 (2) 0.0348 (2) 0.0375 (2) 1.500

MT.

BPRMF 0.3185 (8) 0.3901 (8) 0.4468 (9) 0.5195 (5) 0.2163 (7) 0.2310 (7) 0.2381 (7) 0.2425 (7) 7.250
NeuMF 0.3540 (3) 0.4315 (3) 0.4631 (6) 0.5063 (9) 0.2339 (4) 0.2517 (4) 0.2562 (4) 0.2588 (4) 4.625
LGLMF 0.0005 (12) 0.0010 (12) 0.0030 (12) 0.0087 (12) 0.0002 (12) 0.0002 (12) 0.0004 (12) 0.0005 (12) 12.000
STACP 0.0054 (11) 0.0094 (11) 0.0203 (11) 0.0421 (11) 0.0022 (11) 0.0026 (11) 0.0034 (11) 0.0041 (11) 11.000
NGCF 0.3198 (7) 0.3952 (7) 0.4499 (8) 0.5177 (7) 0.2123 (8) 0.2280 (8) 0.2349 (8) 0.2392 (8) 7.625

LightGCN 0.3456 (5) 0.4221 (5) 0.4705 (2) 0.5315 (3) 0.2250 (5) 0.2417 (5) 0.2482 (5) 0.2520 (5) 4.375
GPR 0.2984 (9) 0.3758 (9) 0.4573 (7) 0.5669 (2) 0.2066 (9) 0.2185 (9) 0.2253 (9) 0.2297 (9) 7.875

STGCN 0.1932 (10) 0.2723 (10) 0.3570 (10) 0.4668 (10) 0.0962 (10) 0.1083 (10) 0.1155 (10) 0.1201 (10) 10.000
MPGRec 0.3930 (2) 0.4316 (2) 0.4655 (5) 0.5147 (8) 0.3170 (2) 0.3240 (2) 0.3272 (2) 0.3294 (2) 3.125

SGL 0.3373 (6) 0.4123 (6) 0.4674 (3) 0.5311 (4) 0.2432 (3) 0.2591 (3) 0.2664 (3) 0.2705 (3) 3.875
NCL 0.3466 (4) 0.4236 (4) 0.4667 (4) 0.5187 (6) 0.2222 (6) 0.2391 (6) 0.2451 (6) 0.2484 (6) 5.250

HestGCL 0.4514 (1) 0.4921 (1) 0.5358 (1) 0.6058 (1) 0.3741 (1) 0.3799 (1) 0.3831 (1) 0.3854 (1) 1.000

 

(a) Foursquare (b) Gowalla (c) Meituan 
Fig. 3    Performance (Recall@5 and MAP@5) of ablation study on the proposed HestGCL model.
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experiment  HestGCL  under  different  embedding  sizes
(i.e., 64,128, 256) and record experimental results.

As  illustrated  in Fig.  4b,  we  find  a  difference
between  the  Meituan  dataset  and  other  datasets.  The
Meituan  dataset  performs  better  with  a  larger
embedding  size,  while  other  datasets  are  not  much
affected  by  embedding  size.  This  may  be  because  the
sparsity  of  the  Meituan  dataset  is  relatively  low,  so  a
larger  embedding  dimension  is  needed  to  store  more
information.

6　Conclusion and Future Work

In this  paper,  we propose a novel model HestGCL for
POI  recommendation,  which  goes  beyond  the
limitations  of  existing  methods  and  explores  a  new
strategy based on contrastive learning.

We build a heterogeneous spatio-temporal graph and
design  a  cross-view  heterogeneous  spatio-temporal
graph  contrastive  learning  framework  to  capture
heterogeneity  information.  The  proposed
heterogeneous  spatio-temporal  graph  neural  network
can  aggregate  information  from  both  spatial  and
temporal  perspectives,  and  the  contrastive  learning
modules  can  extract  the  information  shared  by  views,
thus  alleviating  the  data  sparsity  problem.
Experimental results on three benchmark datasets show
the advantages of our HestGCL model over all baseline
models.

For  future  work,  we  will  investigate  other  graph
augmentation  techniques  or  design  more  complex
contrastive tasks for POI recommendation task. We can
also combine different locations and time definitions to
make multi-grain modelling of users’ behaviours.
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