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Abstract: The data  asset  is  emerging  as  a  crucial  component  in  both  industrial  and  commercial  applications.

Mining valuable knowledge from the data benefits decision-making and business. However, the usage of data

assets raises tension between sensitive information protection and value estimation. As an emerging machine

learning paradigm, Federated Learning (FL) allows multiple clients to jointly train a global model based on their

data  without  revealing  it.  This  approach  harnesses  the  power  of  multiple  data  assets  while  ensuring  their

privacy.  Despite  the  benefits,  it  relies  on  a  central  server  to  manage  the  training  process  and  lacks

quantification of the quality of data assets, which raises privacy and fairness concerns. In this work, we present

a novel  framework that  combines Federated Learning and Blockchain by Shapley value (FLBS) to  achieve a

good  trade-off  between  privacy  and  fairness.  Specifically,  we  introduce  blockchain  in  each  training  round  to

elect aggregation and evaluation nodes for training, enabling decentralization and contribution-aware incentive

distribution, with these nodes functionally separated and able to supervise each other. The experimental results

validate the effectiveness of FLBS in estimating contribution even in the presence of heterogeneity and noisy

data.

Key words:  Federated Learning (FL); blockchain; fairness

1　Introduction

Due  to  the  extensive  use  of  deep  learning  and  the
Internet of Things (IoT), inference and collection based
on  users’ data  assets  have  raised  the  concerns  of
privacy  protection.  Generally,  data  assets  hold
immense potential value[1−5], which plays a pivotal role
as  a  vital  business  resource  in  today’s  internet-driven
era.  The  data  assets  often  comprise  a  vast  amount  of

user information, including personal health data, online
shopping  records,  browsing  histories,  and  even  the
trade secrets  of  enterprise  users[6−11].  All  of  these data
constitute the invisible assets of each human. The legal
landscape  for  enhancing  privacy  and  security  is
steadily  maturing[12−14],  but  there  is  still  a  need  for
advanced  technical  methods  to  protect  the  security  of
data assets to facilitate their usage.

The  owners  of  data  assets  aim  to  quantify  and
establish  transparency  around  their  data.  This  enables
them  to  harness  the  value  of  their  assets  while
safeguarding  against  potential  malicious  exploitation.
Effectively  managing,  protecting,  and  leveraging  data
assets  is  essential  for  individuals,  institutions,  and
society.  But  we  have  to  face  two  unavoidable
questions:  How  to  protect  our  data  assets  from
breaches?  How  to  maximize  their  value?
Unfortunately, privacy protection and value realization
of  data  assets  are  contradictory  issues.  When  data
assets  are  protected,  it  becomes  challenging  to  fully
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exploit their value. Similarly, to fully realize the value
of  data  assets,  privacy must  be  infringed upon.  In  this
case,  new  technical  methods  are  needed  to  strike  a
balance  between  privacy  protection  and  value
realization.

Federated Learning[15] (FL), as an emerging machine
learning paradigm, provides a solution to this issue. FL
adopts  a  client-server  architecture.  Clients  train  local
models  on  their  own  data  and  upload  the  trained
models to the server. Upon receiving local models, the
server  aggregates  them  and  returns  the  aggregated
global  model  to  the  clients.  On  the  one  hand,  this
approach  to  some  extent  maintains  a  balance  between
privacy protection and value realization. Clients upload
local  models  instead  of  their  data,  thus  avoiding  the
exposure  of  raw  data.  On  the  other  hand,  the  central
server  can  use  these  local  models  to  train  a  more
powerful  global  model,  realizing  the  value  of  the
client’s  data  assets.  However,  FL  still  has  two
challenges.

● Privacy  protection:  During  training,  clients  rely
on  a  trusted  centralized  server  for  model  aggregation,
but  a  malicious  server  could  breach  privacy  by
analyzing model parameters, posing significant privacy
concerns[16−19].  The  presence  of  malicious  servers  and
the lack of server supervision also complicate assessing
individual node contributions, making it challenging to
evaluate  their  impact  on  the  global  model.
Additionally, as FL is typically initiated by the server,
individual clients often lack flexibility in task selection
and initiating independent FL tasks.

● Value  estimation:  Clients  often  possess  data
assets of varying quantity and quality but may receive
the same global model, raising concerns about fairness
in  both  contributions  and  rewards[20−22].  This  occurs
primarily  due  to  (1)  Noise  introduced  into  data,
resulting  from  data  storage  and  network  constraints,
and  inevitable  errors  in  data  labeling  due  to  human
limitations,  causing  unfairness;  (2)  The  presence  of
free-riders  who  seek  to  benefit  from the  global  model
without contributing valuable information by providing
dummy  data  and  labels.  These  challenges  can  reduce
client motivation for participating in FL tasks.

This  paper  presents  FL  and  Blockchain  by  Shapley
value  (FLBS),  a  decentralized  FL  contribution
estimation  approach  that  enables  model  aggregation
and  client  contribution  evaluation  without  a  central
server.  Compared  to  usual  FL  methods  under  client-
server architecture, better results have been achieved in

terms  of  privacy  protection  and  value  realization  of
client  data  assets,  while  ensuring  model  performance.
This  decentralized  approach  leverages  blockchain
technology,  enabling clients  to control  the behavior of
nodes  in  each  round  using  smart  contracts  on  the
blockchain  to  ensure  security  and  transparency.
Furthermore,  it  utilizes  the  Shapley  value  from
cooperative  game  theory  as  the  basis  for  contribution
assessment,  allocating  rewards  and  recording  them on
the  blockchain,  thus  ensuring  fairness  and  traceability
of the results.

The contributions of this paper are as follows:
(1) We introduce a decentralized FL approach where

clients  can  autonomously  initiate  training  tasks  on  the
blockchain, offering incentives to engage other clients.
Smart  contracts  randomly  select  aggregation  and
evaluation  nodes  each  round,  operating  independently
and  mutually  supervising  to  earn  rewards.  Clients  can
join  tasks  on  the  blockchain,  receiving  rewards
corresponding  to  their  data  asset  contributions  to  the
model.

(2)  We  propose  a  blockchain-based  contribution-
aware  mechanism that  calculates  the  Shapley  value  of
participating  clients  in  each  round  through  evaluation
nodes,  which  assess  contributions  and  receive
corresponding  rewards.  Moreover,  historical
contributions  can  be  traced  on  the  blockchain.
Experimental  results  demonstrate  that  our  approach
performs well with noisy and heterogeneous data.

(3) We present a comprehensive set of contribution-
aware  methods  for  decentralized  FL.  Due  to  the
convenience  of  client  participation  and  the  fairness  of
contribution  assessment,  both  large  institutions  and
individual devices can initiate or join tasks and receive
rewards.  We  implement  the  corresponding  FLBS
framework  and  conduct  experiments  to  validate  its
effectiveness.

In  summary,  our  decentralized  FL  approach
empowers  clients  to  participate  securely  and  fairly  in
FL,  even  in  the  absence  of  a  central  server,  thereby
safeguarding  their  data  assets  and  promoting
participation in collaborative learning.

2　Related Work

In  this  section,  we  review  and  discuss  prior  research
and developments in the field related to FL. We aim to
provide  context  for  our  own work  by  highlighting  the
key  findings,  methodologies,  and  contributions  of
existing studies.
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2.1　FL

The concept of FL was first introduced by Google as a
decentralized  machine  learning  approach[23].  Its  main
idea  is  to  distribute  model  training  to  local  devices  or
servers where the data resides,  rather than centralizing
the  data  storage  in  one  place.  Each  local  device,
typically  mobile  devices,  sensors,  cloud  servers,  etc.,
can  independently  train  a  model  and  then  transmit  its
updates  to  a  central  server.  The  central  server
continuously  collects  model  updates  from  clients  and
aggregates  them  using  aggregation  rules,  such  as
Federated  Averaging  (FedAvg),  to  obtain  the  updated
model. FL not only addresses the problem of data silos
but  also  provides  a  degree  of  privacy  and  security,
making  it  a  method  to  tackle  challenges  related  to
limited training data and data sharing restrictions. It has
witnessed  rapid  development  in  both  academia  and
industry[24−26].

FL effectively leverages the computational resources
of  various  participants  to  train  local  models,  thereby
reducing  the  computational  burden  on  the  central
server. Most importantly, it possesses inherent privacy-
preserving properties,  as individual participants do not
need to share their raw data. Instead, they only conduct
model  training  on  nodes  with  decentralized  data
storage.  This  effectively  prevents  malicious  servers
from  directly  accessing  sensitive  data,  reducing  the
potential privacy leakage risks during data transmission
and solving the issue of  high communication costs,  as
it  does  not  require  transmitting  raw  data  from  client
devices to the central server. FL, as a new paradigm for
distributed machine learning, has given rise to a series
of  promising applications,  including medical  decision-
making[27−29],  recommendation  services[30, 31],  and
spatiotemporal  systems[32−34].  Tech  giants  like  Google
and  Apple  have  already  made  beneficial  attempts  to
implement FL on mobile phones.

The  architecture  of  FL  determines  that  the  more
clients with high-quality data participate in the training,
the  better  the  results  will  be.  However,  ensuring  that
participants  receive  contributions  matching  their  data
assets  and  attracting  more  clients  to  join  the  training
task remains a challenging issue[35].

2.2　Fairness

Due  to  the  participation  of  multiple  stakeholders  and
the  heterogeneity  of  customer  data  distribution,  FL
systems  face  challenges  related  to  accountability[36]

and fairness[37, 38]. The basic FL framework is unable to

address the issues arising from varying data quality and
heterogeneous  data  distribution  among  multiple
organizations. For most deep learning methods, data is
a  critical  driver  of  their  performance.  Therefore,
designing  a  system that  incentivizes  rational  agents  to
contribute  their  fair  share  of  data  and  maximizes  the
accuracy  of  the  resulting  model  while  improving
collaboration  is  a  key  challenge  in  the  practical
application and long-term development of FL[39].

In  anticipation  of  other  clients  sharing  their  data,
rational  agents  may  be  inclined  to  engage  in  harmful
behaviors  such  as  free-riding[40],  where  they  do  not
provide data but still benefit from improved models. To
motivate  more  data  owners  to  participate,  service
providers can incentivize by fairly assessing each data
owner’s  contribution  to  the  FL  training  process  and
offering  corresponding  rewards  and  compensation,
thereby  encouraging  broader  participation[41−43].  This
approach  helps  build  a  fair  and  incentivized  FL
ecosystem,  attracting  more  data  holders  to  actively
participate  and  collectively  drive  model  performance
improvements.

Contribution  assessment  of  FL  participants  is  an
active  subfield[44−48],  aiming  to  estimate  the  value  of
each  FL  participant  by  assessing  their  impact  on  the
global  model  performance  without  exposing  the
sensitive  local  data  of  each  participant.  Kang  et  al.[49]

proposed  measuring  the  value  of  a  participant’s  own
data or related variants as their contribution, aiming to
identify  and  quantify  each  individual’s  contribution  to
the  project  or  task.  However,  it  does  not  consider  the
value  gain  that  an  individual  participant  brings  to  the
FL collective. Wang et al.[50] considered the value loss
of the data when removing a participant from the entire
FL  group  as  their  contribution,  following  the  leave-
one-out  approach  widely  used  in  machine  learning
tasks[51].

Shapley  value,  as  a  classic  data  evaluation
scheme[52],  was  introduced  in  1953  to  solve  the
cooperative  game  problem[53],  which  has  been  widely
used to evaluate the contributions of participants in FL,
known  as  Federated  Shapley  Value  (FedSV)[54−57].
FedSV  retains  the  desirable  properties  of  the  Shapley
value.  The  main  idea  is  to  enumerate  all  possible
combinations of participants and calculate the marginal
gain  in  data  assert  value  brought  by  including  a
participant in the federation as their contribution. FL is
a  classical  collaborative  computing  scene,  we  need  a
high-quality dataset to take part in model training. The
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Shapley value approach is intuitive, easy to understand,
and  ensures  fairness  in  assessing  individual
contributions  to  the  project.  It  is  the  most  widely
applied  method  in  the  current  FL  contribution
assessment.

However, these fairness analysis algorithms typically
require  a  fixed  server  to  distribute  learning  tasks  and
perform  model  parameter  computations  on  the  server
side to determine client contributions. This approach is
not  conducive  to  attracting  more  clients  to  participate
and  is  susceptible  to  malicious  attacks.  Therefore,
exploring  new  paradigms  for  FL  has  become  an
important topic in recent years.

2.3　Blockchain

In  client-server  architecture  of  FL,  centralized  data
collection  and  model  aggregation  are  typically  reliant
on a single entity, such as an MEC server[58]. However,
due to  the  centralization of  the  FL framework and the
untrustworthiness  of  clients,  traditional  FL  solutions
are  susceptible  to  attacks  from  malicious  clients  and
servers. Once the server is compromised, it can lead to
a  single  point  of  failure,  disrupting  the  entire  FL
system.  Furthermore,  the  performance  bottleneck  of  a
single  service  node  cannot  meet  the  scalability
requirements.

To  address  these  issues,  the  introduction  of  Secure
Multi-party  Computation  (SMC)[59, 60] offers  an
alternative  decentralized  solution.  However,  the
interactive  nature  of  SMC  imposes  a  heavy
communication  burden  on  clients.  Blockchain[61],  as  a
shared  and  tamper-resistant  ledger  with  distributed
storage  of  transaction  records  and  collective
maintenance  as  its  technological  features,  provides  a
new  perspective  for  credible,  secure,  and  traceable
verification of client privacy data asset management.

The integration of FL with blockchain is currently a
hot  topic  of  research,  a  classic  approach  is  the  FL
platform  proposed  by  Toyoda  and  Zhang  in  2019[62].
Blockchain FL can eliminate the threat of single points
of  failure  and  malicious  servers.  Ramanan  and
Nakayama[63] proposed  BAFFLE,  a  blockchain-based
FL  solution[63].  It  uses  Smart  Contracts  (SC)  to
aggregate  local  models.  Kim  et  al.[64] introduced
BlockFL,  where  local  model  updates  are  exchanged
and  verified  through  smart  contracts  deployed  in  the
blockchain.  It  attracts  potential  high-quality  data
providers by offering incentives proportional to the size
of the training data. However, these approaches do not

consider  the  computational  and  communication
overhead of blockchain network nodes.

Blockchain-based  solutions  have  also  emerged  to
address  the  auditability  issues  in  FL.  Bao  et  al.[65]

introduced  FLChain  to  construct  an  auditable
decentralized  FL  system,  capable  of  detecting
malicious  nodes  and  rewarding  honest  trainers.  Zhang
et al.[66] proposed a blockchain-based FL approach for
fault  detection  in  IoT  devices  and  maintaining  client
data responsibility.  Kang et  al.[67] developed a reliable
worker  selection  scheme  based  on  blockchain  for
reputation management of trainers to prevent unreliable
model updates.

Our work primarily focuses on the valuation of client
data assets, aiming to provide new perspectives for the
future  of  decentralized  FL  paradigms.  While  some
research  areas  may  overlap,  they  often  overlook  the
impact  of  client  data  quality  on  fairness.  Furthermore,
many  of  these  solutions  tend  to  emphasize  the
outcomes  and  efficiency  of  technical  frameworks,
thereby neglecting certain security concerns.

3　Overview of FLBS

FLBS  offers  a  novel  solution  for  FL  based  on  the
blockchain  while  rewarding  participants  according  to
their  contributions  to  the  global  model.  The  method
finds  relevance  in  various  scenarios,  benefiting  both
large  organizations  and  personnel  in  their  decision-
making  processes.  For  instance,  hospitals  can  utilize
this  technology to  initiate  FL tasks  on  the  blockchain,
encouraging  other  hospitals  to  share  their  data  assets,
ultimately  enhancing  diagnostic  accuracy  and
reliability. Furthermore, FLBS extends its applicability
to cross-device scenarios, allowing clients to engage in
FL  tasks  on  the  blockchain.  This  not  only  enables
personalized  services  based  on  client  habits  but  also
provides  them  with  rewards  for  their  data  asset
contributions.

Considering  the  decentralized  nature  of  blockchain,
storing  large  machine  learning  models  directly  on  it
faces  inherent  limitations.  Currently,  efficient
distributed  storage  methods  include  keeping  only  data
description  information  on  the  blockchain  or
leveraging  the  InterPlanetary  File  System  (IPFS)
protocol.  The IPFS protocol  supports  distributed  peer-
to-peer file storage and transmission. It stores files and
application  data  on  multiple  devices,  ensuring  faster,
more  stable,  and  secure  network  access.  Each  data
block  is  distinguished  by  a  distinct  hash  value,  and
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these  hash  values  can  be  recorded  on  the  blockchain,
forming data fingerprints. In the context of blockchain
FL,  client  model  parameters  are  locally  stored,  with
smart contracts managing these models.

Figure  1 illustrates  the  workflow  of  FLBS,  which
comprises  two  primary  components:  aggregation  and
evaluation.  In  each  training  round,  aggregation  nodes
and  evaluation  nodes  are  selected  randomly.  The
aggregation nodes amalgamate upload models based on
optimal  contribution  combinations  and  subsequently
upload  the  aggregated  model  to  the  blockchain.
Similarly,  the  evaluation  nodes  upload  clients’
historical  contributions  to  the  blockchain.  These  two
types of nodes operate independently while also being
able  to  verify  results  mutually,  can  effectively  defend
against  attacks  from  malicious  nodes,  ensuring  the
transparency  and  traceability  of  the  entire  process.
Meanwhile, the client nodes selected only upload their
local  model  instead  of  data  sets,  which  can  guarantee
the privacy of FLBS.

The overall process is as follows:
(1)  Initialization:  Clients  launch  FL  tasks  on  the

blockchain  via  smart  contracts,  specifying  reward
tokens  and  a  public  dataset.  Other  clients  have  the

option to decide whether they want to participate in the
FL training task.

(2) Node selection: Smart contracts are employed to
select  the  nodes  for  training,  aggregation,  and
evaluation  in  this  round.  The  aggregation  and
evaluation nodes do not partake in the training task but
receive  compensation  for  their  contributions  through
the aggregation and evaluation of local models.

(3)  Local  training:  Clients  train  their  local  models
using the initial global model and their local data. They
then call IPFS to obtain a token representing their local
model parameters and send this token to the evaluation
nodes.

(4)  Model  evaluation:  Evaluation  nodes  use  the
obtained  tokens  to  call  the  IPFS  protocol  and  retrieve
local models from all training nodes. By calculating the
utility  values  between  different  model  combinations,
they  select  the  most  suitable  combination  and  upload
the  corresponding  model  tokens  and  contributions  for
this round’s training to the blockchain.

(5)  Model  aggregation:  Aggregation  nodes  use
model tokens on the blockchain to retrieve models via
IPFS  and  perform  model  aggregation  locally  to
generate  a  new  global  model.  They  then  upload  the

 

(1)

(4)
(2)

(3)

(5)

 
Fig. 1    Overview of FLBS.
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token  representing  the  new  global  model  to  the
blockchain.  Return  to  the  Node  Selection  Phase  for  a
new iteration.

(6)  Completion  phase:  When  the  final  training
round  concludes,  the  smart  contract  consolidates  the
contributions  of  each node on the  blockchain  for  each
round  and  distributes  tokens  based  on  their
contributions.

4　Algorithm Description

In  this  section,  we  will  provide  a  detailed  explanation
of  the  computational  intricacies  and  operational
workflow  of  the  FedAvg  algorithm.  Furthermore,  we
will elucidate the design details of FLBS.

4.1　Design of FedAvg

N = {1, 2, . . . , n}
F (ω)

i
Fi (ω) ω

Suppose there are  clients participating
in training task, The global objective function  of
FL  is  to  aggregate  the -th  client’s  objective  function

 on their model parameter  as follows:
 

F (ω) =
1
N

n∑
i=1

Fi (ω) (1)

i Di

Pi = {1, 2, . . . , p}

Then  we  extend  the  optimization  objective  to  the
perspective  of  clients ,  which has  dataset ,  and the
data  point .  The  local  objective  is
always defined as follows:
 

min
ω

Fi (ω) =
1
p

∑
ξ∈Di

ℓ ( f (ω); ξ) (2)

i ℓ

f (ω) ξ

T = {1, 2, . . . , t}

which  can  minimize  the -th  client’s  loss  function 
which  can  measure  the  error  between  the  model’s
predicted  output  and  the  actual  label  during
training.  To  improve  the  distributed  optimization
problem described in Eq. (1), the FedAvg process is as
follows,  there  are  collaborative
training rounds in total.

ω0

(1)  The  FedAvg  framework  starts  with  the
initialization of a global model  on a central server.

t K = {1, 2, . . . , k}
Pk

(2)  In  each  round ,  a  subset  of
clients  is  selected  to  participate  as  the  probability .
This  selection  can  be  random  or  based  on  certain
strategies.

k
ωt

ωk
t+1

(3)  The  selected  client  performs  local  training
using  the  current  global  model .  This  local  training
process typically consists of multiple local iterations to
train  the  client’s  model.  After  each  local  iteration,  a
local model update is generated.

K(4) After completing local training,  clients upload

{ω1
t , ω

2
t , . . . , ω

k
t }their  local  model  updates  to  the

central  server.  These  updates  are  typically  the
differences  in  model  parameters,  indicating  how  the
model should be adjusted to fit the client’s data.

ωt+1

(5)  The  central  server  collects  model  updates  from
different  clients.  These  model  updates  are  aggregated
to create a new global model .

t+1
(6) The generated global model becomes the starting

point  for  the  next  round  of  training.  After  this
global  model  update,  the  entire  training  process
proceeds  to  the  next  round,  starting  with  client
selection.

(7) The above steps are iterated multiple times until a
predefined stopping condition is met, such as a certain
number  of  training  rounds  or  model  performance
convergence.

In  this  paper,  our  objective  is  to  minimize  Eq.  (1),
and  it  is  possible  to  acquire  the  contributions  of  each
client in each round.

4.2　Design of FLBS

Fairness  plays  a  pivotal  role  in  evaluating  FL,  which
can incentivize more clients to join the process.  When
participants  believe  their  contributions  will  be  treated
fairly,  they  are  more  motivated  to  cooperate  actively.
The FedAvg method falls short in accurately evaluating
the  quality  of  client  data  assets,  thereby  posing
challenges  in  providing  precise  incentives  to
participants. The FLBS framework seeks improvement
by  incorporating  the  Shapley  value  from  cooperative
game  theory  to  better  gauge  the  contribution  of  data
assets.

Cooperative  game  theory  is  a  concept  aimed  at
achieving common goals through collaboration among
multiple  participants,  which  shares  some  similarities
with  the  optimization  objectives  of  FL.  The  Shapley
value,  within  the  realm  of  cooperative  game  theory,
serves as a concept employed to ascertain the equitable
distribution of gains derived from collaboration among
multiple  participants.  It  quantifies  the  contribution  of
each client to the cooperative game and provides a fair
way to distribute the gains.

K = {1, 2, . . . , k}

T = {1, 2, . . . , t}
S ⊆ K

υ (S)

Let  represent  the  set  of  selected
clients,  participating  in  the  training  round

. Next,  these clients generate all  power
sets , which range from the empty set to the full.
These  power  sets  represent  different  combinations  of
clients  to  consider  when  calculating  Shapley  values.

 can  acquire  the  performance  of  the  model
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Scollaboratively trained by clients in  as utility score.
Φt

i (v)
i

t

Marginal contribution  represents the impact of
a specific client  on a particular outcome when added
to a client combination in round ,
 

Φt
i (υ) =


1
|S|
∑
S⊆K\{i}

1(
N−1
|S|
) [υ (S∪{i})−υ (i)

]
, i ∈ K;

0, i < K

(3)

Then we can use  marginal  contributions  to  compute
the  Shapley  value  for  each  selected  client.  Finally,  all
clients  can  calculate  the  cumulative  sum  of  values
across all rounds as follows:
 

Φi (υ) =
T∑

t=1

Φt
i (υ) (4)

These  assigned  Shapley  values  can  be  utilized  for
different applications, such as adjusting model weights
or feature selection in FL.

t

∇Fi (ωt)
ωt

ωt
i

U
M
π

δ

ωt

The  design  details  of  FLBS  are  depicted  in
Algorithm  1.  In  each  round ,  smart  contracts  on  the
blockchain  select  the  nodes  participating  in  training
and  the  nodes  responsible  for  aggregation  and
contribution evaluation. Nodes participating in training
in  each  round  utilize  gradient  update  by  the
model  from  the  previous  round  and  upload  local
models .  The  contribution  assessment  node  utilizes

 to  evaluate  the  performance  of  different  client
combinations  by  sampling  all  local  model
combinations  in the k-th iteration through the Monte
Carlo  method,  in  which  truncation  is  applied  to
combinations  that  do  not  exceed  the  threshold .  It
selects node combinations with relatively better model
performance  and  assesses  the  contribution  values  of
each node in this round. The aggregation node updates
models  as  Eq.  (1)  from the  selected  combinations  and
uploads global model  to the blockchain.

5　Experiment

In this section, we will conduct experiments to validate
FLBS  using  standard  datasets  and  artificially  noised
datasets.

5.1　Experiment setting

5.1.1　Dataset
Canadian Institute For Advanced Research 10 (CIFAR-
10)  is  a  widely  used  computer  vision  dataset
comprising 10 distinct categories of color images. Each
category  contains  6000  images,  resulting  in  a  total  of
60 000 images. This dataset is commonly employed for

training and testing image classification algorithms and
deep learning models.

α = 1
In  this  paper,  we  initially  preprocess  the  CIFAR-10

dataset  by introducing Dirichlet  coefficients  ( )  to
create  Non-Independently  and  Identically  Distributed
(Non-IID)  dataset.  This  step  is  taken  to  evaluate  the
effectiveness  of  FLBS  on  datasets  with  non-identical
and non-uniform data distributions among clients.

Additionally,  we  artificially  introduce  noise  to  the
dataset  to  simulate  real-world  scenarios  where  data
may  be  noisy.  We  randomly  select  20% of  the  nodes
and  add  Gaussian  noise  to  10% of  their  data,
multiplying  their  data  quality  by  a  noise  coefficient.
Then,  we  select  20% of  the  nodes  and  apply  noise  to
their  labels,  randomly  mapping  10% of  their  existing
labels to other labels.

These  scenarios  aim  to  evaluate  the  algorithm’s
performance  under  various  noise  conditions,  allowing
us  to  assess  its  robustness  and  suitability  for  handling
real-world noisy data.
5.1.2　Network architecture
ResNet-20  is  a  specific  model  within  the  ResNet[68]

model  series,  and  it  is  one  of  the  relatively  smaller
variants of ResNet. ResNet-20 consists of 20 layers of
convolutional layers, comprising residual blocks, and it
is considered a shallow model within the ResNet series.

In  summary,  ResNet-20  is  selected  for
experimentation  because  of  its  favorable  properties  in
image classification tasks, its efficiency in training, and

 

FLBS algorithm

Select clients:
// client i acquire global

Evaluation node:

in 2,
≤

2

and
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its  lightweight  nature,  which  is  particularly
advantageous  in  scenarios  involving  minimal
communication and aggregation overhead.
5.1.3　Training setup

N = 50
K = 5

B = 64 η = 0.01
T = 1000

In  our  experiments,  the  number  of  clients ,  and
the  number  of  clients  selected  per  round ,  mini-
batch  size ,  learning  rate ,  and  total
number of training rounds .

5.2　Baselines

(1)  FedAvg:  It  is  one  of  the  most  broadly  used
algorithms  in  FL,  and  its  primary  idea  is  to  train  a
global model by communicating and aggregating local
model parameters among clients.

(2)  FedFa:  It  introduces  a  dual-momentum gradient
optimization scheme[69], which accelerates the model’s
convergence  speed.  Additionally,  it  proposes  an
algorithm that combines training accuracy and training
frequency  information  to  measure  the  weights,  aiding
clients in participating in server aggregation with fairer
weights.

(3)  FedFV:  This  method  is  designed  to  address
fairness  in  FL[70].  It  aims  to  reduce  potential  conflicts
between  clients  before  averaging  gradients.  The
algorithm  initially  utilizes  cosine  similarity  to  detect
gradient  conflicts  and  then  iteratively  eliminates  such
conflicts  by modifying the direction and magnitude of
the gradients.

5.3　Global model performance

In this experiment, our main objective is to assess how
our  algorithm’s  accuracy  is  affected  when  noise  is

intentionally  added  to  both  IID  and  Non-IID  datasets.
Our  goal  is  to  determine  whether  FLBS  could  attain
improved accuracy in scenarios where clients involved
in the training possess noisy data, ultimately delivering
advantages  to  these  clients  in  terms  of  model
performance.

Figure  2 illustrates  a  comparison  of  accuracy
between  FLBS  and  three  other  algorithms:  FedAvg,
FedFa,  and  FedFV.  We  test  these  methods  under  the
condition that  data  and label  noise  are  introduced into
subsets of clients’ IID and Non-IID datasets. The x-axis
represents  training  rounds,  while  the y-axis  represents
global model accuracy (ACC). It  is evident that FLBS
consistently  outperforms  other  algorithms  in  terms  of
accuracy  and  exhibits  relatively  lower  variance
between rounds. This is due to FLBs’s ability to select
relatively  optimal  combinations  of  clients  from  the
current round, excluding clients with poor data quality
from the combinations.

5.4　Fairness

In  this  experiment,  our  focus  is  to  explore  the
relationship between the data asset  quality distribution
among  clients  and  the  contribution  distribution  under
different  algorithms.  We  aim  to  investigate  whether
FLBS  could  provide  fair  assurances  for  client
contributions  when  some  clients  contain  noise  data.
Due to space limitations, this paper primarily discusses
scenarios under Non-IID data.

Kullback-Leibler  (KL)  divergence,  also  known  as
relative  entropy,  is  a  metric  used  to  measure  the
difference  between  two  probability  distributions.  KL

 

Number of communica�on rounds

(a) IID noise case (b) Non-IID noise case

Number of communica�on rounds
: : : : : : : :

 
Fig. 2    Global model test accuracy (the maximum accuracy of each method is shown in the legend).
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divergence  quantifies  the  information  loss  when  one
distribution  is  used  to  approximate  another.  It  can  be
employed  to  acquire  the  similarity  or  dissimilarity
between  two  probability  distributions.  KL  divergence
reflects  the  goodness  of  fit  between  two  distributions,
and in this paper, we use KL divergence as a metric to
assess  the  distribution  of  data  quality  and  data
contributions  under  different  noise  conditions.  The
formula  for  KL  divergence  for  discrete  probability
distributions is as follows:
 

KL (P∥Q) =
∑

P (x) log
P(x)
Q(x)

(5)

KL (P∥Q)
Q P P (x)

Q (x)
P (x)

P
Q

where  represents  the  KL  divergence  from
distribution  to  distribution .  is  the  true
probability  distribution,  and  is  the  probability
distribution  used  to  approximate .  A  KL
divergence closer to 0 indicates that the distributions 
and  are closer to each other.

The KL divergence between the result  of  FLBS and
the  data  quality  in  different  scenarios  is  shown  in
Fig.  3.  The  horizontal  axis  represents  the  different
noise scenarios applied to heterogeneous data,  ranging
from left  to  right  as  IID&No noise,  IID&Noise,  Non-
IID&No Noise, and Non-IID&Noise. The vertical axis
represents  the  KL  divergence  between  client
contributions  and  data  quality.  A  smaller  KL
divergence  indicates  a  closer  alignment  between  data
quality  and  contribution  perception  distributions.  In
comparison  to  the  Fedavg  whose  contribution  only
depends  on  dataset  size,  FLBS  more  effectively
illustrates  the  relationship  between  contributions  and
data  quality.  Even  when  compared  to  the  fairness-
evaluable FedFa, FLBS still  exhibits strong perceptual
performance.

The  experiments  demonstrate  that  FLBS  can
perceive  the  impact  of  client  data  assets  on  the  global
model’s  contributions.  It  can  incentivize  client
participation  through  contribution-based  rewards,
attracting  more  participants  to  engage  in  the  training
task.

5.5　Validation dataset

In  this  experiment,  our  primary  focus  is  to  investigate
the impact of the data upload method employed in our
testing  dataset  on  model  accuracy.  Since  evaluation
nodes  need  to  test  the  performance  of  the  combined
model,  a  small  dataset  must  be  accessible  to  clients.
When selected as evaluation nodes, they are required to
assess  the  contributions  of  clients  participating  in  the

current  round.  This  dataset  needs  to  have  the
characteristics of low space occupancy and high testing
accuracy.

There are two methods for uploading the dataset:
(1)  Initiator  uploads  testing  set:  In  this  approach,

the initiator of the training process, who aims to obtain
a  well-performing  FL  model,  uploads  a  testing  set  to
evaluate  the  overall  model  accuracy  and  assess  client
contributions.

(2)  Extraction  from  participant  data:  Participants
are selected to train with the hope of acquiring a better
global  model.  In  this  method,  participants  extract  a
small portion of their data, with the utmost respect for
privacy, to construct a testing dataset. This approach is
reasonable while minimizing privacy infringement.

Figure 4 provides insights into how clients, both with
and  without  noisy  data,  respond  to  variations  in  data
upload methods and dataset sizes in both IID and Non-
IID scenarios. Experiments are conducted for different
magnitudes  of  both  upload  methods  in  IID  scenarios,
including  initiator  uploads  with  500,  2500,  5000,  and
10 000 data  points,  as  well  as  participant  data
extraction forming testing sets of 500, 2500, and 5000
data  points  (comprising  1%,  5%,  and  10% of
participants’ data,  respectively).  The  test  results
indicate that, whether in IID or Non-IID scenarios, for
both noise-free and noisy datasets,  the initiator  upload
method  outperforms  the  data  extraction  method  in
terms of accuracy.

Furthermore,  as  the  size  of  the  testing  dataset
increases, model accuracy decreases, which eventually
stabilizes.  This  phenomenon  is  due  to  the  risk  of

 

IID & No noise IID & noise Non-IID & No noise Non-IID & noise
 
Fig. 3    Fairness: The extent to which client contributions, as
computed  by  FedAvg,  FedFa,  and  FLBS,  align  with  the
actual quality of data assets.
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overfitting  when  the  dataset  is  too  small.  Overfitting
occurs  when  the  model  learns  the  noise  or  specific
features  of  the  training  data  rather  than  the  general
patterns that can be applied to new data. This can result
in the model performing well on small testing datasets
but  poorly  on  larger  or  more  diverse  datasets.  As  the
testing  dataset  size  grows,  overfitting  diminishes,  and
increasing the dataset size further does not significantly
affect accuracy. Therefore, uploading a relatively small
testing  dataset  can  prevent  overfitting  while  reducing
the cost of data upload and download.

6　Conclusion

In  this  paper,  we  have  discussed  the  origins  and
evolution  of  the  question  concerning  the  valuation  of
our data assets, summarizing relevant developments in
recent years. Research in the realm of a fair assessment
of  data  assets  in  decentralized  FL  has  been  relatively
limited.  To  bridge  this  gap,  we  have  introduced  a
decentralized  FL  framework,  denoted  as  FLBS,  and
conducted  experimental  evaluations  using  client  data
assets  of  varying  quality.  The  results  indicate  that
FLBS  provides  a  robust  assessment  of  clients’ data
asset  contributions  without  the  need  for  a  central
server,  particularly  in  scenarios  involving
heterogeneous  and  noisy  data.  Meanwhile,  FLBS  has
some  nature  like  scalability  and  fairness  which  can
stimulate  more  participants  to  contribute  their  data  in
the model training phase. And our method can also as a
base  framework  to  accommodate  other  FL  and
blockchain algorithms.

Our research represents a significant advancement in
this  emerging  and  critical  field.  FLBS  decentralizes
various  processes  and  functionalities  of  FL  to
individual  clients,  enabling  a  fair  and  transparent
assessment of their contributions. This allows clients to
understand  the  value  of  their  data  assets,  thereby
motivating  them  to  actively  participate  in  training
tasks.

Furthermore, numerous intriguing avenues for future
exploration  lie  ahead.  It  would  be  valuable  to  explore
alternative  contribution  assessment  algorithms  beyond
Shapley  values.  Additionally,  further  research  can  be
conducted  to  investigate  additional  properties  and
criteria for fairness in FL, expanding our understanding
and capabilities in this domain.
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