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Abstract: Federated learning is  an emerging privacy-preserving distributed learning paradigm,  in  which many

clients  collaboratively  train  a  shared  global  model  under  the  orchestration  of  a  remote  server.  Most  current

works on federated learning have focused on fully supervised learning settings, assuming that all the data are

annotated  with  ground-truth  labels.  However,  this  work  considers  a  more  realistic  and  challenging  setting,

Federated Semi-Supervised Learning (FSSL),  where clients  have a large amount  of  unlabeled data and only

the server hosts a small number of labeled samples. How to reasonably utilize the server-side labeled data and

the  client-side  unlabeled  data  is  the  core  challenge  in  this  setting.  In  this  paper,  we  propose  a  new  FSSL

algorithm  for  image  classification  based  on  consistency  regularization  and  ensemble  knowledge  distillation,

called EKDFSSL. Our algorithm uses the global model as the teacher in consistency regularization methods to

enhance both  the  accuracy  and stability  of  client-side  unsupervised learning  on unlabeled data.  Besides,  we

introduce  an  additional  ensemble  knowledge  distillation  loss  to  mitigate  model  overfitting  during  server-side

retraining  on  labeled  data.  Extensive  experiments  on  several  image  classification  datasets  show  that  our

EKDFSSL outperforms current baseline methods.

Key words:  federated  learning; semi-supervised  learning; federated  semi-supervised  learning; knowledge

distillation

1　Introduction

Today, Artificial Intelligence (AI) offers great potential
for  data  analysis  and  decision  making.  Traditional

cloud-based  intelligent  services  require  collecting  a
large amount of data and training intelligent models in
a  centralized  manner.  However,  with  the  explosive
growth  of  the  number  of  networked  devices,  the
existing cloud computing capabilities can hardly afford
to  store  and  analyze  the  massive  amount  of  data
generated by these devices. For example, International
Data  Corporation  (IDC)  estimates  there  will  be  55.7
billion  connected  Internet  of  Things  (IoT)  devices  by
2025,  generating  almost  80  zettabytes  (ZB)  of  data[1].
In  addition,  states  across  the  world  are  strengthening
laws to protect users’ privacy and data security, such as
the General Data Protection Regulation (GDPR)[2] and
the California Consumer Privacy Act (CCPA)[3], which
makes  it  almost  impossible  to  collect  large-scale  raw
data  from  different  devices  or  organizations,  further
hindering  the  development  of  cloud-based  intelligent
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applications.
Thanks  to  the  growing  computational  and  storage

power  on  the  mobile  and  IoT  devices,  storing  data
and  executing  computing  process  on  the  devices  are
becoming  increasingly  attractive,  which  motivates  a
new  machine  learning  paradigm,  Federated  Learning
(FL).  FL  provides  a  privacy-preserving  distributed
machine  learning  paradigm  by  keeping  data  locally.
Recently,  FL  has  received  substantial  interests  from
both  academic  and  industrial  researchers  and
has  been  widely  applied  in  various  applications,  such
as  image  processing[4],  healthcare[5],  and  industrial
engineering[6].  As  shown  in Fig. 1a,  an  FL  system
consists of a number of client devices that execute the
training process and a central server that is responsible
for  parameter  aggregation.  Specifically,  the  following
four  steps  are  repeated  in  FL  until  the  global  model
converges:  (1)  global  parameter  broadcasting:  Active
clients  download  the  latest  global  model  from  the
server; (2) local model training: Clients train client-side
models  with  their  local  data;  (3)  local  parameter
uploading: Clients upload their updated local models to
the  server  after  local  training;  and  (4)  model
aggregation:  The  server  updates  the  global  model  by
aggregating the received parameters.

Most  existing  studies  on  FL  focus  on  fully
supervised  settings,  assuming  that  all  the  client-side
data  are  annotated  with  ground-truth  labels.  In  many
realistic scenarios, however, client users may not have
enough incentives  or  expertise  to  label  their  generated

data.  In  contrast,  the  server,  which is  usually  operated
by the service provider, may possess a small amount of
data labeled by domain experts. This data regime leads
to a more realistic  and challenging FL setting,  namely
federated  semi-supervised  learning,  where  users’
devices  collectively  hold  a  massive  amount  of
unlabeled  samples,  whereas  the  server  holds  a  small
labeled  dataset.  Although  we  can  train  an  intelligent
model  based  on  only  the  labeled  data,  the  model
performance will be significantly limited by the size of
the server’s  dataset.  Thus,  the core goal  of  FSSL is  to
enhance the model trained on the server by utilizing the
massive unlabeled data at the client side.

How to reasonably utilize the server-side labeled data
and the client-side unlabeled data is the core challenge
in FSSL. In this paper, we explore this problem on the
image  classification  task.  Specifically,  for  client-side
unsupervised  learning,  we  use  consistency
regularization  methods  to  take  full  use  of  unlabeled
data. However, we find that the local model is prone to
collapse  due  to  the  lack  of  correct  supervision
information.  To  address  this  problem,  we  adopt  the
latest  received  global  model  as  the  teacher  to  guide
client-side  consistency  training.  For  server-side  model
aggregation,  the  server  first  aggregates  the  model
updates  received  from  clients  to  get  a  global
unsupervised  model,  and  then  retrains  the  aggregated
model  using  its  labeled  data.  Nevertheless,  retraining
may lead to the global model overfitting on the limited
labeled  dataset  and  forgetting  the  information  learned
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Fig. 1    Framework of federated learning and Federated Semi-Supervised Learning (FSSL).
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by the client-side training. Thus we enforce the global
model  to  retain  what  the  local  model  learned  by
penalizing  the  differences  between  the  predicted
distribution of the local model ensemble and the global
model,  named  ensemble  knowledge  distillation  loss.
Combining  all  the  components,  we  propose  a  new
FSSL  algorithm  for  image  classification  based  on
consistency  regularization  and  ensemble  knowledge
distillation,  named  EKDFSSL.  Overall,  our  main
contributions can be summarized as follows:

•  We  focus  on  the  labels-at-server  federated  semi-
supervised  learning  and  analyze  the  challenges  faced
by  client-side  unsupervised  learning  and  server-side
supervised learning.

•  We propose a novel  algorithm, named EKDFSSL,
to address these challenges. Specifically, we propose a
global  model  guided  consistency  regularization  to
enhance  both  the  accuracy  and  stability  of  client-side
unsupervised  learning  on  unlabeled  data.  In  addition,
we  introduce  an  additional  ensemble  knowledge
distillation  loss  to  mitigate  model  overfitting  during
server-side retraining on labeled data.

•  We  experimentally  evaluate  the  feasibility  of  our
EKDFSSL for standard image classification tasks with
four  publicly  available  datasets.  Experiment  results
show  that  EKDFSSL  outperforms  recent  baseline
methods.  In  addition,  we  perform  sufficient  ablation
study to demonstrate the role of each component in our
method,  guaranteeing  the  interpretability  of  the
method.

The remainder of this paper is organized as follows.
Section  2  introduces  the  related  work.  Section  3
formulates  the  problem  and  presents  our  EKDFSSL
algorithm.  Section  4  reports  the  evaluation  of  our
approach. Finally, Section 5 concludes this paper.

2　Related Work

2.1　Federated learning

As a distributed model training paradigm used in edge
computing,  FL  faces  three  inherent  challenges:
statistical  heterogeneity,  communication  efficiency,
and systems heterogeneity[7, 8]. Statistical heterogeneity
arises  due  to  varying  local  data  distributions  between
different  clients,  leading  to  a  local  bias  issue  where
models  overfit  to  the  biased  local  distribution,  which
can seriously impact the accuracy of the global model.
There are two complementary approaches to solve this
problem.  On  one  hand,  FedProx[9],  MOON[10],  and

FedNTD[11] all  improved  local  training  by  adding  a
regularization  term.  On  the  other  hand,  FedNova[12]

and  FedAvgM[13] aimed  to  improve  the  model
aggregation  phase.  The  limited  bandwidth  of  client
devices  causes  the  communication  cost  to  be  a  key
bottleneck in  the federated network.  Konecny et  al.[14]

and Caldas et al.[15] reduced the amount of data traffic
by  using  some  communication  compression
techniques. Moreover, the communication, storage, and
computational  capabilities  of  each  client  in  federated
networks  may  differ  due  to  variability  in  hardware
resources,  leading  to  some  clients  failing  to  complete
local  training  within  the  prescribed  time,  which  are
called stragglers. To alleviate this problem, Xie et al.[16]

proposed  an  asynchronous  federated  optimization
algorithm,  providing staleness  tolerance  for  stragglers.
Nishio  and  Yonetani[17] explored  active  device
sampling  policies  based  on  systems  resources.  In
summary, although there have been a lot of researches
devoted  to  addressing  the  different  challenges  in  FL,
most of them have focused on fully supervised settings,
assuming  that  all  samples  are  labeled  with  artificial
annotations,  which  is  often  unrealistic  for  real-world
applications.

2.2　Federated semi-supervised learning

Federated  semi-supervised  learning  considers  a
practical problem of deficiency of labels in FL and has
been studied in various real-world applications such as
COVID-19  medical  segmentation[18],  travel  mode
identification[19],  and  human  activity  recognition[20].
Federated semi-supervised learning can be divided into
two  categories  based  on  where  the  labeled  data  are
located: (1) Labels-at-server in which clients own only
unlabeled  data  and  a  few labeled  data  are  available  at
the server[21−25]; and (2) labels-at-clients in which each
client  contains  partially  labeled  data  while  the  server
has  no  data[21−24, 26].  In  this  paper,  we  focus  on  the
labels-at-server FSSL setting and introduce some of the
related  work  in  this  setup.  FedMatch[21] is  the  first
study  in  FSSL,  which  introduced  parameter
decomposition  for  disjoint  learning  between  the
supervised  learning  on  the  server  side  and  the
unsupervised learning on the client side. In addition, it
proposed  an  inter-client  consistency  loss  to  enhance
local  training,  improving  the  performance  upon  naive
combinations  of  FL  and  SSL  approaches.  FedRGD[22]

demonstrated  that  the  large  gradient  diversity  of  local
models  is  a  critical  issue that  affects  the  global  model
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performance  and  proposed  to  use  group  normalization
and a novel grouping-based model averaging method to
deal with this problem. FedMix[23, 24] proposed a novel
model  parameter  mixing  strategy  to  aggregate  the
server-side  supervised  model,  client-side  unsupervised
models,  and  the  latest  global  model.  Recently,
GDST[25] proposed  a  global  distillation  loss  that
utilizes  outputs  of  global  model  for  local  unlabeled
samples  as  supervision  information  to  enhance  client-
side  self-training.  In  addition,  it  used  the  server-side
labeled  data  to  fine-tune  the  aggregated  global  model.
It can be observed that the above works either improve
client-side  training  or  modify  the  parameter
aggregation  mechanism,  while  this  paper  aims  to
improve both client-side training and server-side global
model optimization.

2.3　Knowledge distillation

Knowledge  distillation  refers  to  the  transfer  of
knowledge  from  one  model  to  another,  which  is
originally  used  for  model  compression[27, 28].  The
teacher-student architecture is a basic structure to form
the  knowledge  transfer.  Recently,  knowledge
distillation  is  widely  used  in  FL  to  solve  various
challenges.  For  data  heterogeneity,  FedNTD[11] and
FedGKD[29] took  the  global  model  as  the  teacher  to
guide  local  training,  forcing  the  local  model  to  retain
global knowledge, thereby alleviating the issue of local
bias. Orthogonal to them, FedFTG[30], FedBKD[31], and
FedBiKD[32] fine-tuned  the  aggregated  model  using
knowledge  distillation  on  the  server  side,  so  that
knowledge  can  be  transferred  from the  local  model  to
the  teacher  model  more  efficiently,  improving  the
performance  of  the  global  model.  For  expensive
communication, FD[33] exchanged logits as knowledge
instead  of  model  parameters  between  servers  and
clients,  significantly  reducing  the  amount  of  data
transferred in the federated network. FedKD[34] trained
a small model and a large model simultaneously on the
client  side,  which  learn  and  distill  knowledge  from
each other. Only the small model is shared by different
clients  for  collaborative  learning,  effectively  reducing
the  communication  cost.  CMFL[35] improved
communication efficiency by identifying and excluding
irrelevant client-side updates. For model heterogeneity,
FedMD[36] and  FedDF[37] used  knowledge  distillation
instead  of  parameter  averaging  to  update  the  global
model,  enabling  clients  to  learn  collectively  on
heterogeneous models. Different from previous studies,

in  this  article,  we  employ  knowledge  distillation  in
federated  semi-supervised  learning  to  prevent  the
server-side  global  model  from  overfitting  on  the
limited labeled data.

3　Proposed Method

In  this  section,  we  first  describe  the  problem setup  of
federated  semi-supervised  learning  with  some
notations.  Then,  we  present  our  method,  covering  the
local  training  on  the  unlabeled  client  side  and  the
aggregation  as  well  as  fine-tuning  of  global  model  on
the server side.

3.1　Problem setup

M

Ds = {(xi,yi)}ns
i=1 xi

yi

ns

m Dm = {ui}nm
i=1

m ∈ {1,2, . . . ,M}

ns≪
M∑

m=1

nm

In  this  work,  we  consider  the  labels-at-server  FSSL
with  a  fully-labeled  server  and  fully-unlabeled
clients.  Formally,  the  server  has  a  labeled  dataset

,  where  denotes  the  feature  vector
(i.e.,  image),  denotes  its  corresponding  label  (i.e.,
image  class),  and  denotes  the  number  of  samples
available  at  the  server,  respectively.  Meanwhile,  each
client  owns  an  unlabeled  dataset ,  for

, where ui denotes the unlabeled feature
vector, and nm denotes the number of samples available
at the client m. The number of labeled training samples
at the server is considered to be much smaller than the
total  number  of  unlabeled  training  samples  at  the

clients,  i.e., .  Like  universal  federated

framework,  the  goal  of  FSSL is  also  to  learn a  shared
global  model,  and  the  local  datasets,  including  the
server-side  labeled  dataset,  cannot  be  exchanged  or
shared across the federated network.

3.2　Federated  semi-supervised  learning  with
consistency  regularization  and  ensemble
knowledge distillation

To  make  efficient  use  of  unlabeled  data  on  the  client
side and labeled data on the server side,  we propose a
novel  FSSL  algorithm  with  consistency  regularization
and  ensemble  knowledge  distillation,  EKDFSSL.  As
shown in Fig.  1b,  similar  to traditional  supervised FL,
EKDFSSL also  involves  four  steps  in  each  FL  round.
In  addition  to  aggregating  the  global  model,  however,
the  server  also  participates  in  training by updating the
aggregated  global  model  using  its  labeled  dataset.
Algorithm  1  summarizes  the  training  process  of
EKDFSSL.  Next,  we  will  give  the  details  of  the
proposed EKDFSSL method.
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3.2.1　Consistency  regularization  for  unlabeled
client training

Consistency regularization, one of the most commonly
used  approaches  in  the  semi-supervised  learning
paradigm, is  based on the smoothness assumption that

Π

points  close  to  each  other  in  the  input  space  are  more
likely  to  share  the  same  label.  This  category  of
methods  makes  use  of  unlabeled  data  by  enforcing
model  predictions  to  be  invariant  under  different
augmentations  of  the  same  data  point.  The  basic
structure  of  consistency  regularization  based  methods
is  the  teacher-student  structure,  where  the  teacher
model is  used to generate target  predictions,  while the
student  model  learns  by  producing  similar  predictions
on perturbed samples. In the existing SSL methods, the
teacher  and  the  student  can  be  the  same  model  or
different  models.  For  example,  the  self-ensembling
method,  model[38],  and Virtual Adversarial Training
(VAT)[39] generated  targets  using  the  currently  being
trained  model,  while  mean  teacher[40] used  the
Exponential  Moving  Average  (EMA)  weight  of  past
student  models  to  produce  a  more  accurate  teacher
model.

As  described  in  Section  3.1,  labeled  and  unlabeled
data are disjoint in the labels-at-server FSSL, meaning
that  no  labeled  data  can  provide  direct  supervision
information for local  training at  the client  side.  In this
disjoint  data  setting,  using  the  local  model  being
trained  as  the  teacher  model  may  lead  to  model
collapse  due  to  the  lack  of  correct  supervision
information,  resulting  in  performance  of  the  trained
model deteriorating sharply. To meet this challenge, we
adopt  the  latest  received  global  model  as  the  teacher
model  for  client-side  consistency  training.  Besides,
recent  work  demonstrated  that  the  quality  of  data
augmentations  plays  a  crucial  role  in  consistency
regularization[41]. It substitutes simple noising operations
with  advanced  data  augmentation  methods,  such  as
RandAugment,  which  combines  various  augmentation
transformations  uniformly  sampled  from  all  image
processing  transformations  in  the  Python  Image
Library (PIL). Therefore, we also use the efficient data
augmentations  described  in  Ref.  [41].  As  a  result,  the
consistency  regularization  loss  used  in  client-side
unsupervised learning in our EKDFSSL is as follows:
 

LCR = H( f (w;A(u)), f (wg;α(u))) (1)

f (w; x)
w x H(p,q)

α(·)

A(·)

wg w

where  denotes  the  output  probability
distribution  of  the  model  for  input ,  and 
denotes  cross-entropy  between  two  distributions. 
represents the weakly-augmentation operations such as
flipping, shifting, and croping, and  represents the
strongly-augmentation  operations  such  as
RandAugment.  and  represent  the  parameters  of

 

Algorithm 1　EKDFSSl algorithm
Ds

Dm m = 1,2, . . . ,M
R A

E η

α

Input: server-side labeled dataset ,  private unlabeled dataset
     for  each  client, ,  the  number  of
   communication  rounds ,  the  number  of  sampling  clients ,
   the  number  of  local  epochs ,  the  learning  rate ,  and  the
   weight of knowledge distillation loss .

wR+1Output: the final global model 
　　Server executes:

w0　　Initialize the global model 
r = 1,2, . . . ,R　　for each round  do

Mr ← A　　　　  random sample of  clients
wr Mr　　　　Broadcast global model  to 

m ∈ Mr　　　　for each client  do
wr

m← Dm,wr　　　　　　  ClientUpdate ( )
　　　　end for

α = r
R　　　　

wr
s←

∑
m∈Mr

|Dm|∑
m∈Mr

|Dm|
wr

m　　　　Model aggregation: 

wr+1← Ds,α,wr
s,w

r
1, . . . ,w

r
A　　　　  ServerUpdate ( )

　　end for
Dm,wr　　ClientUpdate ( ):

wg,wm← wr　　

e = 1,2, . . . ,E　　for each local epoch  do
(ub) Dm　　　for each mini-batch  of  do

LCR = H( f (w;A(ub)), f (wg;α(ub))) ▷　　　　   Eq. (1)
Wm←Wm −η · ▽Lcr　　　　

　　　end for
　　end for

wm　　Return 
Ds,α,ws,w1, . . . ,wA　　ServerUpdate ( ):

　　// Fine-tune the aggregated model with the server’s labeled
　　data

e = 1,2, . . . ,E　　for each local epoch  do
(xb,yb) Ds　　　for each mini-batch  of  do

LCE = H( f (ws; xb),yb) ▷　　　　   Eq. (2)

ȳb =
1
A

A∑
i=1

f (wi; xb) ▷　　　　   Eq. (3)

LKD = KL( f (ws; xb), ȳb) ▷　　　　   Eq. (4)
ws← ws −η · ▽(LCE +αLKD)　　　　

　　　end for
　　end for

ws　　Return 
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the  global  model  and  the  currently  local  model,
respectively.
3.2.2　Ensemble knowledge distillation
Different  from  vanilla  FL,  there  is  a  small  amount  of
labeled  data  on  the  server  in  the  FSSL  setup.  In  our
EKDFSSL, these labeled data are used to fine-tune the
aggregated  unsupervised  model  to  improve  the
performance  of  the  global  model.  For  image
classification tasks, cross-entropy is a widely used loss
function,  which  measures  the  difference  between  the
predicted probability distributions of the model and the
true label. Its formal definition is as follows:
 

LCE = H( f (w; x),y) = −
C∑

i=1

y(i)log( f (w; x)(i)) (2)

y x
f (w; x)

w x f (w; x)(i)

i C

where  is  the  one-hot  label  for ,  and y(i) represents
the i-th element of y.  is the softmax probability
output of the model  for input ,  stands for
the prediction probability on class , and  is the total
number of classes to identify, respectively.

In  real-world  applications,  the  number  of  labeled
samples  on  the  server  is  often  very  limited  due  to  the
high  cost  of  manual  labeling.  In  this  case,  using  only
the  above  classification  loss  function  may  cause  the
global  model  to  overfit  on  the  server-side  data,
reducing the generalization ability of the global model.
To  mitigate  this  problem,  we  introduce  an  additional
adaptive  knowledge  distillation  loss,  which  views  all
local models uploaded as the teacher ensemble and the
aggregated  global  model  as  the  student,  enforcing  the

ws

wi

f (wi; x) Ds

ws

global model to retain what the local model learned by
penalizing  the  differences  between  the  predicted
distribution  of  teacher  and  student  models.  As
described in Algorithm 1 and Fig.  2,  after aggregating
the  client-side  unsupervised  models,  we  fine-tune  the
aggregated  model  using  the  following  three  steps:
(1)  Each  client  model  outputs  its  own  predicted
probability  for  the  server-side  dataset ;  (2)
these  probability  outputs  are  averaged  as  ensemble
knowledge;  and (3)  the server  uses  both cross-entropy
classification  loss  and  the  proposed  ensemble
knowledge  distillation  loss  with  labeled  data  to  fine-
tune  the  model .  Specifically,  the  ensemble
knowledge  distillation  loss  is  calculated  by  the
Kullback–Leibler  Divergence  (KL  Divergence)
between the average predicted outputs of client models
and the outputs of the global model, which is formally
defined as follows:
 

ȳ =
1
A

A∑
i=1

f (wi; x) (3)

 

LKD = KL( f (ws; x), ȳ) =

−
C∑

i=1

ȳ(i)log
(

f (ws; x)(i)

ȳ(i)

)
(4)

In summary, the loss function used on the server side
is  composed  of  two  parts.  The  first  part  is  a  typical
classification  loss  for  the  classifier  retraining.  The
second  part  is  our  proposed  ensemble  knowledge
distillation  loss,  which  avoids  overfitting  the  global
model  on  limited  labeled  data.  In  addition,  we

 

 
Fig. 2    Training process on the server side.
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α

α

α = r/R r R

introduce  an  adaptive  coefficient  for  progressively
increasing the weight of the knowledge distillation loss
during  the  training  process.  Specifically,  is
calculated  by ,  where  and  represent  the
current  round  and  the  number  of  total  communication
rounds,  respectively.  The  final  loss  function  for  the
server-side model retraining is
 

LS =LCE+αLKD (5)

4　Experiment

4.1　Experiment setup

Ns

Dataset  and  data  partitioning.　 To  verify  the
effectiveness  of  our  proposed  method,  we  conduct  a
comprehensive  experiment  on  four  popular  image
classification  datasets,  Fashion-MNIST[42],  SVHN[43],
CIFAR-10[44],  and  CIFAR-100[44].  The  first  three
datasets contain 10 image classes each and the last one
contains  100  classes.  Specifically,  Fashion-MNIST
comprises  of  28  ×  28  grayscale  images  of 70 000
fashion products from 10 categories. SVHN is obtained
from  house  numbers  in  Google  Street  View  images,
consisting of 73 257 training samples as well as 26 032
testing samples.  CIFAR-10 and CIFAR-100 consist  of
50 000 training images and 10 000 testing images with
10  and  100  image  classes,  including  people,  animals,
flowers,  insects,  and  so  on.  To  simulate  the  FSSL
setting, we first sample a small number ( ) of images
from the training set as labeled data on the server side,
while  the  remaining  images  are  allocated  to  clients  as
unlabeled samples. For unlabeled data partitioning, we
consider  both  Independent  and  Identically  Distributed
(IID) and Non-Independent and Identically Distributed
(Non-IID) settings.
• IID:  Each  client  is  randomly  assigned  the  same

number  of  images,  which  means  that  all  clients  are
subject to the same distribution as the entire dataset.
• Non-IID: Following existing works in Refs. [10, 11],

we use a Dirichlet distribution Dir (1.0) to generate the
non-IID data partition in clients, where the numbers of
classes and samples at each client differ from each other.

M
A

Implementation  detail.　 We  employ  a  13-layer
convolutional  neural  network  widely  used  in  semi-
supervised learning[39, 40] as the backbone model for the
first  three  datasets,  and  Wide-ResNet-28-2[45] as  the
backbone  model  for  CIFAR-100.  The  total  number  of
clients  and  the  number  of  clients  selected  in  each
communication  round  are  100  and  10,  respectively.

R
E

Ns

The  number  of  training  rounds  is  set  to  500,  local
training epoch  is 5, and mini-batch size B is 30. The
number of  the labeled data  at  the server  is  500 for
the first three datasets, and is 5000 for CIFAR-100. We
use Stochastic Gradient Descent (SGD) to optimize the
global model as well as local models and use a cosine
decay  as  the  scheduler  of  learning  rate.  The  initial
value  of  the  learning  rate  is  set  as  0.01  and  the  local
momentum is 0.9.

4.2　Baseline method

To fairly validate the proposed EKDFSSL method, we
use the following baselines.
• Server-only refers to training with only server-side

labeled  data,  which  is  considered  as  the  lower  bound
for any effective FSSL algorithm.
• FedMatch[21] adopted  parameter  decomposition  to

separate  supervised  learning  on  the  server  side  and
unsupervised  learning  on  the  client  side,  while  also
introducing an inter-client  consistency loss  to  enhance
local training.
• FedRGD[22] aimed to reduce the gradient diversity

among local models by using group normalization and
grouping-based model averaging.
• FedMix[23, 24] proposed  a  novel  model  parameter

mixing  strategy,  which  aggregates  the  server-side
supervised model, client-side unsupervised model, and
the  latest  previous  round  of  global  models  to  obtain  a
new global model.
• GDST[25] utilized  self-training  and  the  proposed

global  distillation  loss  for  local  training,  and  retrained
the  aggregated  model  with  server-side  labeled  data.
The global distillation loss utilizes the outputs of global
model  in  local  unlabeled  data  as  supervision
information to enhance client-side training.

4.3　Overall result

We compare our proposed method with other baseline
approaches  on  the  four  datasets  described  above.  In
each communication round,  the  global  model  is  tested
on the test set and the highest test accuracy is reported
for  all  methods.  As  shown  in Table  1,  our  EKDFSSL
not  only  significantly  outperforms  the  server-only
baseline,  but  also  outperforms  its  competitors  in  all
settings,  which  demonstrates  the  validity  of  our
proposed  EKDFSSL  algorithm.  For  example,  on  the
CIFAR-10  dataset,  EKDFSSL  has  an  averaged
accuracy advantage of 21.59% compared to server-only
and an averaged accuracy advantage of 9.30% over the
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best baseline method, GDST. The results are similar on
the  CIFAR-100  dataset,  which  is  more  difficult  to
classify.

Data heterogeneity is a common phenomenon in FL,
which  usually  causes  global  model  performance
degradation. To prove the effectiveness of our method
on  heterogeneous  data,  we  conducted  experiments  in
both  IID  and  non-IID  data  distributions.  As  shown  in
Table  1,  the  performance  gap  of  our  EKDFSSL
between  the  two  data  distributions  is  very  small.
Specifically,  with  the  exception  of  the  CIFAR-10
dataset,  our  approach  has  a  performance  gap  of  less
than  1.00% between  IID  and  non-IID  data.  In  other
words,  the  heterogeneous  data  distribution  between
clients does not seriously affect our approach, proving
the practicality of our approach in real-world scenarios.

Another  obvious  phenomenon  is  that  the
performance  of  the  first  three  methods  (FedMatch,
FedRGD, and FedMix) is significantly lower than that
of the latter two methods (GDST and EKDFSSL), and
even lower than that of server-only in some cases. The
main difference between these two types of methods is
that  the  first  three  methods  directly  aggregate  the
server-side  supervised  model  and  client-side
unsupervised models to get the global model, while the
latter  two  methods  first  aggregate  the  client-side  local

models and then fine-tune the aggregated global model
using server-side labeled data. This result demonstrates
the  importance  of  fine-tuning  the  global  model  using
server-side labeled data.

4.4　Analysis and ablation study

In  general,  the  amount  of  labeled  data  significantly
affects  the  performance  of  semi-supervised  learning
methods. Therefore, we first compare the performance
of  different  algorithms  with  different  numbers  of
labeled samples. In addition, the main contributions of
our  EKDFSSL include  the  use  of  the  global  model  as
the  teacher  in  consistency  regularization  methods  and
the  introduction  of  additional  knowledge  distillation
losses  when  fine-tuning  the  global  model.  Then,  we
will  analyze  the  role  of  these  two  components
separately.

Ns Ns = 1000

Varying the size of labeled data.　We explore the
impact of the amount of labeled data held by the server
on  the  model  performance.  As  shown  in Table  2,  our
EKDFSSL not only beats its competitors in all settings,
but the performance advantage increases as the labeled
data  size  decreases.  Specifically,  when ,
EKDFSSL  has  an  averaged  accuracy  advantage  of
13.82% compared  to  server-only  and  an  averaged
accuracy  advantage  of  3.19% over  the  best  baseline

 

Table 1    Highest accuracy of our method and the other baseline methods on Fashion-MNIST, SVHN, CIFAR-10, and CIFAR-
100 datasets.

Method
Highest accuracy (%)

Fashion-MNIST SVHN CIFAR-10 CIFAR-100
IID Non-IID IID Non-IID IID Non-IID IID Non-IID

Server-only 83.53 83.53 70.26 70.26 54.42 54.42 46.45 46.45
FedMatch 81.62 81.69 77.49 77.20 52.73 53.07 44.91 44.97
FedRGD 83.41 83.61 73.66 72.08 48.76 48.60 46.97 46.78
FedMix 82.67 83.44 78.16 77.11 57.45 56.99 48.23 48.74
GDST 83.61 83.31 89.30 89.19 67.05 66.35 49.51 49.09

EKDFSSL 87.21 87.15 90.72 90.26 77.21 74.80 52.39 51.47

 

Table 2    Highest  accuracy  of  our  method  and  the  other  baseline  methods  on  CIFAR-10  dataset  with  different  numbers  of
labeled samples.

Method
Highest accuracy (%)

Ns = 250 Ns = 500 Ns = 1000
IID Non-IID IID Non-IID IID Non-IID

Server-only 44.13 44.13 54.42 54.42 66.02 66.02
FedMatch 39.85 40.37 52.73 53.07 68.20 68.22
FedRGD 43.22 43.22 48.76 48.60 60.60 60.42
FedMix 39.15 40.14 57.45 56.99 69.03 68.65
GDST 54.02 53.80 67.05 66.35 76.34 76.95

EKDFSSL 71.79 68.12 77.21 74.80 80.45 79.22
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Nsmethod, GDST. When  is reduced to 250, EKDFSSL
not only outperforms server-only by a large margin, but
also  has  an  averaged  accuracy  advantage  of  16.05%
over  GDST.  This  is  because  when  the  number  of
labeled  samples  is  large,  the  impact  of  local-side
unsupervised training and parameter aggregation on the
global  model  performance  is  relatively  small,  since
using  only  labeled  samples  can  train  a  good  model.
Conversely,  when  a  small  amount  of  labeled  data  are
insufficient  to  train  a  good  global  model,  local-side
unsupervised training and parameter aggregation play a
crucial role. In other words, this proves the advantages
of  our  proposed  EKDFSSL algorithm in  unsupervised
training  and  parameter  aggregation,  as  well  as  the
effectiveness  of  our  method  in  the  case  of  a  small
number of labeled samples.

Ns

Global-teacher  vs.  self-teacher. As  described  in
Section  3.2.1,  consistency  regularization  methods  are
based  on  the  teacher-student  structure.  In  client-side
local training, the teacher can be either the latest global
model  received  from  the  server  (denoted  as  global-
teacher)  or  the  local  model  currently  being  trained
(denoted  as  self-teacher).  This  study  experimentally
proves  that  local  training  with  self-teacher  leads  to
model  collapse.  Specifically,  we  record  the  test
accuracy  of  the  aggregated  model  (i.e.,  before  server-
side retraining) and the global model (i.e., after server-
side  retraining)  in  each  training  round.  As  shown  in
Fig.  3,  global-teacher  significantly  outperforms  self-
teacher  in  terms  of  global  model  performance.  In
addition,  in  self-teacher  mode,  regardless  of  the  value
of ,  the  accuracy  of  the  aggregated  model  is  poor
and  fluctuates  greatly,  which  indicates  that  the

consistency training with self-teacher leads to collapses
of local models. In contrast, using the global model as
the  teacher  can  provide  reliable  supervision
information  for  local  training,  so  the  performance  of
the aggregated model has steadily improved in global-
teacher mode.

Ns

Ns

Ns

Ns = 1000
Ns

EKDFSSL  without  EKD. In  this  section,  we
explore  the  effects  of  our  proposed  EKD  loss  in  the
global-teacher model. By comparing global-before and
global-after in Fig. 3, we can see that when  is large,
server-side fine-tuning can improve the performance of
the  global  model,  which  verifies  the  necessity  of
retraining  on  the  server  side.  However,  when 
decreases to 250, server-side fine-tuning even damages
the  performance.  This  means  that  using  only  the
classification loss function may cause the global model
to  overfit  on the server-side limited data,  reducing the
generalization  ability  of  the  global  model.  To  address
this  problem,  we  propose  an  additional  ensemble
knowledge  distillation,  enforcing  the  global  model  to
retain what the local models learned. As shown in Fig. 3,
server-side  retraining  with  additional  ensemble  global
distillation  can  improve  the  performance  of  the
aggregated  model  in  all  settings.  In  addition,  as
indicated  in Table  3,  using  both  EKD  loss  and  cross-
entropy  loss  also  achieves  better  performance  than
using  only  cross-entropy  loss,  and  the  performance
improvement  increases  as  decreases.  For  example,
when ,  the  test  accuracy  is  improved  by  an
average  of  0.79%.  As  decreases  to  250,  the  test
accuracy  is  improved  by  an  average  of  2.12%.  In
summary,  these  results  demonstrate  not  only  the
necessity for fine-tuning on the server side, but also the

 

 
Fig. 3    Performance  comparison  on  CIFAR-10  dataset  between  our  EKDFSSL,  global-teacher  based  consistency
regularization,  and self-teacher based consistency regularization.  The naming convention in the figures is  as follows: teacher
mode-before or after retraining. For example, self-after denotes that the local model is used as the teacher model in consistency
regularization and records the accuracy of the global model after retraining; self-before denotes that the local model is used as
the teacher model in consistency regularization and records the accuracy of the aggregated model before retraining.
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importance of an effective retraining mechanism.

5　Conclusion

In  this  paper,  we  focus  on  the  labels-at-server  FSSL
setup  and  propose  a  novel  method  EKDFSSL  that
considers both unsupervised learning on the client side
and  supervised  retraining  on  the  server  side.
Specifically, training on client-side unlabeled data may
lead  to  model  collapse  due  to  the  lack  of  reliable
supervision  information.  To  solve  this  problem,  we
propose  a  global  model  guided  consistency
regularization method, which adopts the latest received
global  model  as  the  teacher  model  for  client-side
consistency  training,  enhancing  both  the  accuracy  and
stability  of  local  models.  After  model  aggregation,
retraining  on  server-side  labeled  data  may  cause  the
global  model  overfitting,  especially  when  the  number
of  labeled  data  is  very  limited.  We  introduce  an
additional ensemble knowledge distillation loss, which
enforces  the  global  model  to  retain  what  the  local
models learned, reducing the overfitting and improving
the  generalization  ability  of  the  global  model.  By
combining all the components, our method outperforms
current  baseline  methods  on  the  classic  image
classification datasets. In future work, we can improve
local  training  methods  to  make  more  efficient  use  of
unlabeled  data  on  the  client  side.  In  addition,  we plan
to  investigate  a  more  challenging  FSSL  setting  where
the  data  distribution  mismatches  between  unlabeled
clients and the labeled server.
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