
 

ZKP Protocols for Usowan, Herugolf, and Five Cells

Daiki Miyahara*, Léo Robert, Pascal Lafourcade, and Takaaki Mizuki

Abstract: A Zero-Knowledge Proof (ZKP) protocol allows a participant to prove the knowledge of some secret

without  revealing  any  information  about  it.  While  such  protocols  are  typically  executed  by  computers,  there

exists  a  line  of  research  proposing  physical  instances  of  ZKP  protocols.  Up  to  now,  many  card-based  ZKP

protocols for pen-and-pencil puzzles, like Sudoku, have been designed. Those games, mostly edited by Nikoli,

have simple  rules,  yet  designing them in  card-based ZKP protocols  is  non-trivial.  In  this  work,  we propose a

card-based ZKP protocol for Usowan, a Nikoli game. In Usowan, for each room of a puzzle instance, there is

exactly one piece of false information. The goal of the game is to detect this wrong data amongst the correct

data  and  also  to  satisfy  the  other  rules.  Designing  a  card-based  ZKP  protocol  to  deal  with  the  property  of

detecting a liar has never been done. In some sense, we propose a physical ZKP for hiding of a liar. This work

extends a previous paper appearing in Ref. [1]. In this extension, we propose two other protocols, for Herugolf

and  Five  Cells.  The  puzzles  are  specifically  chosen  because  each  of  those  three  puzzles  shares  a  common

constraint, connectivity. However, showing the connected configuration cannot be done with generic approach

and brings new construction to the existing connectivity ZKP protocol.  Indeed, in Herugolf,  the connectivity is

handled with a given length of cell which is decremental (i.e., the length of each connected cell decreases by

one at each step). For Five Cells, there is an additional step in the setup allowing to encode all the information

needed to ensure a valid ZKP protocol.

Key words:  Zero-Knowledge Proof (ZKP) protocol; playing cards; card-based cryptography; physical assumptions;

Usowan; Herugolf; Five Cells

1　Intoduction

Suppose  that  someone wishes  to  prove  the  knowledge

of a secret without revealing it. For instance, solving a
puzzle (e.g., Sudoku) and convincing a verifier that this
is  indeed  the  solution  without  directly  revealing  the
solution  is  hard.  Such  construction  already  exists  and
can  be  found  in  the  field  of  cryptography.  Indeed,  a
Zero-Knowledge  Proof  (ZKP)  is  a  process  where  one
party can prove the knowledge of information without
revealing it.

A  simple  application  to  ZKP  can  be  related  to
password authentication for a website; only the person
with this password can access to sensitive data but it is
preferable  to  never  reveal  the  password.  A  second
example  can  be  given  in  electronic  voting.  In  this
system,  voters  want  to  enforce  the  correctness  of
mixing ballots (without revealing how the mix is done).
Finally, crypto-currencies, such as Bitcoin, Monero, or
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Zcash,  are  eager  to  include  a  mechanism  to  enforce
knowledge  of  some  secrets  without  revealing  it  (e.g.,
for anonymous transactions).

More  formally,  a  ZKP  protocol  is  between  two
parties:

P s● a  prover  who knows a  solution  to  a  problem
and

V P● a verifier  who wants to be sure that  is indeed
in possession of the solution.

sHowever, no information about  should leak during
the  protocol.  Notice  that  some  information  can  be
recovered  by  the  verifier  without  participating  in  the
protocol.  The  information  that  cannot  be  leaked is  the
one  directly  linked  with  the  protocol.  Note  also  that
some  protocols  are  non-interactive  meaning  that  the
prover  does  not  interact  with  the  verifier  in  order  to
prove  the  knowledge  of  a  secret.  However,  we  only
consider  here  interactive  protocols  where  both  parties
are interacting during the protocol.

A  ZKP  protocol  must  guarantee  three  security
properties:

P s V● Completeness: If  knows , then  is convinced
when the protocol ends.

P
V

● Soundness: If  does not  have the solution,  then
 will detect it during the protocol.

V s● Zero-knowledge:  learns nothing about .
Most of the practical applications for ZKP protocols

are  executed  by  computers.  We  restrict  ourselves  by
using  only  physical  cards  and  envelopes,  hence
providing a more understandable approach of how ZKP
protocols are designed.

Usowan. In  Ref.  [1],  we  presented  a  physical  ZKP
protocol for Usowan[2], which is a pencil puzzle played
with  a  rectangular  grid  composed  of  numbered  cells
and white cells delimited by regions (thick edges).

The goal is to fill (in black) some cells:
We  depict  in Fig.  1 an  initial  Usowan  grid  with  its

solution  and  the  corresponding  rules  in Fig.  2.  Notice
that  numbered  cell  whose  number  is  four  (or  more)  is
automatically a liar. Indeed, if there are four black cells
around a numbered cell, then the numbered cell cannot
be  connected  to  other  white  cells.  This  information  is
not  considered  as  a  leak  from  the  protocol  since  it  is
deducible  from  the  initial  setup  (and  not  from  an
interaction during the protocol).

While  the  hardness  of  the  resolution  for  the
underlying problem (here filling an Usowan grid) is not
crucial  for  a  physical  protocol,  a  usual  ZKP  protocol
needs  to  be  based  on  a  Non-deterministic  Polynomial

time  (NP)-complete  problem  (otherwise  the  verifier
could  compute  the  secret  in  polynomial  time).
Fortunately, the NP-completeness of Usowan has been
proved in Ref. [3]. This result ensures that there exists
a ZKP protocol.

In this paper, we design two other protocols for two
puzzles,  Herugolf  and  Five  Cells.  Herugolf  has  been
proven  NP-complete  in  Ref.  [4]  and  Five  Cells  in
Ref. [5].

Five  Cells. The  goal  of  this  puzzle  is  to  divide  the
grid  into  blocks  of  cells,  where  the  constraints  are
given in Fig. 3 and an example is illustrated in Fig. 4.

 

 
Fig. 1    Initial Usowan grid and its solution taken from Ref. [2].

 

 
Fig. 2    Rules for Usowan[2].

 

 
Fig. 3    Rules for Five Cells.

 

 
Fig. 4    Five Cells initial grid and its solution.
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Herugolf. The goal of this puzzle is to draw arrows,
in  straightline,  from  center  to  center  of  cells.  Each
numbered cell must be connected with “H” (hole) cell.
The constraints are given in Fig. 5 with an example in
Fig. 6.

Contributions. We constructed in Ref. [1] a physical
ZKP protocol  for  Usowan,  giving  the  first  application
to  detecting  if  a  puzzle  has  flaws  (i.e.,  the  liar  rule)
while ensuring that the prover has the solution. It is the
first  physical  ZKP  protocol  to  prove  that  some
information is incorrect among correct information. For
this,  we  only  use  cards  and  envelopes.  Moreover,  we
propose a trick that uses the rules of a Usowan grid in
order to prove that exactly one piece of information is
wrong  in  each  room.  We  use  several  sub-protocols  to
verify  the  rules  and  propose  a  completely  novel  ZKP
protocol.

In this paper, we propose two other protocols for two
different  puzzles,  Five  Cells  and  Herugolf.  The  link
between  the  three  puzzles  presented  here  is  the
connectivity constraint, which enforces that each white
cell  must  share  at  least  one  adjacent  white  cell.  For
Five  Cells,  the  difficulty,  in  constructing  a  ZKP
protocol,  lies  in  changing  the  usual  encoding  for  the
connectivity  problem.  Indeed,  our  new  protocol  must
solve the issue of having an encoding for connectivity
and  an  encoding  for  delimiting  region  (i.e.,  encode

lines between cells).  For Herugolf,  the main challenge
is  to  design  a  ZKP  protocol  with  a  decrement  for  the
connectivity length.

Note  that  this  work  is  an  extension  of  a  previously
accepted  paper[1] where  only  the  Usowan  protocol  is
proposed.

Related  work. Goldwasser  et  al.[6] proved  that  any
NP-complete problem has its corresponding interactive
ZKP  protocol.  Yet  the  generic  approach  has
tremendous  overhead  leading  to  an  impractical  result.
Works on implementing cryptographic protocols using
physical objects are numerous, such as in Ref. [7]; or in
Ref.  [8],  where  a  physical  secure  auction  protocol  is
proposed.  Other  implementations  have  been  studied
using  cards  in  Refs.  [9, 10],  polarising  plates  in  Ref.
[11],  polygon  cards  in  Ref.  [12],  a  standard  deck  of
playing cards in Ref. [13], using a PEZ dispenser[14, 15],
using  a  dial  lock[16],  using  a  15 puzzle[17],  or  using  a
tamper-evident  seals[18−20].  Several  ZKP  protocols  for
other puzzles have been studied, such as Sudoku[21, 22],
Akari[23],  Takuzu[23, 24],  Kakuro[23, 25],  KenKen[23],
Makaro[26, 27],  Norinori[28],  Nonogram[29, 30],
Nurimisaki[31],  Slitherlink[10],  Suguru[32, 33],
Nurikabe[34],  Ripple  Effect[35],  Numberlink[36],
Bridges[37], Shikaku[38], and Cryptarithmetic[39].

Very  recently,  Ruangwises[40] proposed  a  ZKP
protocol for Five Cells, which is essentially different to
our  proposed  one.  This  is  concurrent  and  independent
work.

Outline. In  Section  2,  we  explain  how  to  encode  a
grid  with  some  cards  in  order  to  be  able  to  construct
our  ZKP  protocols.  We  also  recall  the  existing  card-
based  simple  protocols  of  the  literature  that  we use  in
our constructions.  In Section 3,  we briefly present  our
ZKP protocol for Usowan.

Next,  Section  4  give  the  description  of  our  ZKP
protocol for Five Cells and its security proof.

Before concluding in Section 6, we present our ZKP
protocol for Herugolf and its security proof in Section 5.

2　Preliminary

We explain the notations and sub-protocols used in our
construction. We first introduce the general framework
of  card-based protocols,  then present  the  existing sub-
protocols used in our constructions.

{black,white, red}

Cards  and  encoding. The  cards  consist  of
clubs   and  hearts   whose  backs  are  identical  .
We encode three colors  with the order

 

 
Fig. 5    Rules for Herugolf.

 

 
Fig. 6    Herugolf initial grid and its solution.
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of two cards as follows:
We  call  a  commitment  a  pair  of  face-down

cards     corresponding  to  a  color  according  to  the
above  encoding  rule.  We  also  use  the  terms,  a  black
commitment,  a  white  commitment,  and  a  red
commitment.  We  sometimes  regard  black  and  white
commitments  as  bit  values,  based  on  the  following
encoding:
  

 
 

x ∈ {0,1}

x

For  a  bit ,  if  a  pair  of  face-down  cards
satisfies the encoding of Formula (2), we say that it is a
commitment to , denoted by  .

We also define two other encodings[41] as follows:
x ∈ Z/pZ p

(p−1) (x+1)
2

Z/4Z

● -scheme:  For ,  there  are  cards
composed  of    s  and  one   at  position 
from  the  left.  For  example,  is  represented
as         in .

2
Z/4Z

● -scheme:  Same  encoding  is  as  above  but  the
 and   are  reversed.  For  instance,  is  represented

as         in .

2.1　Pile-shifting shuffle[12, 42]

m

(p1, p2, . . . , pm)
⟨·∥ · · · ∥·⟩ (ps+1, ps+2,

. . . , ps+m)

This  shuffling  action  means  to  shuffle  piles  of  cards
cyclically. More formally, given  piles, each of which
consists  of  the  same  number  of  face-down  cards,
denoted  by ,  applying  a  pile-shifting
shuffle  (denoted  by )  results  in 

,
  

P P P P P 
s Z/mZ

P V

where  is uniformly and randomly chosen from .
We  can  simply  implement  this  shuffling  action  using
physical  cases  that  can  store  a  pile  of  cards,  such  as
boxes  and  envelopes.  A  player  (or  players)  cyclically
shuffles  them manually  until  everyone  (i.e.,  and )
loses  track  of  the  offset.  Note  that  this  shuffle  can  be
“input-preserving” by  writing  ordered  numbers  at  the
back  of  envelopes.  When  all  operations  are  done,
players can put back all the commitments to their initial
positions  using  those  numbers.  We  implicitly  use  this
when  commitments  need  to  be  placed  back  to  their
initial positions after a shuffle.

2.2　Mizuki-Sone copy protocol[43]

V
P

We  use  Mizuki-Sone  copy  protocol  to  copy
commitments,  ensuring  to  that  this  is  indeed  a
correct  copy  of  a  given  commitment  (i.e.,  cannot
cheat with arbitrary value). Note that a red commitment
is not considered in this protocol.

This description is a compact version of the original
one[43].  Here,  we  use  a  pile-shifting  shuffle  in  the
following  Step  2  instead  of  using  a  random  bisection
cut invented in Ref. [43].

The protocol proceeds as follows:

a
Step  1: Turn  over  all  face-up  cards  and  put  the

commitment  to  above  the  four  additional  cards  as
follows:
  

 
Note that black-to-red represents 0, and red-to-black

represents 1 according to Formula (2).
Step 2: Apply a pile-shifting shuffle as follows:

  

 

a
Step  3: Reveal  the  two  above  cards  and  obtain  two

commitments  to  as  follows  (note  that  negating  a
commitment is easy):

    (a)  If  they  are    ,  then  the  four  bottom  cards

    are .

    (b)  If  they  are    ,  then  the  four  bottom  cards

    are .

2.3　Input-preserving Five-card trick[24]

This  sub-protocol  allows  to  compute  an  OR operation
while being able to replace commitments back to their
original configuration.

The sub-protocol proceeds as follows:

a b
Step 1: Add helping cards and swap the two cards of

the commitment to , so that we have the negation  as
follows:
  

 
Step  2: Rearrange  the  sequence  of  cards  and  turn

over the face-up cards as follows:
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Step  3: Regarding  cards  in  the  same  column  as  a
pile,  apply  a  pile-shifting  shuffle  to  the  sequence  as-
follows:
 
 

 
Step 4: Reveal all the cards in the above row,

a∨b = 0

    (a) If the resulting sequence is           (up
    to cyclic shifts), then .

a∨b = 1

    (b) If sit is          (up to cyclic shifts), then
     .

Step  5: After  turning  over  all  the  face-up  cards,
apply a pile-shifting shuffle.

Step 6: Reveal all the cards in the bottom row; then,
the revealed cards should include exactly one  .

b
a b

Step  7: Shift  the  sequence  of  piles  so  that  the
leftmost  card  is  the  revealed  ,  and  swap  the  two
cards  of  the  commitment  to  to  restore  commitments
to  and .

2.4　How to form a white polyomino

Before  explaining  the  protocol,  we  need  to  describe
two crucial sub-protocols first,  namely the chosen pile
protocol and the 4-neighbour protocol.
2.4.1　Chosen pile protocol[28]

P
V

This  protocol  allows  to  choose  a  pile  of  cards
without  knowing  which  one  it  is.  Some  operations
can be done on this pile while all the commitments are
replaced in their initial order.

m
(p1, p2, . . . , pm) 2m

P i
pi i

m
pi

This  protocol  is  an  extended  version  of  the “chosen
pile  cut” proposed  in  Ref.  [44].  Given  piles

 with  additional  cards,  the  chosen
pile protocol enables a prover  to choose the -th pile

 (without  revealing  the  index )  and  revert  the
sequence  of  piles  to  their  original  order  after
applying other operations to , the detailed process is
as follows:

(m−1) P m

i V

m

Step 1: Using     s and one    ,  places 
face-down cards  (denoted  by  Row 2)  below the  given
piles,  such  that  only  the -th  card  is   .  further
places  cards  (denoted  by  Row  3)  below  the  cards,

such that only the first card is  , as depicted in Fig. 7.
Step 2: Considering the cards in the same column as

a  pile,  apply  a  pile-shifting  shuffle  to  the  sequence  of
piles.

i P pi

i

Step 3: Reveal all the cards in Row 2 . Then, exactly
one   appears,  and  the  pile  above  the  revealed   is
the -th  pile  (thus  can  obtain ).  After  this  step  is
invoked,  other  operations  are  applied  to  the  chosen
pile.  Then,  the  chosen  pile  is  placed  back  to  the -th
position in the sequence.

Step 4: Remove the revealed cards, i.e., the cards in
Row  2.  (Note,  therefore,  that  we  do  not  use  the
card   revealed in Step 3.) Then, apply a pile-shifting
shuffle.

p1

p1

Step  5: Reveal  all  the  cards  in  Row  3.  Then,
one   appears,  and  the  pile  above  the  revealed   is

.  Therefore,  by  shifting  the  sequence  of  piles  (such
that  becomes the leftmost pile in the sequence), we
can obtain a sequence of piles whose order is the same
as  the  original  one  without  revealing  any  information
about the order of the input sequence.
2.4.2　Sub-protocol: 4-neighbour protocol[34]

pq p×q
P

P

V

V

P

(p+1)× (q+1)

Given  commitments placed on a  grid, a prover
 has a commitment in mind, which we call a “target”

commitment.  The  prover  wants  to  reveal  the  target
commitment and another one that lies next to the target
commitment  (without  revealing  their  exact  positions).
Here, a verifier  should be convinced that the second
commitment  is  a  neighbour  of  the  first  one  (without
knowing  which  one),  as  well  as  should  be  able  to
confirm  the  colours  of  both  the  commitments.  To
handle the case where the target  commitment is  at  the
edge  of  the  grid,  we  place  commitments  to  red  (as
“dummy” commitments) in the left of the first column
and below of the last row of the given grid (see Fig. 8
for  example)  to  prevent  from  choosing  a
commitment  that  is  not  a  neighbour.  Thus,  the  size  of
the expanded grid is .

Note  that  we  do  not  place  dummy  commitments  in
the row above the first  one and in the column right  to
the  last  one,  because  in  the  expanded  grid  of  size
 

 
Fig. 7    Configuration at Step 1 in the chosen pile protocol.
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(p+1)(q+1) the  row  above  the  first  one  can  be
regarded  as  the  last  row,  i.e.,  dummy  commitments.
Thus,  we do not  need dummy commitments  placed in
the  row  above  the  first  one,  which  also  holds  for  the
column right to the last one.

The sub-protocol proceeds as follows:
P V (p+1)(q+1)Step 1:  and  pick the  commitments

on  the  grid  from  left-to-right  and  top-to-bottom  to
make a sequence of commitments as follows:
 
 

 
PStep 2:  uses the chosen pile protocol to reveal the

target commitment.
P V

p+1 P V

Step 3:  and  pick all  the four neighbours of the
target  commitment.  Since  a  pile-shifting  shuffle  is  a
cyclic  reordering,  the  distance  between  commitments
are  kept  (up  to  a  given  modulo).  That  is,  for  a  target
commitment  (not  at  the  edge),  the  possible  four
neighbours are at distance one for the left or right one,
and  for the bottom or top one. Therefore,  and 
can determine the positions of all the four neighbours.

PStep 4: Among these four neighbours,  chooses one
commitment using the chosen pile protocol and reveals
it.

P VStep 5:  and  end the second and first chosen pile
protocols.
2.4.3　Full protocol

p×q
P

V

Assume that there is a grid having  cells. Without
loss  of  generality,  wants  to  arrange  white
commitments on the grid, such that they form a white-
polyomino while  is convinced that the placement of
commitments is surely a white-polyomino. The method
is as follows.

P V

(p+1)(q+1)

Step  1:  and  place  a  black  commitment
(i.e.,    )  on  every  cell  and  red  commitments  as
mentioned  in  Section  2.4.2  so  that  they  have

 commitments on the board.
VStep  2:  selects  a  black  commitment  on  any  cell

that  should  be  colored  white  by  rules  (e.g.,  numbered
cells  in  a  Usowan  puzzle),  and  swaps  the  two  cards
constituting  the  commitment,  so  that  it  becomes  a
white  commitment  (recall  the  encoding  as  Formula
(1)).

P V
pq−1

Step  3:  and  repeat  the  following  steps  exactly
 times.
P

P

(a)  chooses one white commitment as a target and
　　one black commitment among its neighbours using
　　the 4-neighbour protocol; the neighbour is chosen,
　　such that  wants to make it white.

V
V V

(b)  reveals the target commitment. If it corresponds
　　 to white, then  continues; otherwise  aborts.

V P
P

P

V

(c)  reveals the neighbour commitment (chosen ).
　 　If  it  corresponds  to  black,  then  makes  the
　　   neighbour white or keep it black (depending on ’s
　　  choice) by executing the following steps; otherwise
　　   aborts.*

P P

P

　　i.  If  wants  to  change  the  commitment, 
　　 　  places face-down club-to-heart pair below it;
　　 　   otherwise,  places a heart-to-club pair,
  

 

V
　　ii.  Regarding  cards  in  the  same  column  as  a

　　 　  pile,  applies  a  pile-shifting  shuffle  to  the
　　 　   sequence of piles,
  

  

V
V

V

　　iii.  reveals the two cards in the second row. If
　　 　   the revealed right card is  , then  swaps the
　　 　   two cards in the first row; otherwise  does
　　 　  nothing.

P V(d)  and  end the 4-neighbour protocol.
P V

pq
Step  4:  and  remove  all  the  red  commitments

(i.e.,  dummy  commitments),  so  that  we  have 
commitments on the board.

V

P
P

After  this  process,  is  convinced that  all  the  white
commitments  represent  a  white-polyomino.  Therefore,
this method allows a prover  to make a solution that
only  has  in  mind,  guaranteed  to  satisfy  the
connectivity constraint.

k V
P V (k−1)
V

P

If  the  number  of  white  cells  in  the  final  polyomino,
say ,  is  public  to  a  verifier ,  it  is  sufficient  that  in
Step 3,  and  repeat  times and in Step 3c, and
hence,  simply  swaps  the  two  cards  constituting  the
neighbour  commitment  to  make  it  white  (without ’s
choice).

Z2.5　Sum in [41]

Z/2Z Z

We give an overview of the protocol described in Ref. [41]
for  adding  elements  in  with  result  in .  This
protocol is needed for the liar rule 4†.

xi ∈ Z/2Z i ∈ {1,2, . . . ,n}Given  commitments  to  for 
along  with  one   and  one  ,  the  protocol  produces 
 

P

P
P

*One  might  think  that  this  step  can  be  simply  achieved  by  letting 
privately  change the neighbour  commitment.  However,  it  might  violate
the soundness property because  can freely change it  (e.g.,  into a red
commitment), and hence, we have to additionally verify that  correctly
changes the commitment.
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S =
∑n

i=1 xi Z/(n+1)Z
xi

x1 x2

x1− r x2+ r

r ∈ Z/3Z x2+ r
x2 r x1− r

x2+ r (x1− r)+ (x2+ r) =
x1+ x2 Z/(p+1)Z
Z p

x1 and x2 Z/pZ

their  sum  in  encoded  in  the  -
scheme  without  revealing .  The  computation  is
performed  inductively;  when  starting  by  the  two  first
commitments  to  and ,  they  are  transformed  into

 and  encoded  in  the -scheme  and -
scheme,  respectively,  for  uniformly  random  value

. Then  is revealed (no information about
 is  revealed  because  is  random),  and  is

shifted by  positions to encode 
. Note that this result is in  (or simply

 because  the  result  is  less  than  or  equal  to )  for
elements  in .

1
0

x1 x2 0 1
x1+ x2

Let  us  describe  the  protocol.  First,  notice  that  black
cells  are  assumed to  be  equal  to  and white  cells  are
equal  to  (see  Formulas  (1)  and  (2)).  Two
commitments  to  and  (either  or )  will  be
changed to ,
 
 

 
x1

x1 Z/3Z

Step 1: Swap the two cards of the commitment to 
and add a   face down to the right. Those three cards
represent  in the  -scheme in ,
 
 

 

x2 x2

Z/3Z

Step 2: Add a   on the right of the commitment to
.  Those three cards represent  in the  -scheme in

:  .
x1+ r

x2− r
r ∈ Z/3Z

Step  3: Obtain  three  cards  representing  and
those representing  for a uniformly random value

 as follows:
(a) Place in reverse order the three cards obtained in

　　Step  2  below the  three  cards  obtained  in  Step  1,
 
 

  

(b) Apply a pile shifting shuffle as follows:
 
 

 

r ∈ Z/3Z
x1+ r

2− x2+ r

　For a uniformly random value , we obtain
   three cards representing  and those representing
    .

2− x2+ r x2− r
(c) Reverse the order of the three cards representing

　 　  to  obtain  those  representing :

　　   .
x2− r
x1+ r

x1+ x2

Step  4: Reveal  the  three  cards  representing ,
and shift to the right the three cards representing 
to  obtain  those  representing  in  the  -scheme;
apply  the  same  routine  for  the  remaining  elements  to
compute the final sum.

Z/3Z
Z/qZ

q−1 q−2

q−2

Notice  that  we  describe  the  protocol  for  a  result  in
,  but  it  is  easily adaptable for  a  result  in,  let  say,
. Indeed, during Step 1, we add a single   to the

first  commitment  and  a  single   to  the  second;  thus
for a sum that could be equal to , we add    s
to the first commitment and    s to the second.

3　ZKP Protocol for Usowan

p×q

We  present  a  card-based  ZKP  protocol  for  Usowan.
Consider  an  Usowan  instance  composed  as  a
rectangular grid of size .

3.1　Setup phase

V P
p×q

(p+1)(q+1)

The verifier  and prover  place black commitments
on  each  cell  of  the  grid  (also  on  the  numbered
cells)  and  place  red  commitments  (“dummy”
commitments) on the left of the first column and below
the  last  row,  so  that  we  have 
commitments, as depicted in Fig. 8.

3.2　Connectivity phase

V

V

We apply the sub-protocol introduced in Section 2.4 to
form  a  white  connected  figure.  After  this  phase,  is
convinced  that  the  white  commitments  are  connected
(i.e.,  Rule  2).  Moreover,  reveals  the  commitments
corresponding to numbered cells to check that they are
indeed  white  (i.e.,  Rule  1).  Notice  that  revealing

 
 

†A numbered cell has the corresponding number of black cells around it.
However,  each  region  has  exactly  one  cell  where  the  number  of  black
cells is not equal to the numbered cell.

 

 
5×3Fig. 8    Commitments  setup  for  a  Five  Cells  grid  of .

Commitments  represent  line  between  regions.  The  notation
D refers to dummy commitments.
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V
directly  those  commitments  does  reveal  information
about  the  solution  (i.e.,  learns  that  those  cells  are
white),  but  this  information  is  already  known
independently of the protocol.

3.3　Verification phases

There  are  two  rules  to  check:  black  commitments
cannot  touch  horizontally  nor  vertically  (i.e.,  Rule  3)
and each numbered cell has the corresponding number
of  black  cells  around  it  except  for  one  liar  in  each
region (i.e., Rule 4).

V

1 0

1
V V

0

Lonely  black. For  each  pair  of  adjacent
commitments,  applies  the  five-card trick introduced
in Section 2.3 to the two commitments to compute their
disjunction. We consider here that a white commitment
is  equal  to  while  a  black  commitment  is  equal  to 
(see the encoding of Formula (2)). Hence, if the output
is ,  then  it  means  that  at  least  one  commitment  is
white, so  continues, otherwise  aborts (because the
only case having output  is when there are two black
commitments).

V

Z/5Z

(x−1)

x

Liar.  needs to check that  each numbered cell  has
the  corresponding  number  of  black  cells  around  it
except  for  exactly  one  liar  in  each  region.  We  cannot
simply check the number of black cells because it leaks
information.  Instead,  we  compute  the  sum  of  black
cells  in  introduced  in  Section  2.5  for  all
numbered  cells  in  a  region.  However,  we  do  not
directly  reveal  the  result  but  just  the -st  card  of
the output sequence. This ensures that the sum is equal
to or not to  instead of giving the actual sum.

It  remains  one  sub-protocol  to  use  because  the
addition  is  destructive;  thus,  we  need  to  copy
commitments  sharing  a  numbered  cell.  The  copy
protocol  is  described  in  Section  2.2.  We  can  now
formally  describe  the  liar  verification.  For  every
region, apply the following steps:

k > 1

k−1

Step  1: For  each  cell  that  shares  numbered
cells,  apply  the  copy  protocol  (introduced  in  Section
2.2)  times.

Step  2: For  each  numbered  cell,  compute  the
addition of its four neighbors ‡. Recall that the result is
encoded  as  the  -scheme  (see  Section  2);  thus,  the
result of the sum has a   in its corresponding position
(and all other cards are  s).

Step  3: For  each  sequence  obtained  in  Step  1,  pick
the card in the position that corresponds to the number

written  on the  numbered cell.  The result  must  be  kept
secret (i.e., keep the cards face-down). For example, if
the  number  is  three,  then  the  color  of  the  fourth  card
from the left represents the sum as follows:
 
 

 
Step  4: Shuffle  and  reveal  all  the  cards  previously

chosen.  If  exactly  one  club  is  revealed,  then  continue
(i.e., there is exactly one liar); otherwise aborts.

3.4　Security proofs

Our  protocol  needs  to  verify  three  security  properties
given  as  theorems.  Note  that  the  sub-protocols  used
from the  literature  have  been  proven  secure,  i.e.,  they
are correct, complete, sound, and zero-knowledge.

P
P V

Theorem 1    (Completeness) If  knows the solution
of an Usowan grid, then  can convince .

P VProof      convinces  in the sense that the protocol
does  not  abort,  which  means  that  all  the  rules  are
satisfied. The protocol can be split into two phases: (1)
the connectivity phase and (2) the verification phase.

P
P

(1) Connectively phase: Since  knows the solution,
the white cells are connected, and hence  can always
select a black commitment in Step 3a of the protocol in
Section 2.4.3 (dedicated to form a white polyomino) to
swap it to white.

(2)  Verification  phase: For  the  lonely  black
verification, there is no configuration of two black cells
that  are touching horizontally nor vertically,  hence for
every pair of adjacent cells, there is always at least one
white cell.

i

i+1

For  the  liar  verification,  there  is  exactly  (in  each
region)  one  numbered  cell  surrounded  by  a  different
number  of  black  cells.  Suppose,  without  lost  of
generality,  that  the  liar  cell  is  equal  to  in  a  given
region (the same result could be applied for each other
region). When the sum of the four neighbours is done,
the card at position (from left)  is  , otherwise the
numbered  card  is  not  a  liar.  Thus  when  revealing  the
cards  at  the  last  step  of  the  protocal  (Step  4),  there  is
always a   card. ■

P
p×q P

V

Theorem  2    (Soundness)  If  does  not  provide  a
solution  of  the  Usowan  grid,  is  not  able  to
convince .

P
P

Proof    Suppose that  does not  provide a solution.
If  the  white  cells  are  not  connected,  then  cannot

 
 

‡For a numbered cell  in the edge of the board, compute the addition of
its three or two neighbors.
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P

0 V

V

choose a neighbor commitment that  wants to change
at Step 3c of the protocol in Section 2.4.3 (dedicated to
form  a  white  polyomino).  If  there  are  two  black
commitments  touching  (or  more),  then  the  five-card
trick will output ; hence,  will abort. Finally, if there
is  not  one  liar  exactly  in  a  given  region,  then  the  last
step  of  the  verification  will  reveal  either  no   or  at
least two   s; hence,  will abort. ■

V
P G

Theorem  3    (Zero-knowledge)  learns  nothing
about ’s solution of the given grid .

Proof    We use the same proof technique as in Ref.
[45],  namely  the  description  of  an  efficient  simulator
that simulates the interaction between an honest prover
and  a  cheating  verifier.  The  goal  is  to  produce  an
indistinguishable  interaction  from  the  verifier’s  view
(with  the  prover).  Notice  that  the  simulator  does  not
have the solution, but it can swap cards during shuffles.
Informally, the verifier cannot distinguish between the
distributions of two protocols,  one that  is  run with the
actual  solution  and  one  with  random  commitments.
The simulator acts as follows:

●  The  simulator  constructs  a  random  connected
white polyomino.

● During the lonely black verification, the simulator
replaces  the  cards  in  the  five-card  trick  introduced  in
Section  2.3  with          .  While  the  latter
sequence  is  randomly  shifted,  this  ensure  that  the
protocol continues.

●  During  the  liar  verification,  the  simulator  simply
replaces,  in  the  last  step,  the  cards  to  have  exactly
one   and  the  rest  as   s.  This  ensure  that  there  is
exactly  one  liar  in  a  given  region,  meaning  that  the
protocol does not abort.

V
The  simulated  and  real  proofs  are  indistinguishable,

hence  learns  nothing  from  the  connectivity  and
verification  phases.  Finally,  we  conclude  that  the
protocol is zero-knowledge. ■

4　ZKP Protocol for Five Cells

(q+1)× p
(p+1)×q

(p,q) = (5,3) D

This  puzzle  is  different  from the  two others  presented
here,  as  the  player  solving  it  must  fill,  not  the  cells
themselves,  but  the  edges  between  them.  So  the  first
step  is  to  provide  a  specific  setup  to  handle  this
difference. We thus need to add commitments between
each cell  to encode lines forming regions; this is  done
by  adding  commitments  in  columns  and

 commitments  in  rows.  We depict  this  setup
in Fig. 8 in case of , where  denotes a red

commitment as a dummy.
For  encoding,  we  introduce  another  color,  gray,  to

distinguish  cells  from  lines.  The  four  colors  are
encoded as follows:
 
 

 
In  our  ZKP  protocol,  either  white  or  gray

commitment is placed on each cell, and either black or
red commitment is placed in-between, i.e., the color of
its second card represents either a cell or a line.

We  informally  define  our  protocol  for  Five  Cells,
illustrated in Fig. 9, as follows:

P(1)  puts  commitments  between  cells  as  described
above and accordingly to its solution.

V

V

(2)  verifies  the  number  rule  by  taking
commitments  around  the  cell;  then  shuffle  them  to
reveal  all  the  commitments.  If  the  number  of  black
commitments is the same as the number written in the
cell, then  continues.

P
V

P
V

5

(3)  The  goal  for  is  to  construct  a  pentomino
without  knowing  which  shape  it  is.  Since  the  total
number of pentominoes is known (pq/5), the following
constructive  step  is  done  for  each  pentomino: 
chooses  two adjacent  commitments  and  checks  that
there  is  no  line  in-between  (then  repeated  times  to
form a pentomino).

4.1　Checking the shape

Each  delimited  region  must  form  a  pentomino  (i.e.,
composed  of  five  connected  cells).  The  shape  is
verified  through  the  connectivity  constraint  using  a
variant of sub-protocol in Section 2.4.
 

 
Fig. 9    Overview of our Five Cells protocol.
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However,  we  change  the  grid  to  add  commitments
representing the lines;  so we cannot  apply directly the
sub-protocol  of  Section  2.4.  Basically,  the  neighbours
of a given cell have not the same distance when put in
sequence but still follow the same evaluation. We give
the corresponding distance in Table 1.

D

Notice that those distances are correct if the grid does
not contain holes, i.e., there are commitments between
each  cell.  This  means  that  we  need  to  add  dummy
commitments  to  fill  the  grid.  They  are  red
commitments  and  only  used  to  balance  the  grid  to
enforce the results of Table 1.

p×q (2p+1+2)× (2q+
1+2) = (2p+3)× (2q+3)

(2p+1)×
(2q+1)

Finally,  we  must  also  add  dummy  commitments
above the first row and on the left of the first column,
as  illustrated  in Fig.  9.  This  comes  from  the  fact  that
commitments  at  the  edge  of  the  intial  grid  have  no
neighbour,  but  to  avoid  leaking  information,  we  need
to  add  dummy  commitments.  In  the  original  protocol
(see Section 2.4), there is only one row/column of such
dummies but here we need to add two rows/columns to
keep  the  correct  distances  about  neighbours.  So  in
total,  we  go  from  a  grid  to  a 

 grid.  Indeed,  commitments
between  each  cell  and  the  outer  part  give  a 

 grid,  and  two  rows  (columns)  on  the  bottom
(left) part of the grid complete the final grid.

4.2　Our protocol for Five Cells

P

V

Setup. The  initial  grid  is  modified  as  explained  in
Section  4.1.  Moreover,  applies  its  solution  on  the
grid  by  putting  black  commitments  to  indicate  edges
and  red  commitments  to  indicate  absence  of  edge,  for
each in-between cells. The commitments corresponding
to actual cells of the grid are set to white by .

V
i

Checking numbers (Rule 2 of Fig.  3). The verifier
 checks  the  rule  number  by  applying  the  following,

on each numbered cell with number :
VStep  1:  picks  the  four  closest  commitments

(corresponding  to  the  presence  or  absence  of  edges)
and shuffles them.

VStep 2:  reveals all the commitments and checks if

i Vthe number of black commitments is equal to . If so, 
continues, otherwise aborts.

VStep 3:  puts back in their  initial  position the four
commitments.

Checking pentominoes (Rule 1 of Fig. 3). We have
now all the material to verify the pentominoes. Repeat
the following steps pq/5 times:

PStep 1:  chooses a white cell to begin its pentomino
using the chosen-pile protocol.

V
V

Step  2:  reveals  the  commitment  to  check  if  it  is
white; if so,  turns it to gray and continues, otherwise
aborts.

P V 4Step  3:  and  execute  the -neighbour  protocol
and  confirm  that  the  target  commitment  is  gray,  but
instead of taking one neighbour in each direction, they
pick the two closest in each direction.

VStep 4:  makes the second commitment to gray and
reveal the first commitment; if it is red, then continues,
otherwise aborts.

P VStep  5:  and  repeat  Steps  3 and  4 until  a
pentomino is constructed.

P V

V

Step  6:  and  execute  the  chosen-pile  protocol
and  check  that  the  chosen  commitment  (inside  the
pentomino)  is  gray;  if  so,  turns  it  to  black  and
continues, otherwise aborts.

V

V

Step  7:  takes  the  first  cards  of  every  two  closest
commitments  (of  the  previously  chosen  commitment)
in  each  direction,  shuffles  the  eight  cards,  and  reveals
them;  if  they  are  four  s  and  four   s,  then 
continues; otherwise aborts.

P VStep 8:  and  repeat Steps 6−8 four times.
V

V

When all the pentominoes are constructed,  reveals
the commitments corresponding to the cells of the grid
(not the commitment corresponding to the lines). If all
the  cells  are  black,  then  is  convinced  that  Rule  1
(given in Fig. 3) is respected.

4.3　Security proofs for Five Cells

Our  protocol  needs  to  verify  three  security  properties
given  as  theorems.  Note  that  the  sub-protocols  used
from the  literature  have  been  proven  secure,  i.e.,  they
are correct, complete, sound, and zero-knowledge.

P
P V

Theorem  4    (Completeness)  If  knows  the
solution of an Five Cells grid, then  can convince .

P VProof      convinces  in the sense that the protocol
does  not  abort,  which  means  that  all  the  rules  are
satisfied. The protocol can be split into two phases: (1)
verifying  the  number  rule  (Rule  2  in Fig.  3)  and  (2)

 

Table 1    Distance (given for initial grid of a p × q size) from
a cell when all commitments are put in sequence (as in Step 1
of protocol in Section 2.4.2).

Commitment Classic Variant
Right/Left 1 2
Up/Bottom p+1 2p+4
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checking the shape (Rule 1 in Fig. 3).
P(1)  Since  knows  a  solution,  the  number  of  black

commitments  (i.e.,  lines)  around  every  numbered  cell
should  be  equal  to  that  number.  Thus,  revealing  the
black commitments (after shuffling) as in the protocol,
this rule is verified.

P

P P

(2)  Even  if  any  of  four  cells  in  a  pentomino  are
colored with red,  can always find a white cell next to
one of the red cells, such that there is no line between
them  because  knows  a  solution.  This  means  that 
can  always  choose  two  white  commitments  starting
from a red commitment via the 4-neighbour protocol at
Step  3  of  protocol  in  Section  2.4.2,  such  that  the
protocol never aborts. ■

P
p×q P

V

Theorem  5    (Soundness)  If  does  not  provide  a
solution  of  a  Five  Cells  grid,  is  not  able  to
convince .

PProof    Suppose that  does not  provide a solution.
We directly apply the soundness proof of Ref. [34] for
the  connectivity,  since  our  variant  could  be  seen  as
their  connectivity  sub-protocol  (described  in  Section
2.4) by adding commitments between each cell (of the
initial  grid).  This  means  that  their  connectivity
construction can be modeled as our encoding (i.e., with
additional  commitments)  by  considering  that  there  is
no line delimiting region, hence no region is formed.

P

Having  checked  the  connectivity  constraint,  there  is
an additional property to check (which is out of scope
for  Ref.  [34]),  the  region  are  formed  of  five  cells  and
no more (or  less).  If  a  region is  not  formed of  exactly
five  cells,  then  our  protocol  will  detect  it.  Indeed,  by
adding  a  color  to  the  encoding  (i.e.,  gray),  there  is  a
verification about all cells in a region. Each neighbour
of  a  cell  (inside  a  region,  and  detected  by  the  gray
color) has each neighbour either gray with no line (i.e.,
both  are  inside  the  region)  or  white/red  with  a  line
between  them  (the  cell  is  at  the  edge).  When  the
pentomino is checked, then its color is turned to black,
meaning that  cannot continue this pentomino to add
cells. ■

V
P G

Theorem  6    (Zero-knowledge)  learns  nothing
about ’s solution of the given grid .

Proof    We use the same proof technique as in Ref.
[45],  namely  the  description  of  an  efficient simulator
that simulates the interaction between an honest prover
and  a  cheating  verifier.  The  goal  is  to  produce  an
indistinguishable  interaction  from  the  verifier’s  view
(with  the  prover).  Notice  that  the  simulator  does  not

have the solution, but it can swap cards during shuffles.
Informally, the verifier cannot distinguish between the
distributions of two protocols,  one that  is  run with the
actual  solution  and  one  with  random  commitments.
The simulator acts as follows.

V

●  For  the  connectivity  phase,  the  simulator  simply
draws random pentominoes to construct a tilling of the
grid.  Notice  that  this  is  not  the  solution  with
overwhelming probability,  but  will  not  abort  at  this
point.

V

● Now, for each numbered cell, the simulator swaps
card  to  the  corresponding  number  being  equal  to  the
number of black commitments (which is possible since
there is a shuffle). Thus  will not abort.

V
The  simulated  and  real  proofs  are  indistinguishable,

and  hence  learns  nothing  from  our  protocol,  so  we
conclude  that  the  protocol  for  Five  Cells  is  zero-
knowledge. ■

5　ZKP Protocol for Herugolf

P
The  setup  is  straightforward  since  our  protocol  is
constructive  (  will  construct  its  solution  throughout
the  protocol).  We  emphasize  that  all  cells  are
considered  as  white  commitments.  Additionally,  we
place a black card   under each commitment; this will

be  used  later  to  mark  the  tip  of  the  arrow.  Let  us  call
this row the tip row.

For clarity, suppose we need to construct the arrows
depicted  in Fig.  10.  The  following  steps  are  done  for
each  numbered  cell  (but  examplify  with  the
configuration of Fig. 10):

V

p1, p2, p3, and p4 V

Step  1:  takes  the  four  (corresponding  to ④)
commitments,  and  the  four  cards  in  tip  row,  in  each
direction  to  form  four  (one  for  each  direction)  piles

,  shown  in Fig.  11:  Additionally, 
reveals the commitment of the circle cell (here ④) and
aborts if it is black; otherwise continues.

P V
p1, p2, p3, and p4 P

Step  2:  and  apply  the  chosen  pile  protocol  to
,  so  that  can  choose  in  which

 

 
Fig. 10    Example of our protocol for Herugolf.

  Daiki Miyahara et al.:  ZKP Protocols for Usowan, Herugolf, and Five Cells 1661

 



direction the arrow is formed.
V

V
V

Step 3:  reveals all the commitments of the chosen
pile;  aborts if there is at least one black commitment
(meaning that  there is  already another arrow).  Then 
swaps all commitments so that all the commitments are
now black.

V
4

Step 4: Before replacing back the piles,  replaces a
red  card  under  the  last  commitment  (the  number  of
the pile) in tip row:
  

 
 

P VStep 5:  and  replace back all the commitments to
their  initial  positions  by  ending  the  chosen  pile
protocol.

VStep 6:  reveals the tip row corresponding to cells
in the gray area. This ensures that Rule 3 is respected.

P
3 2

1 k
k = 3

ℓ P
ℓ = 2 k

Step 7: Seeing Fig. 10,  wants to continue the path
by constructing arrows of  sizes  and ,  but  an arrow
of size  is not needed. Let  denote the length of the
next  arrow  we  consider  (i.e.,  for  this  example).
Let  denote the length of the last arrow that  wants to
construct  (i.e., ).  At  this  step,  we  create 
commitments, each of which will be used at Step 9, as
follows.

V k
(k−1)

V (k+2) ℓ

(a)  places  commitments to 0, places a commitment
　　 to 1 on the right side of them, and places 
　　 commitments to 1 on the left side of them. Then
　　   places  cards  of  value  encoded  in  the
　 　 -scheme  and  a  face-down  under  them  as
　　follows:
  

 

V ℓ , 0
(k+2) ℓ V

V

 confirms that  by revealing the leftmost card
　　of  cards representing ;  if  it  is  a  ,  then 
　　aborts; otherwise,  continues.

V(b)  applies a pile shifting shuffle to the two sequences
　　of  cards  placed  at  the  previous  step,  regarding
　　 cards in the same column as a pile.

V

(k−1)
k

CC1,CC2, . . . ,CCk

(c)  reveals  all  the  cards  of  the  bottom  sequence.
　 　Then  exactly  one   is  revealed,  and  take  the
　　 commitment above the revealed   as well as the
　 　  commitments  to  the  right  (apart  from
　　 cyclic  rotation).  We  call  these  commitments
　　   starting from the left.

P
3 4

3
1

Step 8:  wants to continue the path by constructing
an arrow of size . The -neighbour protocol described
in Section 2.4.2 is used except that  commitments are
taken (except of just ). The technique for Five Cells is
used  to  know  which  commitment  to  take  in  the  large
sequence:
  

3p

3p

2p

2p

1p

1p

 

V

where the  tip  is  denoted by the  middle  triangle,  and p
represents  the  number  of  line  from  a p × q grid.  Note
that  knows  which  cell  corresponds  to  the  tip  by
revealing a card in tip row.

P

P

P CC1 V

Step 9:  applies the chosen pile protocol to choose
its  direction  to  form the  next  arrow,  and  prepares  two
identical  commitments     (if  wants  not  to  draw
the arrow anymore, P would have chosen     ).  For
this,  takes  created  at  Step  7,  and  copies  it
with the copy protocol of Section 2.2 (this ensures that
the same commitments are used).

V
CC1

p1 and p2

Step 10:  places  the  three  commitments  chosen at
the  previous  step, ,  and  additional  cards,  forming
two piles  as follows:

CC′

V
p1 and p2 CC1

V

V

V

where  denotes a commitment specifying the “real”
arrow.  then turns over all the face-up cards, shuffles
the  two  piles ,  and  reveals .  Then
either     or     is  revealed,  and  reveals  the
three  commitments  above the  revealed  ;  aborts  if
there  is  at  least  one  black  commitment.  Finally, 

 

 
Fig. 11    Forming four piles for each directions.
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swaps them so that they are now black.
V p1 p2

CC′
Step  11:  shuffles  and  again,  and  reveals

.  Then  we  derive  the  "real"  arrow  above  the
revealed  .

P
V

V
CC1

V

CC1

CC1

Step  12: The  commitments  are  swapped  with ’s
solution and without ’s knowing if there is an arrow.
Now,  this  step  ensures  that  the  tip  of  the  arrow  is
marked on the newly created arrow (if  so)  or  stays on
the  previous  one.  For  this,  uses  the  second
commitment of  (the first one has been used in the
previous  step)  by  replacing  them with  the  cards  of  tip
row.  Concretely,  replaces  the   card  of  tip  row by
the  left  card  of ,  and  the  card  under  the  third
commitment by the right card of  as follows:
 
 

Commitment
1 2 3

Tip row

CC1
 
 

V
Step  13: Put  back  all  the  commitments  in  their

respective  position  in  the  grid.  reveals  the  tip  row
corresponding to the gray area; this ensures that no tip
is placed on those forbidden cells, thus ensuring Rule 3
given in Fig. 5.

P V
1
CC1

1

Step 14:  and  repeat Steps 8 to 13 by decreasing
the  length  of  the  arrow  and  takeing  a  commitment
sequentiall  starting  from  until  reaching  a  length
arrow equal to .

5.1　Verification phase

V  simply reveals the tip row of the “H” cells to check
that the tip is a   (meaning that each numbered cell is
connected  with  a  hole  and  that  every  arrow  ends  at  a
hole).

5.2　Security proofs for Herugolf

As  before,  our  protocol  needs  to  verify  three  security
properties  given  as  theorems.  Note  that  the  sub-
protocols  used  from  the  literature  have  been  proven
secure, i.e., they are correct, complete, sound, and zero-
knowledge.

P
P V

Theorem 7    (Completeness) If  knows the solution
of an Herugolf grid, then  can convince .

P VProof      convinces  in the sense that the protocol
does  not  abort,  which  means  that  all  the  rules  are
satisfied. In particular, each numbered cell is connected
with a hole cell without crossing branches.

P

V

Firstly,  given  a  numbered  cell,  an  arrow  is  always
depicted  in  a  direction  chooses,  and  its  tip  is
represented  in  tip  row  by  executing  Steps  1 to  6  in
Section 5.  The length of the arrow is always the same
as  the  number  written  on  the  given  numbered  cell,
because in Step 3,  changes the same number of white
commitments into black ones.

CC1,CC2, . . . ,CCkNext,  are derived in Step 7. In the
case  of Fig.  10,  each  of  them  denotes  the  following
commitment:
  

CC1 CC2 CC3

 

V P
because in Step 7(a), the sequence of cards is placed by

 and  as follows:
 
 

 

CC1

CC2 CC3 CC1

CCi CCi−1

2 ⩽ i ⩽ k

and  in  Step  7(c),  the  commitment  above  the
revealed   is  taken  as ,  i.e.,  a  commitment  to  0.

 and  are the commitments to the right of ,
i.e.,  commitments  to  0 and  1,  respectively.  For  any
case,  is  always  a  commitment  to  1 if  is  a
commitment to 1 for .

P

P
P

CCi

i CCi

P ℓ

V

Finally,  each  of  remaining  arrows  is  depicted  in  the
remaining  Steps.  Because  the  cell  where  strats
depicting  an  arrow  is  represented  in  tip  row  (and  is
updated  in  Step  12),  can  always  select  such  a  cell
using the 4-neighbour protocol in Step 8. If  does not
want  to  depict  an  arrow  anymore  and  take  for
some  in Step 10, then  is always a commitment to
1  because  sets  an  appropriate  value  to  in  Step  7.
Thus, once an arrow approaching a hole is depicted, no
more  arrows  must  be  depicted,  and  never  aborts  in
Step  10  because  the “dummy” arrow  (i.e.,

 

CC1

CC′
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p1

CCi i CCi

P

CCi

commitments in ) is always revealed. In Step 12, tip
row  is  updated  by  replacing  the  corresponding  cards
with  for some . Because  is a commitment to
1 if and only if  does not want to depict an arrow, the
cards  in  tip  row remains  unchanged  even  if  executing
Step 12. When  is a commitment to 0, the cards in
tip row are updated,  so that  the new tip is  represented
in an appropriate cell, and the old tip disappears. ■

P
p×q P

V

Theorem  8    (Soundness)  If  does  not  provide  a
solution  of  the  Herugolf  grid,  is  not  able  to
convince .

Proof    We  rely  on  the  proof  of  Ref.  [34]  for  the
connectivity construction, i.e., arrows depicted by P are
always  connected for  each numbered cell  using the  4-
neighbor  protocol.  Notice  that  Rule  3 is  checked  but
revealing  the  tip  row  during  the  connectivity
construction phase. ■

V
P G

Theorem 9    (Zero-knowledge)  learns nothing about
’s solution of the given grid .

V

Proof    As  in  the  previous  proofs  for  the  two  other
puzzles, we describe an efficient simulator. Informally,
the verifier cannot distinguish between the distributions
of  two  protocols,  one  that  is  run  with  the  actual
solution  and  one  with  random  commitments.  The
simulator simply swaps cards to ensure that  will not
abort.  This  is  possible  since  each  revealing  step  is
preceded by a shuffle.

V
The  simulated  and  real  proofs  are  indistinguishable,

hence  learns  nothing  from  our  protocol,  so  we
conclude  that  the  protocol  for  Herugolf  is  zero-
knowledge. ■

6　Conclusion

We propose three ZKP protocols dedicated to convince
a verifier that a prover has the solution without leaking
any bit of information of the solution. Those protocols
are  designed  for  each  of  the  following  puzzles:
Usowan, Five Cells, and Herugolf. Those three puzzles
share  a  common  connectivity  constraint  but  with
additional specific constraints.

The  design  of  the  ZKP  protocol  for  Usowan  uses
mainly  the  sum  sub-protocol,  while  Five  Cells  is
designed  through  an  hybrid  encoding  of  the
commitments  (for  the  cells  but  also  for  the  edge
delimiting the region). The proposed ZKP protocol for
Herugolf is  somewhat in extension of the connectivity
protocol which allows to construct connected figures of
given length.
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