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Abstract: Continuously  publishing  histograms  in  data  streams  is  crucial  to  many  real-time  applications,  as  it

provides  not  only  critical  statistical  information,  but  also  reduces  privacy  leaking  risk.  As  the  importance  of

elements usually decreases over time in data streams, in this paper we model a data stream by a sequence of

weighted  sliding  windows,  and  then  study  how  to  publish  histograms  over  these  windows  continuously.  The

existing literature can hardly solve this problem in a real-time way, because they need to buffer all elements in

each sliding window, resulting in high computational overhead and prohibitive storage burden. In this paper, we

overcome this drawback by proposing an online algorithm denoted by Efficient Streaming Histogram Publishing

(ESHP)  to  continuously  publish  histograms  over  weighted  sliding  windows.  Specifically,  our  method  first

creates a novel sketching structure, called Approximate-Estimate Sketch (AESketch), to maintain the counting

information  of  each  histogram  interval  at  every  time  instance;  then,  it  creates  histograms  that  satisfy  the

differential  privacy  requirement  by  smartly  adding  appropriate  noise  values  into  the  sketching  structure.

Extensive experimental results and rigorous theoretical analysis demonstrate that the ESHP method can offer

equivalent  data  utility  with  significantly  lower  computational  overhead  and  storage  costs  when  compared  to

other existing methods.
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1　Introduction

With  the  rapid  development  of  big  data[1−6] and  the
Internet  of  Things  (IoTs)[7−14],  streaming  data  (data
streams)  are  commonly  found  in  diverse  real−world

scenarios,  such  as  real-time  traffic  streams[15−18] and
hospital  patient  information  data  streams[19, 20].
Histograms,  which  are  statistical  methods  used  to
capture  the  distributional  information  of  streaming
data,  play  a  crucial  role  in  real-time  analysis
applications  in  these  scenarios.  However,  publishing
histograms  without  privacy  protection  can  pose  a
significant  risk  of  exposing  sensitive  personal
information to malicious adversaries who could exploit
the published data.  Therefore,  there is  a  growing need
to  continuously  construct  publicly  publishable
histograms  over  streaming  data,  particularly  in
applications where data privacy is a concern.

Generally, people tend to take more interest in recent
data than older ones, this is because the importance of
the element decreases as the element ages. Thus, in this

 
    Xiujun  Wang and Xiao  Zheng are  with School  of  Computer

Science   and  Technology,   Anhui   University   of   Technology,
Ma’anshan 243032, China, and also with Institute for Artificial
Intelligence,  Hefei  Comprehensive  National  Science  Center,
Hefei 230088, China. E-mail: {xjwang, xzheng}@ahut.edu.cn.

    Lei Mo is with Baosight Software (Anhui) Co. Ltd., Ma’anshan
243000, China. E-mail: ahut_molei@sina.com.

    Zhe  Dang is  with School  of  Electrical  Engineering  and
Computer  Science,  Washington  State  University,  Pullman
99164, WA, USA. E-mail: zdang@wsu.edu.

* To whom correspondence should be addressed.
    Manuscript  received: 2023-05-17;  revised: 2023-07-10;

accepted: 2023-08-01 

TSINGHUA  SCIENCE  AND  TECHNOLOGY
ISSN  1007-0214    05/20   pp1674−1693
DOI:  10 .26599 /TST.2023 .9010083
Volume 29, Number 6, December  2024

 
©  The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).



γ ∈ [0,1]

paper,  we  focus  on  the  weighted  sliding  window
model[21, 22],  which  generalizes  the  traditional  sliding
window  model  by  incorporating  a  weighting  factor

.  This  model  naturally  has  a  broad  range  of
applications[23, 24].  For  example,  considering  a
monitoring system in a certain network scenario, recent
packets  are  considered  more  important  than  the  older
ones, as they reflect the network status more accurately
and timely.  So,  the weighted sliding window model  is
frequently  used  in  these  online  monitoring  systems[25]

for  data  streams.  As  another  example,  let  us  look  at
social  network  scenarios.  In  this  case,  it  is  clear  that
recent  data  outweigh  old  data  when  building  a  trust
relationship  among  users[26].  For  more  practical
examples, please refer to Refs. [27−30].

Nowadays,  there  are  many  research  works  focusing
on  the  data  distribution  of  static  data  sets  or  dynamic
data  streams[31−40].  Nowadays,  a  number  of  methods
have been proposed for generating safe histograms that
do not jeopardize individual user privacy. Most of them
are designed to handle static  datasets[31−36].  Others  are
designed  to  handle  dynamic  data  streams  where  time
and  space  costs  are  also  considered  to  be  a  main
factor[37−40].

However,  the  existing  literature  on  data  analysis
techniques  lacks  adequate  methods  for  addressing  the
weighted  sliding  window  model,  where  the  relevance
of  data  diminishes  over  time.  This  is  because  these
methods assign equal importance to all data points in a
data stream, irrespective of their relevance and time of
occurrence.  However,  this  approach is  not  suitable  for
many  practical  scenarios,  such  as  predicting  the
likelihood of diseases based on the most recent data in

a health app, forecasting the popularity of existing apps
using  the  latest  data  from  Apple,  and  monitoring  and
analyzing  the  most  recent  financial  industry  data  to
mitigate  risks.  A  scenario  where  a  weighted  data
stream generates  a  noise  histogram is  shown below in
Fig. 1.

In these common scenarios, in particular, they suffer
from  two  drawbacks  when  they  are  used  to  publish
histograms over weighted sliding windows:

(1)  The  existing  methods  are  not  incorporated  with
an  effective  mechanism,  which  places  more  emphasis
on the new elements than the old ones;

(2)  The  existing  methods  have  high  computational
overhead and prohibitive  storage burden,  as  they need
to  repeatedly  scan  each  element  contained  in  each
sliding  window  when  constructing  a  publishable
histogram  (a  safe  one  that  reveals  the  trending
information  of  a  sliding  window  but  does  not
jeopardize individual users’ privacy).

γ ∈ [0,1]

In  this  paper,  we  overcome  these  drawbacks  by
modelling  a  data  stream  by  a  sequence  of  weighted
sliding  windows  and  storing  each  weighted  sliding
window  with  a  novel  sketching  data  structure.
Specifically, (1) in the weighted sliding window model,
we can characterize the data importance by a weighted
factor ,  which  is  pre-specified  according  to
practical  safe  requirements,  (2)  with  the  novel
sketching data  structure,  we can not  only  significantly
reduce  the  computational  cost,  but  also  adaptively
control the difference between real data and noisy data,
to  guarantee  competitive  usability  of  query  data  in
most cases for the weighted sliding window model.

Please note that we follow the typical and widely used
 

 
Fig. 1    Scenarios for weighted data streams. Note: a weighted data stream from Walmart can be a series of shopping records
weighted  by  the  time  of  goods  sales;  a  weighted  data  stream  from  HCA  can  be  a  list  of  patient  records  weighted  by  their
freshness; and a weighted data stream from Apple can be a series of app records weighted by the popularity of the app.
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definition  of  weighted  sliding  windows  from Ref.  [5].
Specifically, let  represent a data stream, where each
element  arrives  at  time  point  (  is  called  the
timestamp of ). Given a window size of , the sliding
window at  time  point ,  denoted  by ,  is  defined  as
the  most  recent  elements  in ,  i.e.,

.  Then,  for  any  given  weighted
factor , the weighted sliding window  at
time  point  refers  to  the  combination  of  and 
importance weights assigned to each element contained
in .  The  importance  weight  of  is ,  the
importance  weight  of  is ,  and  at  last,  the
importance  weight  of  is .  Clearly,  the
importance  weight  of  each  element  in  has  its
importance  weight  controlled  by  the  difference
between  its  timestamps   and ,  and  the  weighted
factor .  With  this  weighted  sliding  window  model,
we  propose  an  on-line  algorithm  denoted  by  Efficient
Streaming  Histogram  Publishing  (ESHP),  which
enables  a  continuous  publication  of  histograms  over
a  sequence  of  weighted  sliding  windows  (i.e.,

).  The  proposed  ESHP  algorithm
first  divides  the  value  range  of  each  element  from  a
data  stream  into  multiple  histogram intervals;  then,
ESHP stores the critical  statistical  information of each
element from  into a memory-efficient sketching data
structure  via  scanning  the  data  stream  only  once;
lastly,  ESHP  generates  an  approximate  histogram
based on the sketching data structure and then makes it
publishable by adding an appropriate Laplacian noise.

In  order  to  make  the  designed  ESHP  algorithm
efficient  in  terms  of  execution  time  and  make  ESHP
competitive in terms of data usability (i.e., satisfactory
accuracy in the generated histogram) in a one-pass scan
of  the  data  stream,  we  face  two  major  technical
challenges.

D

The  first  technical  challenge  is  to  design  a  novel
sketching  data  structure  that  can  extract  critical
statistical information from the data stream  in a one-
pass scan, and then generate an approximate histogram
rapidly.  The  second  technical  challenge  is  how  to
secure competitive usability by adding a suitable level
of Laplacian noise to the generated histogram.

To solve those technical challenges, we need to deal
with these problems.

D

(1)  The  solution  to  the  first  challenge  involves
selectively  compressing  the  count  information  and
timestamps  of  elements  in  the  dataset  into  a  two-
dimensional  array.  Additionally,  it  requires  efficiently
collecting  the  data  distribution  within  each  weighted

sliding  window  to  achieve  continuous  histogram
updates.

(2) The solution to the second challenge is to balance
the  privacy  protection  and  usability  by  randomly
choosing  the  release  counting  information  from  a
weighted  sliding  window.  This  solution  also
incorporates a mechanism that leverages the difference
between  approximate  statistical  information  for  each
histogram  interval  and  a  noise  value  for  selective
release.

In  summary,  there  are  three  major  contributions  in
this paper as follows:

(1) Our approach creates a novel sketching structure
called  Approximate-Estimate  Sketch  Approximate-
Estimate  Sketch  (AESketch),  which  is  suitable  for  the
weighted  sliding  window  model  and  can  be  used  to
continuously publish histograms;

(2) Our  approach  proposes  a  selective  publishing
mechanism.  This  mechanism  uses  the  difference
between the approximate statistical information of each
histogram interval  and  the  noise  value  to  select  better
counting information, and utilizes greedy grouping for
all interval counting in this weighted sliding window to
guarantee  the  same  data  utility  of  query  data  in  most
cases;

(3) Rigorous  theoretical  and  extensive  experimental
results  demonstrate  that  the  proposed  ESHP  method
can  provide  the  same  data  utility  with  a  substantially
reduced  computational  overhead  and  storage  cost
substantially as compared with other existing methods.

This paper is organized as follows: Section 2 reviews
the existing literature on differential privacy histogram
publication  methods.  In  Section  3,  we  provide  a
concise introduction to the theoretical  foundations and
relevant  definitions.  Section  4  presents  our  proposed
ESHP  algorithm,  which  comprises  two  main
components.  In  Section  5,  we  thoroughly  evaluate  the
privacy aspects of the ESHP algorithm, and analyze its
space  and  time  complexity.  Section  6  consists  of
simulations of the ESHP algorithm, where we compare
its  performance  with  that  of  related  approaches  and
provide a detailed analysis of the experimental results.
Finally,  in  Section  7,  we  conclude  the  paper  by
summarizing the key findings and contributions of our
research.

2　Related Work

The existing differential privacy histogram publication
methods can be mainly divided into two categories.
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2.1　Histogram publication method for static data

Several  recent  studies  have  focused  on  analyzing  and
improving  publication  methods  for  static  data
histograms.

For  instance,  Xu  et  al.[31] introduced  an  approach
aiming at reducing query error by compressing similar
frequency  intervals  heuristically.  They  presented  the
StructureFirst  algorithm,  which  demonstrates  reduced
query  error  through  theoretical  analysis  and  empirical
experiments.  In  a  different  work,  Zhang  et  al.[32]

proposed  a  histogram  publishing  method  known  as
Differentially  private  Histogram  Release  (DiffHR).
Their  approach  involves  clustering  the  original  data
into distinct clusters, and subsequently adding Laplace
noise  to  protect  the  clusters.  They  carefully  balanced
the error induced by clustering with the error caused by
Laplace  noise,  and  showed  that  the  generated
histograms using DiffHR can improve the  usability  of
the  data.  Tang  et  al.[33] introduced  APB,  an  adaptive
privacy  budget  allocation  strategy  for  histogram
publishing.  This  algorithm  optimizes  the  allocation
model  for  privacy  budget  weights  by  determining  the
weight  allocation  ratio  that  minimizes  the  total  error
based on the model. The results are then grouped using
a  greedy  approach.  The  APB  method  effectively
balances  the  trade-off  between  noise  error  and
reconstruction  error,  enhancing  the  published  data’s
usability.  Another  study  by  Chen  et  al.[34] proposed  a
method that injects noise into Haar wavelet coefficients
using the Gaussian mechanism. By leveraging the Haar
wavelet  transform  and  the  Gaussian  mechanism,  this
approach ensures differential privacy for input data and
arbitrary  range  query.  Notably,  the  noise  variance
achieved  by  this  method  is  significantly  smaller
compared to using the Gaussian mechanism alone.

Overall,  while  these  methods  make  valuable
contributions  to  achieving  privacy  in  histogram
publication,  their  practical  utility  may  be  limited  in
situations  where  efficiency  and  scalability  are
paramount.  Hence,  further  research  endeavours  are
necessary to explore alternative approaches that strike a
better  balance  between  privacy  preservation  and  the
accompanying  space  and  time  considerations.  Such
efforts  should  focus  on  developing  more  efficient  and
scalable techniques for private histogram generation.

2.2　Histogram  publication  method  for  dynamic
data

There  are  some  research  works  proposed  recently  for

histogram publication methods for dynamic data.
For instance, Fan and Xiong[41] proposed a real-time

aggregation  statistics  framework  FAST  based  on
filtering  and  adaptive  sampling  under  differential
privacy.  Lin  et  al.[36] proposed  a  privacy  protection
publishing  algorithm PTDSS-SW for  two-dimensional
spatial  data streams.  The proposed algorithm uses low
space  overhead  to  approximate  the  two-dimensional
data streaming information and adds appropriate noise
to the statistical results. Zhang and Meng[37] proposed a
partitioning-based method, called Streaming Histogram
Publication (SHP). First, the bucket count in the sliding
window  is  divided  into  different  groups,  and  then  the
privacy  parameters  are  adaptively  allocated  according
to  different  data  sampling  results.  This  method  can
reduce the overall privacy budget, and can not quickly
consume  the  privacy  budget.  Wu  et  al.[38] proposed  a
histogram publishing algorithm using Kullback-Leibler
(KL)  divergence  as  a  measurement  method.  The
algorithm  uses  the  Kullback-Leibler  divergence  to
calculate  the  amount  of  change  between  two  adjacent
data  and  adds  different  noise  values  to  the  published
data according to the different values of the Kullback-
Leibler divergence calculation to reduce noise errors. Sun
et al.[39] proposed a complete algorithm for differential
private real-time streaming data publication by putting
the Fenwick-tree and matrix optimization together. The
algorithm  effectively  improves  query  efficiency  while
ensuring query quality.

In addition, we notice that negative surveys[42] can be
used to protect privacy. To ensure the completeness of
our  paper,  we  have  reviewed  the  literature  related  to
negative  surveys[43−45].  For  example,  Ref.  [43]
introduced  the  definition  of  negative  surveys  for  the
first  time,  proposed  several  state-of-the-art  methods
dealing  with  prevention  and  coding  strategies  in
negative  surveys,  and  demonstrated  the  potential
impact  of  negative  surveys  in  the  field  of  social
sciences.  Jiang  et  al.[44] proposed  a  method  based  on
negative  surveys  for  collecting  the  time-series  data
from  users  and  employing  it  to  collect  power
consumption data,  and presented an approach that  can
provide  aggregated  power  consumption  data  to  the
smart grid for load monitoring. Yang et al.[45] proposed
a privacy-preserving scheme based on negative surveys
to protect the privacy of vehicle fuel consumption data.
However,  most  existing  methods[43−48] based  on
negative  surveys  may  incur  a  high  computational
overhead and a heavy storage burden when processing
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data  streams  and  generating  histograms  for  sliding
windows.  Because  these  methods  typically  require
storing  all  data  points  (i.e.,  the  false  categories  of  all
respondents) contained in each sliding window at each
time  point,  which  incurs  a  heavy  storage  cost  and  a
large computational cost.

To summarize,  the  existing methods heavily  depend
on  buffering  to  store  each  sliding  window,  leading  to
an unacceptably high cost in terms of storage space and
computational  complexity.  This  approach  poses
challenges  in  terms  of  scalability  and  efficiency,
particularly  when  dealing  with  large  datasets.  The
reliance on buffering in these methods necessitates the
allocation  of  significant  memory  resources  to
accommodate the sliding windows. As the dataset size
increases,  the  storage  space  required  grows
proportionally, making it impractical for scenarios with
limited  memory  availability.  To  address  these
limitations,  exploring  novel  approaches  that  alleviate
the  storage  and  computational  burdens  will  be  crucial
to  achieving  scalable  and  efficient  solutions  for
handling sliding window data in various applications.

3　Definition and Model

In  this  section,  we  introduce  the  definition  of
differential  privacy  and  the  concept  of  a  weighted
sliding window model.

3.1　Definitions  for  data  streams  and  differential
privacy

D = ⟨e1, e2, e3, . . . , en, . . .⟩
et

t
U = {1, 2, . . . , u}

A data stream, denoted as ,  is
an  infinite  sequence  of  elements.  Each  element 
arrives  with  a  timestamp  and is  chosen from a  large
universe ,  representing  the  possible
values an element can take.

Differential privacy, initially proposed by Dwork[42],
has  emerged  as  a  powerful  approach  to  privacy
protection,  underpinned  by  a  robust  mathematical
foundation. It offers distinct advantages over traditional
data  protection  methods,  which  often  rely  on
encryption.  Two  key  characteristics  differentiate
differential privacy:

(1) Protection through noise addition: Differential
privacy  safeguards  data  by  injecting  noise  using
randomized  algorithms.  By  doing  so,  it  provides  a
probabilistic guarantee of privacy while preserving the
overall statistical properties of the data.

(2)  Independence  from  background  knowledge:
Differential  privacy  effectiveness  remains  unaffected

by  the  background  knowledge  possessed  by  potential
attackers.  It  ensures  the  same  level  of  privacy
protection,  regardless  of  the  amount  of  information
known to an adversary.

In  the  subsequent  section,  we  will  delve  into  the
essential  definitions  of  data  streams  and  differential
privacy.  These  conceptual  frameworks  lay  the
groundwork  for  our  proposed  solution,  enabling  the
development  of  privacy-preserving  mechanisms  for
data streams.

D D′

u D−D′ = u

In  this  paper,  this  threat  model  of  differential
privacy[42] involves  a  powerful  adversary  with  the
ability to extract  privacy-sensitive information about a
user  record  by  comparing  query  results  obtained  from
two neighbouring datasets, denoted as  and . These
datasets comprise individual user records, with the sole
distinction  being the  inclusion  of  a  single  user  record,
denoted as  in one dataset (i.e., ).

D
u
D′ = D−u u

x′ D′ x′ = f (D′)
f (·)

x D
x = f (D)

x x′

u D

The threat model assumes that the attacker has access
to  all  records  in  dataset ,  except  for  one  user  record

.  Consequently,  the  attacker  is  aware  of  the  dataset
,  which  excludes  the  record .  The  attacker

can  obtain  the  query  result  on  (i.e., ,
where  represents the query function known to the
public).  Additionally,  the attacker can also acquire the
query  results  published  by  the  system  on  dataset 
(i.e., ). The objective of the attacker is to gain
insights  into  user  privacy  by  comparing  the
discrepancy  between  and  in  order  to  determine
whether the user record  is present in dataset  or not.

ε

D D′ A

O ⊆ Range (A)
Range (A)

A

Definition 1　 -differential  privacy[42]: Algorithm
A is  a  data  processing  algorithm.  Given  two
neighboring  data  streams:  and ,  Algorithm 
achieves the differential privacy protection requirement
if  and  only  if  for  any  output  set ,  where

 denotes  the  set  of  possible  outputs  of
Algorithm  the following inequality stands:
 

Pr [A (D) = O] ⩽ eε×Pr [A (D′ ) = O] (1)

ε

Pr [ ]
A

ε

where  represents  the  privacy  budget.  It  is  important
to  also  note  that  the  probability  is  derived  from
the  internal  randomness  of  algorithm .  Clearly,
increasing  the  privacy  budget  results  in  a  stronger
intensity of privacy protection.

f f
Definition  2　 Global  sensitivity[42]: For  any

function ,  the  global  sensitivity  of  function  is
defined as
 

△ f =max
∥∥∥ f (D)− f (D

′
)
∥∥∥ (2)
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D
f :D→ Rd ε

Definition 3　Laplace noise mechanism[42]: Given
a data  stream  and a  publicly known query function

,  Algorithm A satisfies  the -differential
privacy protection requirement if the following equality
is true:
 

A (D)= f (D)+
⟨
Lap1

(
△ f
ε

)
, Lap2

(
△ f
ε

)
, . . . , Lapd

(
△ f
ε

)⟩
(3)

d fwhere  represents the query dimension of .

3.2　Definition  of weighted  sliding  window  model
and its preprocessing

This  section  begins  by  introducing  the  concept  of  the
weighted  sliding  window  model,  as  described  in  Lee
et al.’s work in 2014[23]. The weighted sliding window
model  extends  the  conventional  sliding  window
approach  by  incorporating  user-specific  weighted
factors.  These  factors  are  assigned  to  individual  data
elements,  allowing  for  differentiation  based  on  their
relative  importance.  By introducing  these  weights,  the
model  offers  a  finer  granularity  in  capturing  the
significance of data within the sliding window*.

Expanding on the foundations of the weighted sliding
window  model,  our  proposed  technique  focuses  on
converting  a  data  stream  into  multiple  binary  data
streams. This conversion process involves transforming
the  original  data  stream  into  several  binary  streams,
each representing  a  specific  aspect  or  characteristic  of
the  data.  By  decomposing  the  data  stream  in  this
manner,  we  gain  the  ability  to  independently  analyze
and process different aspects of the data. This approach
opens  up  new  opportunities  for  tailored  analysis  and
the implementation of privacy-preserving mechanisms.

In  other  words,  by  assigning  weights  to  individual
data elements within the sliding window, the weighted
sliding  window  model  allows  for  a  more  nuanced
understanding  of  their  importance.  Based  on  this
model,  we propose a  technique that  takes  this  concept
further by converting a data stream into multiple binary
data streams.  This  conversion involves breaking down
the  original  data  stream  into  several  binary  streams,
with  each  stream  representing  a  distinct  aspect  or
characteristic of the data. By doing so, we can analyze
and process different aspects of the data independently,

enabling  customized  analysis  and  the  integration  of
privacy-preserving measures.

D = ⟨e1, e2, e3, . . . , en, . . .⟩ w
Dt

w t
w

Definition 4　Sliding window: Given a data stream
 and  a  window  size ,  the

sliding window  at current timestamp  contains the
latest  elements seen so far. In other words,
 

Dt
w =

et−w+1, et−w+2, . . . , et, if t ⩾ w;
e1, e2, . . . , et, if t < w

(4)

w

w
γ

Traditionally,  the  sliding  window  model  considers
the latest  elements equally important, assigning them
equal weights.  This equal weighting assumption limits
the ability to differentiate the importance levels among
the  elements.  To  address  this  limitation,  we
introduce  a  weighted  factor  denoted  as ,  which
enables  the  assignment  of  larger  weights  to  newer
elements compared to older ones.

e
Dt

w I (e)

γ

For  the  sake  of  clarity  in  the  subsequent  discussion,
we represent the importance of an element  belonging
to the sliding window  as .  This  representation
allows  us  to  quantify  and  compare  the  importance
levels  of  individual  elements  within  the  sliding
window.  By  incorporating  the  weighted  factor ,  we
can  adjust  the  weights  assigned  to  elements  based  on
their relative positions within the window, facilitating a
more  flexible  and  fine-grained  modelling  of  data
importance.

D = ⟨e1, e2, e3, . . . , en, . . .⟩
w γ

t > 0
t > 0

Definition 5　Weighted sliding window[23]: Given
a  data  stream ,  a  window
size ,  a  user-specific  weighted  factor ,  and  a  time
instance ,  the  weighted  sliding  window  at  time
instance  is  constituted  two  the  following  two
parts:

t Dt
w(1) the sliding window at time instance : ;⟨

γw−1, γw−2, . . . , γ0
⟩

et ∈ Dt
w

I (et) = γt−i

(2) a weight array  which assigns
each  element  is  associated  with  a  different
weight .

et ∈ Dt
w 1

et−1 ∈ Dt
w

γ γ

w
t = 4

Dt
w = ⟨e2, e3, e4⟩

⟨
γ2, γ1, γ0

⟩
e2 γ2 e3 γ1 e4

γ0

The  schematic  diagram  of  the  weighted  sliding
window is shown in Fig. 2.  From the definition of the
weighted  sliding  window,  it  is  clear  that  the  newest
element  has the largest weight of , the second
newest element  has the second largest weight
of ,  and  so  on.  For  example,  suppose  that  =  0.95,
the window size  = 3, and the current time instance is

, the weighted sliding window contains two parts:
(part-a) , and (part-b)  which
assigns  a weight of ,  a weight of ,  and  a
weight of .

 
 

*The  difference  between  the  original  sliding  window  model  and  the
weighted  sliding  window  model  leads  to  the  limitation  of  existing
methods designed for the original sliding window model. These methods
usually  cannot  handle  the  weighted  sliding  window  model  where  each
element has a different weight.
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D
M [l1, r1], [l2, r2], . . . , [lM , rM]

D
D = ⟨e1, e2, . . . , en, . . .⟩ M

⟨D1, D2, . . . , DM⟩
M i
Di i [li, ri]

Definition  6　 Transforming  a  data  stream  into
multiple  binary  data  streams  according  to  the
pre-determined intervals: Given a data stream , and

 intervals: .  Before
processing ,  we  always  transform  a  numerical  data
stream:  into  separate  binary
data streams  that corresponds to the

 intervals.  Specifically,  the -th  binary  data  stream
 corresponds  to  the -th  interval ,  and  is

defined as
 

Di =
⟨
Ie1∈[li, ri], Ie2∈[li, ri], . . . , Ien∈[li, ri], . . .

⟩
(5)

Ien∈[li, ri]

[li, ri] ∀ n ⩾ 1 Ien∈[li, ri] = 1 en ∈ D
[li, ri] Ien∈[li, ri] = 0

Di i = 1, 2, . . . , M M
Gi Gi =

∑t
j=t−w+1 Ie j∈[li, ri]×

γt− j

where  denotes  the  value  belonging  to  the
interval . , ,  if  element 
does  belong  to ;  and ,  otherwise.
Then, the count of a weighted sliding window in each
data stream ,  (each of these  binary
data  streams),  denoted  by , 

.
Hereafter,  to  offer  an  unambiguous  illustration,  we

use
 

Si = ⟨x1, x2, . . . , xn, . . .⟩ (6)

i i = 1to  represent  the -th  binary  data  stream  ( −M),
when designing a novel sketching structure to maintain
the counting information of  each histogram interval  at
every time instance.

4　Differential  Privacy  Data  Stream
Publishing  Algorithms  Based  on
Weighted Sliding Window Model

In  this  section,  we  outline  the  design  of  the  ESHP
algorithm. The roadmap for this section is as follows:

(1) Creation of AESketch: We propose a introduce
a novel sketch structure (AESketch), which enables the

maintenance  of  counting  information  for  each
histogram  interval  by  scanning  the  data  stream  only
once.

(2) Development of the ESHP Algorithm: Building
upon  AESketch,  we  present  the  ESHP  algorithm,
specifically  designed  to  generate  publishable
histograms over weighted sliding windows.

(3)  Advantages  of  the  ESHP  method: It  boasts
advantages,  such  as  reduced  computational  overhead
and preserved data  utility,  making it  a  highly efficient
and practical approach for various data processing and
analysis tasks.

4.1　AEsketch

In  this  section,  we  begin  by  introducing  several
fundamental  symbols  that  will  be  used  throughout  the
paper.  We then  proceed  to  provide  a  detailed  analysis
of the structure of the sketch.
• w  represents  the  size  of  a  sliding  window.  It

determines  the  number  of  most  recent  elements
considered within the window.
• θ  represents  the  weighted  approximation  error

threshold. It is a parameter that controls the acceptable
level of error in the weighted sliding window model.
• Si [t−w+1, t] i

w

t−w+1 t

  denotes a sliding window of the -th
binary  data  stream.  It  encompasses  the  most  recent
elements  of  the  stream,  starting  from  timestamp

 to timestamp .
• γ  represents the weighted factor.  It  is  a parameter

that allows for assigning different weights to individual
elements based on their  relative importance within the
sliding window.
• β  represents  the  approximate  error  factor.  It  is  a

parameter  that  controls  the  level  of  approximation
allowed in the estimation of histogram intervals.
• B

B1 (i)

B2 (i) Gi i
Si

  denotes a two-dimensional array used for storing
the counting information of weighted sliding windows.
The first  one-dimensional sub-array, denoted as ,
records the timestamp of the current element in a data
stream.  The  second  one-dimensional  sub-array,
denoted as , stores the count  for the -th binary
data stream .

Table  1 summarizes  the  important  symbols
introduced  in  this  section,  providing  a  convenient
reference for  their  meanings and usage throughout  the
remaining sections of the paper.

Our approach is to create a novel sketching structure
AESketch,  which  is  suitable  for  the  weighted  sliding
window  model  and  can  then  be  used  to  publish

 

…

… … …

 
Fig. 2    Schematic diagram of a weighted sliding window.

    1680 Tsinghua Science and Technology, December 2024, 29(6): 1674−1693

 



histograms continuously.

Gi

Ĝi Gi

Ĝi Gi

θ |Ĝi−Gi| ⩽ θ

Our  approach  is  based  on  the  following  core  idea.
Accurately tracking the count  of each binary stream
within  a  sliding  window  would  require  storing  all  the
elements,  resulting  in  a  significant  computational
burden  and  prolonged  computation  time.  To  address
this  challenge,  we  propose  the  design  of  AESketch,  a
sketch structure that maintains an approximate estimate

 of .  The  key  criterion  is  that  the  difference
between  and  should always be less than the user-
defined error threshold , i.e.,  at all times.

Ĝi Gi

Ĝi Gi

|Ĝi−Gi| ⩽ θ

Although  using  AESketch  leads  to  a  decrease  in
accuracy, we believe it is a justifiable trade-off for two
main  reasons.  First,  it  aligns  with  the  fundamental
concept  of  differential  privacy,  as  all  methods  for
publishing differential privacy data involve introducing
random noise to protect privacy. Second, the estimated
value  derived from AESketch can be viewed as 
augmented  by  a  random  noise  component.
Consequently,  the  discrepancy  between  and 
always  falls  within  the  error  threshold  defined  by  the
user (i.e., ).

By striking a balance between accuracy and privacy,
we  consider  this  compromise  to  be  a  reasonable
approach  for  safeguarding  the  privacy  of  data  while
efficiently  maintaining  approximate  counts  of  binary
streams. In the subsequent sections, we will delve into
the  details  of  AESketch,  conduct  a  comprehensive
analysis, and present experimental results to validate its
effectiveness.

Si

Ĝi Si

Si = ⟨1, 1, 1, 1⟩ γ = 0.95
w β

The  detailed  steps  of  how  AESketch  processes  a
data stream  and then calculates the estimated value

 for  are  presented  in  Algorithm  1.  Let  us  now
illustrate  Algorithm  1  with  an  example.  Suppose  that

,  weighted  factor ,  the  window
size  =  3,  approximate  error  factor  =  0.5,  and

t = 4

θ = 1.4262
t

Ĝi =

0.8525× (0.95)4−2+0.8099× (0.95)3−2+0.7694× (0.95)0+

1−0.5×0.8525×0.954−2 = 2.9235
Gi

|Gi− Ĝi| = 0.071
θ/2 = 0.7131

the  current  time  instance .  With  a  simple
calculation,  we  can  observe  that  Algorithm  1  will
obtain .  Next,  We  can  calculate  the  interval
count  for  the  current  timestamp  by  Line  14  of
Algorithm  1  (the  first  case  is  that  the  data  stream
has  expired  elements).  The  detailed  values  of  the
related parameter at each time instance in this example
are  given  in Table  2.  With  this,  we  can  obtain: 

.  It  is  also  clear  that
the  true  count  value  at  the  current  moment  is  =
2.8525. Therefore, we know that  is not
more than . In Theorem 4 in the following,
we  shall  give  a  formal  proof  of  this  fact  for  general
cases.

Gi
1−γw

1−γ

Theorem  1　 The  maximum  value  of  in  the

weighted sliding window is .

Gi
1−γw

1−γ

Proof　From the schematic diagram of the weighted
sliding window in Fig. 2, it can be observed that when
each  position  in  the  sliding  window  is  set  to  1,  the
maximum count is w.  So the maximum value of  is

equal to . ■
k B

1/β
Theorem 2　The number of blocks  of the array 

used by Algorithm 1 does not exceed .
Proof　First, we have two facts as follows:
(1)  By the properties  of  a  weighted sliding window,

the maximum count value is
 

1−γw

1−γ (7)

(2)  Algorithm  1  uses  the  block  threshold  in  the
following:
  (

1−γw

1−γ

)
×β (8)

B
Based  on  the  two  cases  Formulas  (7)  and  (8),  the

maximum number of blocks used in array  is
 

k =

1−γw

1−γ(
1−γw

1−γ

)
×β
=

1
β

(9)

Theorem 3　For Algorithm 1, there are no two data

 

Table 1    Important symbols in this paper.
Notation Description

w Size of a weighted sliding window
Si iThe -th binary data stream
M Number of intervals for a histogram
γ Weighted factor
α Privacy budget allocation ratio
β Approximate error factor
θ Weighted approximation error threshold
B Two-dimensional array
k Length of array B
Ĝ Interval approximate count in current timestamp
G̃ Interval noise value in current timestamp

 

Table 2    Parameter status at each time instance.

Parameter
t

1 2 3 4
Si 1 1 1 1
y 1 1 1 1

B1(i) 2 3 4 0
B2(i) 0.8525 0.8098 0.7694 0
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blocks that expire at the same time.
Proof　To illustrate this fact, let us employ a proof-

by-contradiction  approach.  We  start  by  assuming  the
existence  of  two  blocks  within  the  weighted  sliding
window, and both of these blocks contain elements that
have  already  expired.  According  to  the  weighted
sliding  window  model  described  in  Algorithm  1,  any
new  block  inserted  into  the  sliding  window  must  be
positioned before an older block. If the newly inserted
block includes an expired element,  it  logically follows
that all elements within the older block must have also
expired. This conclusion arises because the older block
was  inserted  into  the  sliding  window prior  to  the  new
block, implying that the expiration time of its elements

must  be  earlier.  Therefore,  we  can  infer  that  it  is
impossible to have two data blocks within the weighted
sliding window model that simultaneously expire. This
outcome contradicts the initial assumption we made.

By  employing  a  proof  by  contradiction,  we  have
successfully  demonstrated  that,  within  the  framework
of the weighted sliding window model as described in
Algorithm  1,  the  occurrence  of  two  data  blocks
expiring simultaneously is impossible. ■

|Gi− Ĝi| ⩽ θ/2.
Theorem 4　For each interval in the histogram, the

result of Algorithm 1 is 

θ =
1−γw

1−γ ×βProof　 Please  recall  the  equation  as
presented  in  Algorithm  1.  There  are  two  possible
situations for the current sliding window:

(1) When there is no expired element:
By Line 15 of Algorithm 1, we can know

 

|Gi− Ĝi| = 0 (10)

B
Specifically,  when  there  is  no  expired  element,  the

array  records only the elements in the current sliding
window.

(2) When there are expired elements:

1
Ĝi

Ĝi = sum (B2 (i)×γt−B1 (i))+ y−0.5×old (B2 (i))× (γ)t−old (B1(i))).

By Theorem 3, we know the count in the most recent
block  is ,  and  there  is  only  one  block  containing
expired elements.  By Line  14 of  Algorithm 1,  will
minus  half  of  the  count  in  the  oldest  block  (see

Moreover, since only the oldest block contains expired
elements, we can obtain
 

|Gi− Ĝi| ⩽ θ−1− 1
2

(θ−1) =
θ

2
− 1

2
⩽
θ

2
(11)

|Gi− Ĝi| ⩽ θ/2
Based on the two cases (Eq. (10) and Formula (11)),

we have .

O (1/β)
O (1/β)

Theorem  5　 The  AESketch  algorithm  has  a
computational  cost  of  and  a  storage  cost  of

.

B
O (1/β)

Proof　From Algorithm 1, we can observe: the main
computational cost and storage cost are determined by
the  size  of  array .  So,  the  computational  cost  and
storage cost is .

O (w)
O (w)

β

1/w

It  is  worth  noting  that  the  existing  algorithms  that
cache  the  entire  window  have  a  storage  cost  of 
and  a  computational  cost  of ,  which  are  larger
than that of the AESketch algorithm since  is usually
less than .

4.2　ESHP

MAESketch  provides  us  with  estimated  counts:

 

Algorithm 1　How AESketch processes binary data stream
Si i xt

t Si γ β

w θ

B k B

Input: : -th binary data streams; : element at the current
time instance  in the , : weighted factors, : approximate
error factor, : windows size, : weighted approximation error
threshold, : two-dimensional array, : length of array .

Ĝi i
t

Output: approximate count  belonging to the -th interval at
the current timestamp .
1: Calculate the threshold of the approximate error of the weighted

θ =

(
1−γw

1−γ

)
×β　sliding window: ;

t2: Calculate the weighted count at the current timestamp :
y = y×γ+ xt　 ;

3: To assess whether  the weighted sliding window value at  the
t　current  time  instance  ( )  surpasses  the  threshold value of the

　weighted sliding window:
y×γ+ xt ⩽ θ4: if  then
y = y×γ+ xt;5: 　

6: else
B1(i) = t; B2(i) = y; i = i+1; y = xt;7: 　

8: end if
S9: Determine whether the array   has any expiration data element

t　at the current timestamp :
(B1(i) < t−w+1) B1(i) > t)10: if  and  then
B1(i) = 0; B2(i) = 0;11: 　

12: end if
13: Calculate the interval counting information for the current

t　  timestamp  by the following 2 steps:

Ĝi = sum (B2(i)×γt−B1(i))+ y−
14: Step 1: It generates expired elements:
　　　

0.5×old (B2(i))× (γ)t−old(B1(i))　　　　　 ;
　　　//remove any bias from the estimation by subtracting half
　　　of the oldest block

Ĝi = sum (B2(i)×γt−B1(i))+ y.
15: Step 2: There is no expired element in the data stream:
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⟨
Ĝ1, Ĝ2, . . . , ĜM

⟩
M

⟨S1, S2, . . . , SM⟩ M
M G1, G2, . . . , GM

S

Ĝ1 Ĝ2 . . . ĜM

 for  the  binary  data  streams:
. These  values are estimated values

of  the  true  counts: .  However,  they
are  not  good  enough  to  prevent  the  leak  of  private
information  contained  in  the  original  data  stream .
Considering  this  fact,  if  we  need  to  further  protect

,  ,  ,   by  adding  appropriate  noise  random
variables to them.

In order to ensure the competitive availability of the
published data, we combine AESkech with differential
privacy,  and  then  propose  an  efficient  streaming
histogram  publishing  algorithm,  represented  by  ESHP
algorithm.

The ESHP algorithm follows a sequential process to
accomplish its objectives.

Initially,  it  generates a sketching structure known as
AESketch  to  approximate  the  distribution  information
of  data  within  the  weighted  sliding  window  at  the
subsequent timestamp.

The  subsequent  step  entails  proposing  an  adaptive
selective  publishing  mechanism  that  intelligently
determines an appropriate value for each interval. This
is  achieved  by  comparing  the  disparity  between  the
estimated  value  and  the  noise  value.  The  algorithm
assesses this difference and decides whether to publish
the  estimated  value  or  the  noisy  value.  The  detailed
implementation  is  available  in  Algorithm  2,
particularly in Lines 2–6.

In  the  third  step,  the  ESHP  algorithm  incorporates
Laplace  noise  into  the  count  value  of  each  interval.
This  ensures  privacy  protection  while  preserving
statistical accuracy. Moreover, the algorithm constructs
a  publishable  histogram  over  the  weighted  sliding
windows  using  a  greedy  grouping  strategy.  The
implementation details of this strategy can be observed
in Algorithm 2, specifically in Lines 7–21.

The specific  implementation  of  the  greedy grouping
strategy involves the following actions:

(1)  Sorting  the  optimal  sets  of  noise  values  and
estimation  values  based  on  their  error  relationships.
This  facilitates  grouping  together  similar  or  closely
related data.

(2)  If  the  current  error  incurred  by  not  grouping  a
particular interval is smaller than the error obtained by
grouping it, the algorithm decides to place this interval
in  a  separate  group.  Conversely,  if  grouping  the
interval results in a smaller error, it is placed within the
current group.

By  employing  this  greedy  grouping  strategy,  the

ESHP algorithm optimizes the grouping of intervals to
minimize  overall  overall  errors  and  enhance  the
accuracy of the published histogram.

These  steps  collectively  empower  the  ESHP
algorithm  to  effectively  estimate  distribution
information,  selectively  publish  values,  incorporate
privacy-preserving  noise,  and  construct  a  publishable
histogram over weighted sliding windows.

Note: The  third  step  of  this  approach  ensures  that
each  interval  is  grouped  in  a  manner  that  minimizes
errors and enhances data usability.

Overall,  the  ESHP algorithm is  a  three-step  process
that utilizes a sketching structure, an adaptive selective
publishing mechanism,  and Laplace  noise  to  construct
a  publishable  histogram  over  weighted  sliding
windows. These steps are designed to ensure that  data
privacy  is  maintained  while  still  providing  useful
insights into the distribution of data.

 

Algorithm 2　ESHP algorithm
D t ε

α

Input: : data stream, : current timestamp, : privacy budget,
: privacy budget allocation ratio.

noise histogram G̃t at the current timestamp.Output: 

Calculate all interval count Ĝt for a histogram by AESketch1: 
t　in the current timestamp ;
ε1 = αε ε2 = (1−α)ε2: Allocate privacy budget:  and ;

3: Determine whether to add Laplace noise to the current data:

|Ĝt −Gt | ⩾
√

2θ
ε1

5: Ĝt =Gt +Lap
(
θ

ε1

)4: 　if  then

;

6: 　end if
7: Use grouping method based on greedy clustering:

Ĝt = sort (Ĝt)8: 　 ;

C = Clustering (Ĝt)9: 　 ;
10: Calculate the mean of the current histogram:

Ci ∈C11: 　for  do

C̃i =
∑

Ĥ∈Ci

H j

|Ci|
12: 　　 ;

13: 　end for
14: Calculate the noise value of the current histogram:

for every Ĥ j ∈ Ĝt do15: 　

H̃ j = C̃i +Lap
(
θ

ε2

)
/|Ci|16: 　　 ;

17: 　end for
18: Non-negative constraint on the count of each histogram
　  interval:

Ĝt ⩽ 019: 　if  then
Ĝt = 020: 　　 ;

21: 　end if
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4.3　Advantages of the ESHP method

The  ESHP  method  provides  several  significant
advantages over existing methods.

(1)  The  ESHP  method  utilizes  the  innovative
AESketch  structure  to  reduce  computational  overhead
significantly.  This  allows  for  the  real-time  release  of
histograms  without  the  need  to  buffer  all  elements
within  each  sliding  window,  making  it  suitable  for
processing data streams in real-time. It also minimizes
storage costs and alleviates the burden of continuously
releasing  histograms  through  weighted  sliding
windows.

(2) The ESHP method can maintain comparable data
utility  to  existing  methods.  The  mechanism  leverages
the  difference  between  approximate  statistical
information  for  each  histogram  interval  and  the  noise
value to select better counting information. It  employs
a  greedy  grouping  approach  to  count  all  intervals
within  the  weighted  sliding  window,  ensuring  that  the
data  utility  for  querying  data  remains  similar  in  most
cases.

In  conclusion,  the  ESHP  method  excels  in  the
continuous  real-time  publication  of  histograms,
ensuring  differential  privacy,  accommodating  data
streams  with  different  weights  and  preserving  data
utility.  It  serves  as  an efficient  and privacy-preserving
approach  to  histogram  generation  that  finds
applicability  in  various  scenarios  involving  data
processing.

5　Theoretical Analysis

In  this  section,  we  analyze  the  space  complexity  and
time complexity of the ESHP algorithm and verify the
privacy of the ESHP algorithm.

k× log(w)×MTheorem 6　ESHP algorithm requires 
bits of memory.

Si k× log2 (w) B

log2 (w) w
w

M
k× log2 (w)×M

M
B

Proof　The space  overhead  of  the  ESHP algorithm
is  mainly  determined  by  the  AESketch  data  structure.
From Theorem 2, we know that the binary data stream

 requires  bits. Specifically, the array  in
the  AESketch  data  structure  should  record  the
timestamp  of  each  element  from  the  data  stream,  and
we  need  bits  to  accurately  represent  the 
different  timestamps  of  the  elements  contained  in  a
sliding  window.  For  intervals,  the  size  of  the
memory space we need is  bits. Finally,
since  there  are  intervals  and  each  interval  requires
one  array ,  we  can  conclude  that  the  ESHP  method

k× log2 (w)×Mrequires a total memory  bits. ■

M
O (M+ k)

Theorem  7　Assuming  that  the  number  of  packets
in the ESHP algorithm is , the time cost of the ESHP
algorithm is .

et

et

et O (k)

B M
M

O (M+ k)

Proof　The  ESHP  method  utilizes  a  data  structure
called  AESketch  to  store  each  element  in  the  current
sliding  window  and  then  employs  it  to  generate  a
differential private histogram. Specifically, when a new
element  arrives,  the  ESHP  method  identifies  to
which  belongs  and  stores  crucial  information  about

 in  a  block  containing  bits  of  AESketch  data
structure  (see  Theorem  2).  Subsequently,  the  ESHP
method  generates  a  differential  private  histogram  by
scanning  the  array ,  which  contains  blocks  (each
block  corresponds  to  an  interval).  Here,  represents
the  number  of  intervals,  and  the  computational
complexity of the ESHP method is .

Please note that Theorems 1–3 lay the foundation for
the  theorems proved in  this  section,  and we show this
relationship in Fig. 3. ■

ε

Theorem 8　The proposed ESHP algorithm satisfies
-differential privacy.
Proof　For  the  ESHP  algorithm,  it  is  composed  of

two combined algorithms. The first part is the adaptive
selection algorithm based on AESketch, and the second
part  is  the  noisy  grouping  algorithm  based  on  the
greedy approach.

Our proof involves two facts as follows:
 

bits.

 
Fig. 3    Diagram of the relationship between theorems.
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ε1

(1)  Adaptive  selection  algorithm  based  on
AESketch: The  proposed  ESHP  algorithm  selects  an
appropriate value by comparing the difference between
the estimated value and the noise value in the adaptive
selection  section  (the  adaptive  selection  section
satisfies -differential privacy).

ε2

(2)  Noisy  grouping  algorithm  based  on  greedy
approach: The  ESHP  algorithm  uses  a  greedy
grouping  strategy  to  add  Laplace  noise  into  the
grouping  section  (thus,  the  grouping  section  satisfies

-differential privacy).
ε = ε1+ε2

ε

With these two facts and , we can conclude
that the ESHP algorithm satisfies -differential privacy
according  to  the  combined  properties  of  differential
privacy[49].

6　Experiment

In  this  section,  we  present  the  experiment  setting  and
the  used  datasets.  We  compare  the  proposed  method:
the ESHP algorithm with three typical  data publishing
for  data  stream  methods:  APB  algorithm[33],
RTP_DMM algorithm[39], and FAST algorithm[41], and
the most recent negative survey algorithm proposed in
Ref.  [45]  to  process  time-series  data.  For  brevity,  we
denote  the  negative  survey  algorithm  in  Ref.  [45]  by
NS in the following.

6.1　Experiment setting

The  experimental  hardware  setup  comprises  an  AMD
Ryzen  R7  5800X3D  3.4  GHz  processor  with  eight
cores,  16  GB  of  RAM,  and  750  GB  of  hard  disk
storage.  The  software  environment  used  for  the
experiment is Windows 10 operating system.

All  algorithms  utilized  in  the  experiment  have  been
implemented in the Matlab programming language.

The experimental  evaluation is  conducted using two
real datasets.

The  first  dataset  consists  of  traffic  accident
information  extracted  from  the  UK  car  accident
dataset[50]. Each stream element in the dataset contains
records  such  as  the  age  of  injury  and  death.  The  age
ranges  are  set  to  [0,  20],  [20,  40],  [40,  60],  [60,  80],

and [80, 100]†.
The second dataset consists of records of the number

of passengers in a car extracted from the NYC yellow
taxi  trip  dataset[51].  The  number  of  passengers  ranges
from 1 to 6‡.

To  evaluate  the  effectiveness  of  the  proposed
algorithms,  we  have  implemented  five  different
algorithms  in  the  Matlab  programming  language.  We
use Mean Square Error (MSE) to measure the usability
and accuracy of the published data. A smaller value of
MSE indicates better usability of data.  We experiment
with three different privacy budgets of 0.5, 1, and 1.5.
To  ensure  reproducibility  and  eliminate  randomness,
each evaluation result is an average of 30 independent
runs.

MSE is calculated as follows:
 

MSE (Q) =

∑
H∈G

(H̃−H)2

|Q|
(12)

|Q| H̃
H

where  is  the  number  of  queries,  represents  the
statistical  result  of  adding  noise  to  an  interval,  and 
represents the statistical result of an interval.

α

We conduct an experiment to evaluate the impact of
different  methods for  allocating the privacy budget  on
the  accuracy  of  our  algorithm,  utilizing  the  NYC
yellow  taxi  trip  dataset.  Specifically,  we  vary  the
allocation ratio  of the privacy budget from 0.1 to 0.9,
and assess the accuracy of our algorithm using MSE, as
illustrated in Fig. 4.

α

α

From Fig.  4,  we  can  observe  that  the  MSE  of  the
published  data  decreases  when  the  privacy  budget
allocation parameter  increases. This observation can
be  attributed  to  two  factors.  Firstly,  our  ESHP
algorithm  effectively  reduces  the  overall  algorithmic
error  by  approximating  the  difference  between  the
statistical  value  and  the  noise  value,  and  selecting  an
appropriate  value  of  through  an  approximate
estimation method. This selection process mitigates the
impact  of  Laplace  noise  on  the  data.  Secondly,  the
ESHP  algorithm  incorporates  Laplace  noise  using  the
privacy  budget.  With  an  increasing  privacy  budget 

 

†The UK Traffic Accidents dataset (2014): This dataset is obtained from
pertinent  governmental  organizations  in  the  United  Kingdom  and
encompasses comprehensive road safety information regarding personal
injury traffic accidents that occurred in the UK between 2005 and 2014.
It includes detailed data, such as accident date, time, location, severity of
injuries, weather conditions, and types of vehicles involved. These data
hold substantial value in investigating the incidence of traffic accidents,
analyzing their causative factors, and formulating effective traffic safety
policies.

 
 

‡The  New  York  City  Yellow  Taxi  Trip  dataset  (2019):  This  dataset  is
acquired  from  pertinent  governmental  agencies  in  New  York  City  and
provides extensive information about yellow taxi trips undertaken within
the city during the year 2019. It comprises various fields, such as the trip
date  and  time,  pickup  and  drop-off  locations,  trip  distance,  itemized
fares,  rate types,  payment methods,  and passenger count as reported by
the  driver.  This  dataset  serves  as  a  significant  resource  for
comprehending  the  functioning  of  taxi  services  in  New  York  City,
analyzing  passenger  behavior,  and  studying  traffic  congestion,  among
other aspects.
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αallocation  ratio ,  the  noise  value  associated  with
histogram  statistics  grows,  resulting  in  an  increase  in
the total error of the ESHP algorithm.

α

Based  on  the  aforementioned  findings,  we  have  set
the  privacy  budget  allocation  ratio  in  our  algorithm
to 0.1 for all subsequent experiments conducted in this
paper. This decision is supported by our results, which
indicate  that  this  ratio  strikes  a  favourable  balance
between  privacy  protection  and  the  accuracy  of  the

published data.

6.2　Comparisons for average running time

γ

In  our  experiment,  we  aimed  to  analyze  the  influence
of  different  window  sizes  on  data  usability  by
comparing  various  algorithms.  To  ensure  consistency,
we  set  the  weight  factor  to  0.91  and  considered
sliding  window  sizes  of  2000,  4000,  6000,  8000,  and
10 000.  We  evaluat  the  algorithms’ values  of  average
running time using the UK car accident dataset and the
NYC  yellow  taxi  trip  dataset,  and  the  experimental
results are presented in Figs. 5 and 6.

The comparison of five algorithms on their values of
average  running  time  under  different  window  sizes
reveals some interesting findings. For the FAST, APB,
and  RTP_DMM  algorithms,  the  total  execution  time
increases as the sliding window size increases.  On the
other hand, the NS algorithm’s execution time depends
on the sample set size rather than the window size.

w
ε

For example, with a window size of 6000 (  = 6000)
and  = 1 on the UK car accident dataset,  the average

 

 
Fig. 4    MSE  on  NYC  yellow  taxi  trip  dataset  under
different privacy budget allocations using ESHP algorithm.

 

 
Fig. 5    Average running time under different sliding window sizes (UK car accident dataset).

 

 
Fig. 6    Average running time under different sliding window sizes (NYC yellow taxi trip dataset).
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9×10−3

1.68×10−2 4×10−2 2.2×10−2 2.4×10−2

1.08×10−2 2.02×10−2

4.80×10−2 2.64×10−2 2.88×10−2

values  of  running  time  of  ESHP,  RTP_DMM,  APB,
FAST, and NS algorithms are approximately  s,

 s,  s,  s,  and  s,
respectively. Similarly, with the same parameters on the
NYC yellow taxi trip dataset, the average running values
of  time  of  ESHP,  RTP_DMM,  APB,  FAST,  and  NS
algorithms are approximately   s,   s, 

 s,   s, and   s, respectively.

O (k+M) k
M

O (w+M)

O (w+ s+M) s

In  contrast,  the  ESHP  algorithm’s  total  execution
time  is  almost  unaffected  by  the  window  size.  The
processing  time  of  the  ESHP  algorithm  follows  a
complexity of , where  is the number of bins
and  is  the  number  of  data  points.  Although  the
window  size  impacts  the  space  complexity  of  the
ESHP algorithm,  it  does  not  affect  the  total  execution
time  significantly.  The  RTP_DMM  algorithm,  which
employs  a  binary  tree,  requires  space
complexity. The NS algorithm needs to cache the entire
sliding  window,  resulting  in  a  time  complexity  of

,  where  is the sample set size.  Both the
APB  and  FAST  algorithms  spend  considerable  time
caching  all  data  in  the  window  when  publishing
histograms,  resulting  in  a  logarithmic  linear
relationship with the window size.

Compared to the NS algorithm, our ESHP algorithm
reduces  the  average  execution  time  by  62%.  These
results highlight the efficiency of the ESHP algorithm,
which  is  especially  notable  in  scenarios  where  the
window size varies.

6.3　Comparisons for memory usage

γ

In  this  experiment,  we  aim  to  analyze  the  impact  of
different window sizes on data usability by comparing
statistics histograms obtained from each time stamp in
the  sliding  window.  To  maintain  consistency,  we  set
the  weighted  factor  to  a  fixed  value  of  0.91.  The

sliding  window  sizes  we  considered  are  2000,  4000,
6000, 8000, and 10 000.

We  evaluate  five  algorithms,  namely  ESHP,  FAST,
RTP_DMM, APB, and NS, using two datasets: the UK
accident  dataset  and the NYC yellow taxi  trip  dataset.
Our focus is on examining the memory consumption of
these  algorithms  across  various  window  sizes.  The
experimental results,  depicted in Figs. 7 and 8, clearly
indicate  that  the  values  of  memory  usage  of  these
algorithms increase with larger window sizes.

w
ε

6×103 1.9×104 9×103

9×103 1×104

For instance, when the window size is set to 6000 (  =
6000)  and  the  value  of  is  fixed  at  1,  the  average
values  of  memory  usage  of  ESHP,  RTP_DMM, APB,
FAST,  and  NS  for  the  UK  car  accident  dataset  are
approximately  bits,  bits,  bits,

 bits, and  bits, respectively.

w ε

6.7×103

2.1×104 1×103 1×103 1.1×104

Similarly, for the NYC yellow taxi trip dataset with a
window size of 6000 (  = 6000) and  = 1, the average
values  of  memory  usage  of  ESHP,  RTP_DMM, APB,
FAST,  and  NS  are  approximately  bits,

 bits,  bits,  bits,  and 
bits, respectively.

k× log2(w)×M

w×M

w× 1− (1/2)log2(w+1)−1

1−1/2

(w+ s)×M

ESHP employs a novel sketch structure that requires
 memory space. FAST and APB need to

cache  all  the  data  within  the  window,  thus  requiring
 memory space. RTP_DMM utilizes a binary tree

structure,  which  necessitates 
memory  space.  On  the  other  hand,  the  NS  algorithm
requires  memory space. Comparatively, our
algorithm  exhibits  an  average  reduction  of  76% in
memory  consumption  when  compared  to  the  NS
algorithm.

Overall,  these  findings  highlight  the  trade-off
between  window  size  and  memory  usage,

 

 
Fig. 7    Memory usage under different window sizes (UK car accident dataset).
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demonstrating  the  influence  of  different  window sizes
on the usability of data.

6.4　Comparisons for data accuracy

All  four  algorithms  are  compared  between  these  two
datasets to evaluate the values of accuracy of the data.
6.4.1　Accuracy under different window sizes

γ

In  this  experiment,  our  objective  is  to  analyze  the
impact of different window sizes on data usability.  To
maintain  consistency,  we  keep  the  weighted  factor 
fixed  at  a  value  of  0.91.  The  sliding  window  sizes
considered  are  2000,  4000,  6000,  8000,  and 10 000.
The  experimental  results,  presented  in Figs.  9 and 10,
offer a comparison among these window sizes.

From the analysis of Figs. 9 and 10, it is evident that
ESHP  exhibits  the  smallest  MSE  among  the  four
algorithms as  the window size  increases.  On the other
hand,  FAST  introduces  noise  to  individual  elements
and thus has a relatively higher MSE. The RTP_DMM
algorithm introduces noise to the statistical information
within  the  weighted  sliding  window,  resulting  in  a

smaller MSE compared to FAST. In the case of ESHP,
due  to  the  window size  approaching  a  constant  value,
the  total  MSE  tends  to  stabilize  at  a  constant  value.
ESHP  employs  an  adaptive  noise-adding  method,
which  avoids  significant  errors  caused  by  directly
adding noise to the sliding window.

Furthermore,  when  the  weighted  sliding  window  is
small,  the MSE of  APB is  smaller  than that  of  ESHP.
However,  as  the  window  size  increases,  the  MSE  of
ESHP becomes smaller than those of APB, FAST, and
RTP_DMM.

ε

5.9×104

6.2×104

For  instance,  when  the  window  size  is  set  to  6000
and  is  fixed  at  1,  the  MSE  of  the  NS  algorithm  is
approximately ,  while  the  ESHP  algorithm
achieves a lower MSE of approximately .

It  is  noteworthy  that  the  NS  algorithm  satisfies  the
conditions  of  differential  privacy  while  ensuring  data
usability, indicating that both ESHP and NS algorithms
are  capable  of  meeting  the  error  range  required  by
users.  In  most  cases,  the  ESHP  algorithm  ensures
competitive data usability when compared to the other

 

 
Fig. 8    Memory usage under different window sizes (NYC yellow taxi trip dataset).

 

 
Fig. 9    Accuracy under different window sizes (UK car accident dataset).
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algorithms.
6.4.2　Accuracy under different weighted factors

γ

In this experiment,  we aim to analyze the influence of
different  weighted  factors  on  data  usability.  We
consider  weighted  factors  of  0.91,  0.93,  0.95,  0.97,
and 0.99. The experimental results, depicted in Figs. 11
and 12, illustrate the comparison among these weighted
factors.

From  the  analysis  of Figs.  11 and 12,  it  is  evident
that  the  values  of  MSE  of  the  ESHP  and  APB
algorithms  are  positively  correlated  with  the  weighted
factor,  whereas  the  values  of  MSE  of  the  FAST  and
RTP_DMM  algorithms  remain  constant,  independent
of the weighted factor.

When  the  weighted  factor  is  relatively  small,  the
MSE  of  the  ESHP  algorithm  is  lower  than  those  of
FAST,  RTP_DMM, and  APB algorithms.  This  can  be
attributed to the fact that increasing the weighted factor
changes  the  global  sensitivity  and  affects  the  level  of
noise added to the data.

ε

2×104

1.9×104

For instance, when the weighted factor is set to 0.95
and  is  fixed  at  1,  the  MSE  of  the  NS  algorithm  is
approximately ,  while  the  ESHP  algorithm
achieves a lower MSE of approximately .

It  is  noteworthy  that  the  NS  algorithm  satisfies  the
conditions  of  differential  privacy  while  ensuring  data
usability,  indicating  that  both  the  ESHP  and  NS
algorithms can meet the error range required by users.
Furthermore,  as  the  weighted  factor  increases,  the
ESHP algorithm consistently provides competitive data
usability in most cases.

These  findings  highlight  the  influence  of  the
weighted factor on data usability, with the MSE of the
ESHP and APB algorithms being positively affected by
the weighted factor.  On the other hand, the FAST and

RTP_DMM  algorithms  maintain  a  constant  MSE
regardless of the weighted factor.
6.4.3　Accuracy under different approximate error

factors

β

In this experiment,  we aim to analyze the influence of
different  approximate  error  factors  on  data  usability
while  keeping  the  weighted  factor  fixed  at  0.91.  The
approximate error factors  considered are 0.1, 0.3, 0.5,
0.7,  and  0.9.  The  experimental  results,  illustrated  in
Figs.  13 and 14,  provide  a  comparison  among  these
approximate error factors.

From  the  analysis  of Figs.  13 and 14,  it  is  evident
that  the  values  of  query  error  of  the  ESHP  and  APB
algorithms  are  positively  correlated  with  the
approximate  error  factor,  while  the  values  of  MSE  of
the FAST and RTP_DMM algorithms remain constant
and independent of the approximate error factor.

When  the  approximate  error  factor  is  relatively
small, the MSE of the ESHP algorithm is significantly
lower  than  that  of  the  APB  algorithm.  This  can  be
attributed  to  two  reasons.  Firstly,  reducing  the
approximate error factor modifies the global sensitivity
and  the  level  of  Laplacian  noise  added,  resulting  in  a
decrease  in  MSE.  Secondly,  the  ESHP  algorithm
utilizes an adaptive selection strategy to avoid directly
adding  Laplacian  noise  to  the  weighted  sliding
window, leading to a reduction in MSE.

β

The  MSE  of  the  RTP_DMM  algorithm  remains
constant  regardless  of  the  approximate  error  factor.
However,  as  the  approximate  error  factor  increases,
the  MSE  of  the  ESHP  algorithm  becomes  larger  than
that of the RTP_DMM algorithm.

γ β εFor instance, when  = 0.91,  = 0.5, and  = 1, the
average  values  of  MES  of  ESHP,  RTP_DMM,  APB,

 

 
Fig. 10    Accuracy under different window sizes (NYC yellow taxi trip dataset).
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6×104 6×104 8.5×104 1.3×105

7×104

γ β ε

7.2×104 7.2×104

1.02×105 1.56×105 8.4×104

FAST,  and  NS  for  the  UK  car  accident  dataset  are
approximately , , , , and

,  respectively.  Similarly,  for  the  NYC  yellow
taxi trip dataset with  = 0.91,  = 0.5, and  = 1, the
average  values  of  MES  of  ESHP,  RTP_DMM,  APB,
FAST,  and  NS  are  approximately , ,

, , and , respectively.

It  is  noteworthy  that  the  NS  algorithm  satisfies  the
conditions  of  differential  privacy  while  ensuring  data
usability,  indicating  that  both  the  ESHP  and  NS
algorithms can meet the error range required by users.
However, Figs. 13 and 14 clearly demonstrate that the
ESHP  algorithm  consistently  provides  competitive
usability  of  published  data  across  a  wide  range  of

 

 
Fig. 11    Accuracy under different weighted factors (UK car accident dataset).

 

 
Fig. 12    Accuracy under different weighted factors (NYC yellow taxi trip dataset).

 

 
Fig. 13    Accuracy under different approximate error factors (UK car accident dataset)
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γ βvalues for  and .
Overall,  the  results  emphasize  that  the  ESHP

algorithm  delivers  enhanced  data  usability  for  most
combinations  of  weighted  factors  and  approximate
error factors.

7　Conclusion

This  research  paper  presents  ESHP,  an  online
algorithm  designed  for  continuously  publishing
histograms  over  weighted  sliding  windows.  The
algorithm  capitalizes  on  the  concept  of  approximate
statistics  in  data  streams  and  introduces  a  novel
sketching  structure  called  the  Approximate-Estimate
Sketch.  This  sketching  structure  effectively  maintains
counting  information  for  each  histogram  interval  at
every  time  instance.  To  ensure  the  competitiveness  of
query data in most cases, a greedy clustering algorithm
is  employed  to  group  and  add  Laplace  noise.  The
rigorous  theoretical  analysis  and  extensive
experimental  evaluation  demonstrate  the  effectiveness
of  the  proposed  ESHP  method.  It  achieves  the  same
level  of  data  utility  while  significantly  reducing
computational overhead and storage costs compared to
existing  methods.  These  results  highlight  the  potential
of ESHP for practical applications involving histogram
publishing  in  data  streams.  In  future  work,  we  aim  to
explore  the  integration  of  reinforcement  learning
techniques with data stream privacy protection.
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