

Streaming Histogram Publication over Weighted Sliding
Windows Under Differential Privacy

Xiujun Wang*, Lei Mo, Xiao Zheng, and Zhe Dang

Abstract: Continuously publishing histograms in data streams is crucial to many real-time applications, as it

provides not only critical statistical information, but also reduces privacy leaking risk. As the importance of

elements usually decreases over time in data streams, in this paper we model a data stream by a sequence of

weighted sliding windows, and then study how to publish histograms over these windows continuously. The

existing literature can hardly solve this problem in a real-time way, because they need to buffer all elements in

each sliding window, resulting in high computational overhead and prohibitive storage burden. In this paper, we

overcome this drawback by proposing an online algorithm denoted by Efficient Streaming Histogram Publishing

(ESHP) to continuously publish histograms over weighted sliding windows. Specifically, our method first

creates a novel sketching structure, called Approximate-Estimate Sketch (AESketch), to maintain the counting

information of each histogram interval at every time instance; then, it creates histograms that satisfy the

differential privacy requirement by smartly adding appropriate noise values into the sketching structure.

Extensive experimental results and rigorous theoretical analysis demonstrate that the ESHP method can offer

equivalent data utility with significantly lower computational overhead and storage costs when compared to

other existing methods.

Key words: differential privacy; randomized algorithm; streaming data publication; weighted sliding window;

approximate statistics; data usability; computational complexity

1　Introduction

With the rapid development of big data[1−6] and the
Internet of Things (IoTs)[7−14], streaming data (data
streams) are commonly found in diverse real−world

scenarios, such as real-time traffic streams[15−18] and
hospital patient information data streams[19, 20].
Histograms, which are statistical methods used to
capture the distributional information of streaming
data, play a crucial role in real-time analysis
applications in these scenarios. However, publishing
histograms without privacy protection can pose a
significant risk of exposing sensitive personal
information to malicious adversaries who could exploit
the published data. Therefore, there is a growing need
to continuously construct publicly publishable
histograms over streaming data, particularly in
applications where data privacy is a concern.

Generally, people tend to take more interest in recent
data than older ones, this is because the importance of
the element decreases as the element ages. Thus, in this

 Xiujun Wang and Xiao Zheng are with School of Computer

Science and Technology, Anhui University of Technology,
Ma’anshan 243032, China, and also with Institute for Artificial
Intelligence, Hefei Comprehensive National Science Center,
Hefei 230088, China. E-mail: {xjwang, xzheng}@ahut.edu.cn.

 Lei Mo is with Baosight Software (Anhui) Co. Ltd., Ma’anshan
243000, China. E-mail: ahut_molei@sina.com.

 Zhe Dang is with School of Electrical Engineering and
Computer Science, Washington State University, Pullman
99164, WA, USA. E-mail: zdang@wsu.edu.

* To whom correspondence should be addressed.
 Manuscript received: 2023-05-17; revised: 2023-07-10;

accepted: 2023-08-01

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 05/20 pp1674−1693
DOI: 10 .26599 /TST.2023 .9010083
Volume 29, Number 6, December 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

γ ∈ [0,1]

paper, we focus on the weighted sliding window
model[21, 22], which generalizes the traditional sliding
window model by incorporating a weighting factor

. This model naturally has a broad range of
applications[23, 24]. For example, considering a
monitoring system in a certain network scenario, recent
packets are considered more important than the older
ones, as they reflect the network status more accurately
and timely. So, the weighted sliding window model is
frequently used in these online monitoring systems[25]

for data streams. As another example, let us look at
social network scenarios. In this case, it is clear that
recent data outweigh old data when building a trust
relationship among users[26]. For more practical
examples, please refer to Refs. [27−30].

Nowadays, there are many research works focusing
on the data distribution of static data sets or dynamic
data streams[31−40]. Nowadays, a number of methods
have been proposed for generating safe histograms that
do not jeopardize individual user privacy. Most of them
are designed to handle static datasets[31−36]. Others are
designed to handle dynamic data streams where time
and space costs are also considered to be a main
factor[37−40].

However, the existing literature on data analysis
techniques lacks adequate methods for addressing the
weighted sliding window model, where the relevance
of data diminishes over time. This is because these
methods assign equal importance to all data points in a
data stream, irrespective of their relevance and time of
occurrence. However, this approach is not suitable for
many practical scenarios, such as predicting the
likelihood of diseases based on the most recent data in

a health app, forecasting the popularity of existing apps
using the latest data from Apple, and monitoring and
analyzing the most recent financial industry data to
mitigate risks. A scenario where a weighted data
stream generates a noise histogram is shown below in
Fig. 1.

In these common scenarios, in particular, they suffer
from two drawbacks when they are used to publish
histograms over weighted sliding windows:

(1) The existing methods are not incorporated with
an effective mechanism, which places more emphasis
on the new elements than the old ones;

(2) The existing methods have high computational
overhead and prohibitive storage burden, as they need
to repeatedly scan each element contained in each
sliding window when constructing a publishable
histogram (a safe one that reveals the trending
information of a sliding window but does not
jeopardize individual users’ privacy).

γ ∈ [0,1]

In this paper, we overcome these drawbacks by
modelling a data stream by a sequence of weighted
sliding windows and storing each weighted sliding
window with a novel sketching data structure.
Specifically, (1) in the weighted sliding window model,
we can characterize the data importance by a weighted
factor , which is pre-specified according to
practical safe requirements, (2) with the novel
sketching data structure, we can not only significantly
reduce the computational cost, but also adaptively
control the difference between real data and noisy data,
to guarantee competitive usability of query data in
most cases for the weighted sliding window model.

Please note that we follow the typical and widely used

Fig. 1 Scenarios for weighted data streams. Note: a weighted data stream from Walmart can be a series of shopping records
weighted by the time of goods sales; a weighted data stream from HCA can be a list of patient records weighted by their
freshness; and a weighted data stream from Apple can be a series of app records weighted by the popularity of the app.

 Xiujun Wang et al.: Streaming Histogram Publication over Weighted Sliding Windows Under Differential Privacy 1675

D
et t t

et w
t Dt

w
w D

Dt
w = et,et−1, . . . ,et−w+1

γ ∈ [0,1] Dt
w(γ)

t Dt
w w

Dt
w et γ0

et−1 γ

et−w+1 γw−1

et Dt
w

t w
γ

Dt
w(γ), Dt

w+1(γ), . . .

D

D
D

definition of weighted sliding windows from Ref. [5].
Specifically, let represent a data stream, where each
element arrives at time point (is called the
timestamp of). Given a window size of , the sliding
window at time point , denoted by , is defined as
the most recent elements in , i.e.,

. Then, for any given weighted
factor , the weighted sliding window at
time point refers to the combination of and
importance weights assigned to each element contained
in . The importance weight of is , the
importance weight of is , and at last, the
importance weight of is . Clearly, the
importance weight of each element in has its
importance weight controlled by the difference
between its timestamps and , and the weighted
factor . With this weighted sliding window model,
we propose an on-line algorithm denoted by Efficient
Streaming Histogram Publishing (ESHP), which
enables a continuous publication of histograms over
a sequence of weighted sliding windows (i.e.,

). The proposed ESHP algorithm
first divides the value range of each element from a
data stream into multiple histogram intervals; then,
ESHP stores the critical statistical information of each
element from into a memory-efficient sketching data
structure via scanning the data stream only once;
lastly, ESHP generates an approximate histogram
based on the sketching data structure and then makes it
publishable by adding an appropriate Laplacian noise.

In order to make the designed ESHP algorithm
efficient in terms of execution time and make ESHP
competitive in terms of data usability (i.e., satisfactory
accuracy in the generated histogram) in a one-pass scan
of the data stream, we face two major technical
challenges.

D

The first technical challenge is to design a novel
sketching data structure that can extract critical
statistical information from the data stream in a one-
pass scan, and then generate an approximate histogram
rapidly. The second technical challenge is how to
secure competitive usability by adding a suitable level
of Laplacian noise to the generated histogram.

To solve those technical challenges, we need to deal
with these problems.

D

(1) The solution to the first challenge involves
selectively compressing the count information and
timestamps of elements in the dataset into a two-
dimensional array. Additionally, it requires efficiently
collecting the data distribution within each weighted

sliding window to achieve continuous histogram
updates.

(2) The solution to the second challenge is to balance
the privacy protection and usability by randomly
choosing the release counting information from a
weighted sliding window. This solution also
incorporates a mechanism that leverages the difference
between approximate statistical information for each
histogram interval and a noise value for selective
release.

In summary, there are three major contributions in
this paper as follows:

(1) Our approach creates a novel sketching structure
called Approximate-Estimate Sketch Approximate-
Estimate Sketch (AESketch), which is suitable for the
weighted sliding window model and can be used to
continuously publish histograms;

(2) Our approach proposes a selective publishing
mechanism. This mechanism uses the difference
between the approximate statistical information of each
histogram interval and the noise value to select better
counting information, and utilizes greedy grouping for
all interval counting in this weighted sliding window to
guarantee the same data utility of query data in most
cases;

(3) Rigorous theoretical and extensive experimental
results demonstrate that the proposed ESHP method
can provide the same data utility with a substantially
reduced computational overhead and storage cost
substantially as compared with other existing methods.

This paper is organized as follows: Section 2 reviews
the existing literature on differential privacy histogram
publication methods. In Section 3, we provide a
concise introduction to the theoretical foundations and
relevant definitions. Section 4 presents our proposed
ESHP algorithm, which comprises two main
components. In Section 5, we thoroughly evaluate the
privacy aspects of the ESHP algorithm, and analyze its
space and time complexity. Section 6 consists of
simulations of the ESHP algorithm, where we compare
its performance with that of related approaches and
provide a detailed analysis of the experimental results.
Finally, in Section 7, we conclude the paper by
summarizing the key findings and contributions of our
research.

2　Related Work

The existing differential privacy histogram publication
methods can be mainly divided into two categories.

 1676 Tsinghua Science and Technology, December 2024, 29(6): 1674−1693

2.1　Histogram publication method for static data

Several recent studies have focused on analyzing and
improving publication methods for static data
histograms.

For instance, Xu et al.[31] introduced an approach
aiming at reducing query error by compressing similar
frequency intervals heuristically. They presented the
StructureFirst algorithm, which demonstrates reduced
query error through theoretical analysis and empirical
experiments. In a different work, Zhang et al.[32]

proposed a histogram publishing method known as
Differentially private Histogram Release (DiffHR).
Their approach involves clustering the original data
into distinct clusters, and subsequently adding Laplace
noise to protect the clusters. They carefully balanced
the error induced by clustering with the error caused by
Laplace noise, and showed that the generated
histograms using DiffHR can improve the usability of
the data. Tang et al.[33] introduced APB, an adaptive
privacy budget allocation strategy for histogram
publishing. This algorithm optimizes the allocation
model for privacy budget weights by determining the
weight allocation ratio that minimizes the total error
based on the model. The results are then grouped using
a greedy approach. The APB method effectively
balances the trade-off between noise error and
reconstruction error, enhancing the published data’s
usability. Another study by Chen et al.[34] proposed a
method that injects noise into Haar wavelet coefficients
using the Gaussian mechanism. By leveraging the Haar
wavelet transform and the Gaussian mechanism, this
approach ensures differential privacy for input data and
arbitrary range query. Notably, the noise variance
achieved by this method is significantly smaller
compared to using the Gaussian mechanism alone.

Overall, while these methods make valuable
contributions to achieving privacy in histogram
publication, their practical utility may be limited in
situations where efficiency and scalability are
paramount. Hence, further research endeavours are
necessary to explore alternative approaches that strike a
better balance between privacy preservation and the
accompanying space and time considerations. Such
efforts should focus on developing more efficient and
scalable techniques for private histogram generation.

2.2　Histogram publication method for dynamic
data

There are some research works proposed recently for

histogram publication methods for dynamic data.
For instance, Fan and Xiong[41] proposed a real-time

aggregation statistics framework FAST based on
filtering and adaptive sampling under differential
privacy. Lin et al.[36] proposed a privacy protection
publishing algorithm PTDSS-SW for two-dimensional
spatial data streams. The proposed algorithm uses low
space overhead to approximate the two-dimensional
data streaming information and adds appropriate noise
to the statistical results. Zhang and Meng[37] proposed a
partitioning-based method, called Streaming Histogram
Publication (SHP). First, the bucket count in the sliding
window is divided into different groups, and then the
privacy parameters are adaptively allocated according
to different data sampling results. This method can
reduce the overall privacy budget, and can not quickly
consume the privacy budget. Wu et al.[38] proposed a
histogram publishing algorithm using Kullback-Leibler
(KL) divergence as a measurement method. The
algorithm uses the Kullback-Leibler divergence to
calculate the amount of change between two adjacent
data and adds different noise values to the published
data according to the different values of the Kullback-
Leibler divergence calculation to reduce noise errors. Sun
et al.[39] proposed a complete algorithm for differential
private real-time streaming data publication by putting
the Fenwick-tree and matrix optimization together. The
algorithm effectively improves query efficiency while
ensuring query quality.

In addition, we notice that negative surveys[42] can be
used to protect privacy. To ensure the completeness of
our paper, we have reviewed the literature related to
negative surveys[43−45]. For example, Ref. [43]
introduced the definition of negative surveys for the
first time, proposed several state-of-the-art methods
dealing with prevention and coding strategies in
negative surveys, and demonstrated the potential
impact of negative surveys in the field of social
sciences. Jiang et al.[44] proposed a method based on
negative surveys for collecting the time-series data
from users and employing it to collect power
consumption data, and presented an approach that can
provide aggregated power consumption data to the
smart grid for load monitoring. Yang et al.[45] proposed
a privacy-preserving scheme based on negative surveys
to protect the privacy of vehicle fuel consumption data.
However, most existing methods[43−48] based on
negative surveys may incur a high computational
overhead and a heavy storage burden when processing

 Xiujun Wang et al.: Streaming Histogram Publication over Weighted Sliding Windows Under Differential Privacy 1677

data streams and generating histograms for sliding
windows. Because these methods typically require
storing all data points (i.e., the false categories of all
respondents) contained in each sliding window at each
time point, which incurs a heavy storage cost and a
large computational cost.

To summarize, the existing methods heavily depend
on buffering to store each sliding window, leading to
an unacceptably high cost in terms of storage space and
computational complexity. This approach poses
challenges in terms of scalability and efficiency,
particularly when dealing with large datasets. The
reliance on buffering in these methods necessitates the
allocation of significant memory resources to
accommodate the sliding windows. As the dataset size
increases, the storage space required grows
proportionally, making it impractical for scenarios with
limited memory availability. To address these
limitations, exploring novel approaches that alleviate
the storage and computational burdens will be crucial
to achieving scalable and efficient solutions for
handling sliding window data in various applications.

3　Definition and Model

In this section, we introduce the definition of
differential privacy and the concept of a weighted
sliding window model.

3.1　Definitions for data streams and differential
privacy

D = ⟨e1, e2, e3, . . . , en, . . .⟩
et

t
U = {1, 2, . . . , u}

A data stream, denoted as , is
an infinite sequence of elements. Each element
arrives with a timestamp and is chosen from a large
universe , representing the possible
values an element can take.

Differential privacy, initially proposed by Dwork[42],
has emerged as a powerful approach to privacy
protection, underpinned by a robust mathematical
foundation. It offers distinct advantages over traditional
data protection methods, which often rely on
encryption. Two key characteristics differentiate
differential privacy:

(1) Protection through noise addition: Differential
privacy safeguards data by injecting noise using
randomized algorithms. By doing so, it provides a
probabilistic guarantee of privacy while preserving the
overall statistical properties of the data.

(2) Independence from background knowledge:
Differential privacy effectiveness remains unaffected

by the background knowledge possessed by potential
attackers. It ensures the same level of privacy
protection, regardless of the amount of information
known to an adversary.

In the subsequent section, we will delve into the
essential definitions of data streams and differential
privacy. These conceptual frameworks lay the
groundwork for our proposed solution, enabling the
development of privacy-preserving mechanisms for
data streams.

D D′

u D−D′ = u

In this paper, this threat model of differential
privacy[42] involves a powerful adversary with the
ability to extract privacy-sensitive information about a
user record by comparing query results obtained from
two neighbouring datasets, denoted as and . These
datasets comprise individual user records, with the sole
distinction being the inclusion of a single user record,
denoted as in one dataset (i.e.,).

D
u
D′ = D−u u

x′ D′ x′ = f (D′)
f (·)

x D
x = f (D)

x x′

u D

The threat model assumes that the attacker has access
to all records in dataset , except for one user record

. Consequently, the attacker is aware of the dataset
, which excludes the record . The attacker

can obtain the query result on (i.e., ,
where represents the query function known to the
public). Additionally, the attacker can also acquire the
query results published by the system on dataset
(i.e.,). The objective of the attacker is to gain
insights into user privacy by comparing the
discrepancy between and in order to determine
whether the user record is present in dataset or not.

ε

D D′ A

O ⊆ Range (A)
Range (A)

A

Definition 1　 -differential privacy[42]: Algorithm
A is a data processing algorithm. Given two
neighboring data streams: and , Algorithm
achieves the differential privacy protection requirement
if and only if for any output set , where

 denotes the set of possible outputs of
Algorithm the following inequality stands:

Pr [A (D) = O] ⩽ eε×Pr [A (D′) = O] (1)

ε

Pr []
A

ε

where represents the privacy budget. It is important
to also note that the probability is derived from
the internal randomness of algorithm . Clearly,
increasing the privacy budget results in a stronger
intensity of privacy protection.

f f
Definition 2　 Global sensitivity[42]: For any

function , the global sensitivity of function is
defined as

△ f =max
∥∥∥ f (D)− f (D

′
)
∥∥∥ (2)

 1678 Tsinghua Science and Technology, December 2024, 29(6): 1674−1693

D
f :D→ Rd ε

Definition 3　Laplace noise mechanism[42]: Given
a data stream and a publicly known query function

, Algorithm A satisfies the -differential
privacy protection requirement if the following equality
is true:

A (D)= f (D)+
⟨
Lap1

(
△ f
ε

)
, Lap2

(
△ f
ε

)
, . . . , Lapd

(
△ f
ε

)⟩
(3)

d fwhere represents the query dimension of .

3.2　Definition of weighted sliding window model
and its preprocessing

This section begins by introducing the concept of the
weighted sliding window model, as described in Lee
et al.’s work in 2014[23]. The weighted sliding window
model extends the conventional sliding window
approach by incorporating user-specific weighted
factors. These factors are assigned to individual data
elements, allowing for differentiation based on their
relative importance. By introducing these weights, the
model offers a finer granularity in capturing the
significance of data within the sliding window*.

Expanding on the foundations of the weighted sliding
window model, our proposed technique focuses on
converting a data stream into multiple binary data
streams. This conversion process involves transforming
the original data stream into several binary streams,
each representing a specific aspect or characteristic of
the data. By decomposing the data stream in this
manner, we gain the ability to independently analyze
and process different aspects of the data. This approach
opens up new opportunities for tailored analysis and
the implementation of privacy-preserving mechanisms.

In other words, by assigning weights to individual
data elements within the sliding window, the weighted
sliding window model allows for a more nuanced
understanding of their importance. Based on this
model, we propose a technique that takes this concept
further by converting a data stream into multiple binary
data streams. This conversion involves breaking down
the original data stream into several binary streams,
with each stream representing a distinct aspect or
characteristic of the data. By doing so, we can analyze
and process different aspects of the data independently,

enabling customized analysis and the integration of
privacy-preserving measures.

D = ⟨e1, e2, e3, . . . , en, . . .⟩ w
Dt

w t
w

Definition 4　Sliding window: Given a data stream
 and a window size , the

sliding window at current timestamp contains the
latest elements seen so far. In other words,

Dt
w =

et−w+1, et−w+2, . . . , et, if t ⩾ w;
e1, e2, . . . , et, if t < w

(4)

w

w
γ

Traditionally, the sliding window model considers
the latest elements equally important, assigning them
equal weights. This equal weighting assumption limits
the ability to differentiate the importance levels among
the elements. To address this limitation, we
introduce a weighted factor denoted as , which
enables the assignment of larger weights to newer
elements compared to older ones.

e
Dt

w I (e)

γ

For the sake of clarity in the subsequent discussion,
we represent the importance of an element belonging
to the sliding window as . This representation
allows us to quantify and compare the importance
levels of individual elements within the sliding
window. By incorporating the weighted factor , we
can adjust the weights assigned to elements based on
their relative positions within the window, facilitating a
more flexible and fine-grained modelling of data
importance.

D = ⟨e1, e2, e3, . . . , en, . . .⟩
w γ

t > 0
t > 0

Definition 5　Weighted sliding window[23]: Given
a data stream , a window
size , a user-specific weighted factor , and a time
instance , the weighted sliding window at time
instance is constituted two the following two
parts:

t Dt
w(1) the sliding window at time instance : ;⟨

γw−1, γw−2, . . . , γ0
⟩

et ∈ Dt
w

I (et) = γt−i

(2) a weight array which assigns
each element is associated with a different
weight .

et ∈ Dt
w 1

et−1 ∈ Dt
w

γ γ

w
t = 4

Dt
w = ⟨e2, e3, e4⟩

⟨
γ2, γ1, γ0

⟩
e2 γ2 e3 γ1 e4

γ0

The schematic diagram of the weighted sliding
window is shown in Fig. 2. From the definition of the
weighted sliding window, it is clear that the newest
element has the largest weight of , the second
newest element has the second largest weight
of , and so on. For example, suppose that = 0.95,
the window size = 3, and the current time instance is

, the weighted sliding window contains two parts:
(part-a) , and (part-b) which
assigns a weight of , a weight of , and a
weight of .

*The difference between the original sliding window model and the
weighted sliding window model leads to the limitation of existing
methods designed for the original sliding window model. These methods
usually cannot handle the weighted sliding window model where each
element has a different weight.

 Xiujun Wang et al.: Streaming Histogram Publication over Weighted Sliding Windows Under Differential Privacy 1679

D
M [l1, r1], [l2, r2], . . . , [lM , rM]

D
D = ⟨e1, e2, . . . , en, . . .⟩ M

⟨D1, D2, . . . , DM⟩
M i
Di i [li, ri]

Definition 6　 Transforming a data stream into
multiple binary data streams according to the
pre-determined intervals: Given a data stream , and

 intervals: . Before
processing , we always transform a numerical data
stream: into separate binary
data streams that corresponds to the

 intervals. Specifically, the -th binary data stream
 corresponds to the -th interval , and is

defined as

Di =
⟨
Ie1∈[li, ri], Ie2∈[li, ri], . . . , Ien∈[li, ri], . . .

⟩
(5)

Ien∈[li, ri]

[li, ri] ∀ n ⩾ 1 Ien∈[li, ri] = 1 en ∈ D
[li, ri] Ien∈[li, ri] = 0

Di i = 1, 2, . . . , M M
Gi Gi =

∑t
j=t−w+1 Ie j∈[li, ri]×

γt− j

where denotes the value belonging to the
interval . , , if element
does belong to ; and , otherwise.
Then, the count of a weighted sliding window in each
data stream , (each of these binary
data streams), denoted by ,

.
Hereafter, to offer an unambiguous illustration, we

use

Si = ⟨x1, x2, . . . , xn, . . .⟩ (6)

i i = 1to represent the -th binary data stream (−M),
when designing a novel sketching structure to maintain
the counting information of each histogram interval at
every time instance.

4　Differential Privacy Data Stream
Publishing Algorithms Based on
Weighted Sliding Window Model

In this section, we outline the design of the ESHP
algorithm. The roadmap for this section is as follows:

(1) Creation of AESketch: We propose a introduce
a novel sketch structure (AESketch), which enables the

maintenance of counting information for each
histogram interval by scanning the data stream only
once.

(2) Development of the ESHP Algorithm: Building
upon AESketch, we present the ESHP algorithm,
specifically designed to generate publishable
histograms over weighted sliding windows.

(3) Advantages of the ESHP method: It boasts
advantages, such as reduced computational overhead
and preserved data utility, making it a highly efficient
and practical approach for various data processing and
analysis tasks.

4.1　AEsketch

In this section, we begin by introducing several
fundamental symbols that will be used throughout the
paper. We then proceed to provide a detailed analysis
of the structure of the sketch.
• w represents the size of a sliding window. It

determines the number of most recent elements
considered within the window.
• θ represents the weighted approximation error

threshold. It is a parameter that controls the acceptable
level of error in the weighted sliding window model.
• Si [t−w+1, t] i

w

t−w+1 t

 denotes a sliding window of the -th
binary data stream. It encompasses the most recent
elements of the stream, starting from timestamp

 to timestamp .
• γ represents the weighted factor. It is a parameter

that allows for assigning different weights to individual
elements based on their relative importance within the
sliding window.
• β represents the approximate error factor. It is a

parameter that controls the level of approximation
allowed in the estimation of histogram intervals.
• B

B1 (i)

B2 (i) Gi i
Si

 denotes a two-dimensional array used for storing
the counting information of weighted sliding windows.
The first one-dimensional sub-array, denoted as ,
records the timestamp of the current element in a data
stream. The second one-dimensional sub-array,
denoted as , stores the count for the -th binary
data stream .

Table 1 summarizes the important symbols
introduced in this section, providing a convenient
reference for their meanings and usage throughout the
remaining sections of the paper.

Our approach is to create a novel sketching structure
AESketch, which is suitable for the weighted sliding
window model and can then be used to publish

…

… … …

Fig. 2 Schematic diagram of a weighted sliding window.

 1680 Tsinghua Science and Technology, December 2024, 29(6): 1674−1693

histograms continuously.

Gi

Ĝi Gi

Ĝi Gi

θ |Ĝi−Gi| ⩽ θ

Our approach is based on the following core idea.
Accurately tracking the count of each binary stream
within a sliding window would require storing all the
elements, resulting in a significant computational
burden and prolonged computation time. To address
this challenge, we propose the design of AESketch, a
sketch structure that maintains an approximate estimate

 of . The key criterion is that the difference
between and should always be less than the user-
defined error threshold , i.e., at all times.

Ĝi Gi

Ĝi Gi

|Ĝi−Gi| ⩽ θ

Although using AESketch leads to a decrease in
accuracy, we believe it is a justifiable trade-off for two
main reasons. First, it aligns with the fundamental
concept of differential privacy, as all methods for
publishing differential privacy data involve introducing
random noise to protect privacy. Second, the estimated
value derived from AESketch can be viewed as
augmented by a random noise component.
Consequently, the discrepancy between and
always falls within the error threshold defined by the
user (i.e.,).

By striking a balance between accuracy and privacy,
we consider this compromise to be a reasonable
approach for safeguarding the privacy of data while
efficiently maintaining approximate counts of binary
streams. In the subsequent sections, we will delve into
the details of AESketch, conduct a comprehensive
analysis, and present experimental results to validate its
effectiveness.

Si

Ĝi Si

Si = ⟨1, 1, 1, 1⟩ γ = 0.95
w β

The detailed steps of how AESketch processes a
data stream and then calculates the estimated value

 for are presented in Algorithm 1. Let us now
illustrate Algorithm 1 with an example. Suppose that

, weighted factor , the window
size = 3, approximate error factor = 0.5, and

t = 4

θ = 1.4262
t

Ĝi =

0.8525× (0.95)4−2+0.8099× (0.95)3−2+0.7694× (0.95)0+

1−0.5×0.8525×0.954−2 = 2.9235
Gi

|Gi− Ĝi| = 0.071
θ/2 = 0.7131

the current time instance . With a simple
calculation, we can observe that Algorithm 1 will
obtain . Next, We can calculate the interval
count for the current timestamp by Line 14 of
Algorithm 1 (the first case is that the data stream
has expired elements). The detailed values of the
related parameter at each time instance in this example
are given in Table 2. With this, we can obtain:

. It is also clear that
the true count value at the current moment is =
2.8525. Therefore, we know that is not
more than . In Theorem 4 in the following,
we shall give a formal proof of this fact for general
cases.

Gi
1−γw

1−γ

Theorem 1　 The maximum value of in the

weighted sliding window is .

Gi
1−γw

1−γ

Proof　From the schematic diagram of the weighted
sliding window in Fig. 2, it can be observed that when
each position in the sliding window is set to 1, the
maximum count is w. So the maximum value of is

equal to . ■
k B

1/β
Theorem 2　The number of blocks of the array

used by Algorithm 1 does not exceed .
Proof　First, we have two facts as follows:
(1) By the properties of a weighted sliding window,

the maximum count value is

1−γw

1−γ (7)

(2) Algorithm 1 uses the block threshold in the
following:
 (

1−γw

1−γ

)
×β (8)

B
Based on the two cases Formulas (7) and (8), the

maximum number of blocks used in array is

k =

1−γw

1−γ(
1−γw

1−γ

)
×β
=

1
β

(9)

Theorem 3　For Algorithm 1, there are no two data

Table 1 Important symbols in this paper.
Notation Description

w Size of a weighted sliding window
Si iThe -th binary data stream
M Number of intervals for a histogram
γ Weighted factor
α Privacy budget allocation ratio
β Approximate error factor
θ Weighted approximation error threshold
B Two-dimensional array
k Length of array B
Ĝ Interval approximate count in current timestamp
G̃ Interval noise value in current timestamp

Table 2 Parameter status at each time instance.

Parameter
t

1 2 3 4
Si 1 1 1 1
y 1 1 1 1

B1(i) 2 3 4 0
B2(i) 0.8525 0.8098 0.7694 0

 Xiujun Wang et al.: Streaming Histogram Publication over Weighted Sliding Windows Under Differential Privacy 1681

blocks that expire at the same time.
Proof　To illustrate this fact, let us employ a proof-

by-contradiction approach. We start by assuming the
existence of two blocks within the weighted sliding
window, and both of these blocks contain elements that
have already expired. According to the weighted
sliding window model described in Algorithm 1, any
new block inserted into the sliding window must be
positioned before an older block. If the newly inserted
block includes an expired element, it logically follows
that all elements within the older block must have also
expired. This conclusion arises because the older block
was inserted into the sliding window prior to the new
block, implying that the expiration time of its elements

must be earlier. Therefore, we can infer that it is
impossible to have two data blocks within the weighted
sliding window model that simultaneously expire. This
outcome contradicts the initial assumption we made.

By employing a proof by contradiction, we have
successfully demonstrated that, within the framework
of the weighted sliding window model as described in
Algorithm 1, the occurrence of two data blocks
expiring simultaneously is impossible. ■

|Gi− Ĝi| ⩽ θ/2.
Theorem 4　For each interval in the histogram, the

result of Algorithm 1 is

θ =
1−γw

1−γ ×βProof　 Please recall the equation as
presented in Algorithm 1. There are two possible
situations for the current sliding window:

(1) When there is no expired element:
By Line 15 of Algorithm 1, we can know

|Gi− Ĝi| = 0 (10)

B
Specifically, when there is no expired element, the

array records only the elements in the current sliding
window.

(2) When there are expired elements:

1
Ĝi

Ĝi = sum (B2 (i)×γt−B1 (i))+ y−0.5×old (B2 (i))× (γ)t−old (B1(i))).

By Theorem 3, we know the count in the most recent
block is , and there is only one block containing
expired elements. By Line 14 of Algorithm 1, will
minus half of the count in the oldest block (see

Moreover, since only the oldest block contains expired
elements, we can obtain

|Gi− Ĝi| ⩽ θ−1− 1
2

(θ−1) =
θ

2
− 1

2
⩽
θ

2
(11)

|Gi− Ĝi| ⩽ θ/2
Based on the two cases (Eq. (10) and Formula (11)),

we have .

O (1/β)
O (1/β)

Theorem 5　 The AESketch algorithm has a
computational cost of and a storage cost of

.

B
O (1/β)

Proof　From Algorithm 1, we can observe: the main
computational cost and storage cost are determined by
the size of array . So, the computational cost and
storage cost is .

O (w)
O (w)

β

1/w

It is worth noting that the existing algorithms that
cache the entire window have a storage cost of
and a computational cost of , which are larger
than that of the AESketch algorithm since is usually
less than .

4.2　ESHP

MAESketch provides us with estimated counts:

Algorithm 1　How AESketch processes binary data stream
Si i xt

t Si γ β

w θ

B k B

Input: : -th binary data streams; : element at the current
time instance in the , : weighted factors, : approximate
error factor, : windows size, : weighted approximation error
threshold, : two-dimensional array, : length of array .

Ĝi i
t

Output: approximate count belonging to the -th interval at
the current timestamp .
1: Calculate the threshold of the approximate error of the weighted

θ =

(
1−γw

1−γ

)
×β　sliding window: ;

t2: Calculate the weighted count at the current timestamp :
y = y×γ+ xt　 ;

3: To assess whether the weighted sliding window value at the
t　current time instance () surpasses the threshold value of the

　weighted sliding window:
y×γ+ xt ⩽ θ4: if then
y = y×γ+ xt;5: 　

6: else
B1(i) = t; B2(i) = y; i = i+1; y = xt;7: 　

8: end if
S9: Determine whether the array has any expiration data element

t　at the current timestamp :
(B1(i) < t−w+1) B1(i) > t)10: if and then
B1(i) = 0; B2(i) = 0;11: 　

12: end if
13: Calculate the interval counting information for the current

t　 timestamp by the following 2 steps:

Ĝi = sum (B2(i)×γt−B1(i))+ y−
14: Step 1: It generates expired elements:
　　　

0.5×old (B2(i))× (γ)t−old(B1(i))　　　　　 ;
　　　//remove any bias from the estimation by subtracting half
　　　of the oldest block

Ĝi = sum (B2(i)×γt−B1(i))+ y.
15: Step 2: There is no expired element in the data stream:
　　　

 1682 Tsinghua Science and Technology, December 2024, 29(6): 1674−1693

⟨
Ĝ1, Ĝ2, . . . , ĜM

⟩
M

⟨S1, S2, . . . , SM⟩ M
M G1, G2, . . . , GM

S

Ĝ1 Ĝ2 . . . ĜM

 for the binary data streams:
. These values are estimated values

of the true counts: . However, they
are not good enough to prevent the leak of private
information contained in the original data stream .
Considering this fact, if we need to further protect

, , , by adding appropriate noise random
variables to them.

In order to ensure the competitive availability of the
published data, we combine AESkech with differential
privacy, and then propose an efficient streaming
histogram publishing algorithm, represented by ESHP
algorithm.

The ESHP algorithm follows a sequential process to
accomplish its objectives.

Initially, it generates a sketching structure known as
AESketch to approximate the distribution information
of data within the weighted sliding window at the
subsequent timestamp.

The subsequent step entails proposing an adaptive
selective publishing mechanism that intelligently
determines an appropriate value for each interval. This
is achieved by comparing the disparity between the
estimated value and the noise value. The algorithm
assesses this difference and decides whether to publish
the estimated value or the noisy value. The detailed
implementation is available in Algorithm 2,
particularly in Lines 2–6.

In the third step, the ESHP algorithm incorporates
Laplace noise into the count value of each interval.
This ensures privacy protection while preserving
statistical accuracy. Moreover, the algorithm constructs
a publishable histogram over the weighted sliding
windows using a greedy grouping strategy. The
implementation details of this strategy can be observed
in Algorithm 2, specifically in Lines 7–21.

The specific implementation of the greedy grouping
strategy involves the following actions:

(1) Sorting the optimal sets of noise values and
estimation values based on their error relationships.
This facilitates grouping together similar or closely
related data.

(2) If the current error incurred by not grouping a
particular interval is smaller than the error obtained by
grouping it, the algorithm decides to place this interval
in a separate group. Conversely, if grouping the
interval results in a smaller error, it is placed within the
current group.

By employing this greedy grouping strategy, the

ESHP algorithm optimizes the grouping of intervals to
minimize overall overall errors and enhance the
accuracy of the published histogram.

These steps collectively empower the ESHP
algorithm to effectively estimate distribution
information, selectively publish values, incorporate
privacy-preserving noise, and construct a publishable
histogram over weighted sliding windows.

Note: The third step of this approach ensures that
each interval is grouped in a manner that minimizes
errors and enhances data usability.

Overall, the ESHP algorithm is a three-step process
that utilizes a sketching structure, an adaptive selective
publishing mechanism, and Laplace noise to construct
a publishable histogram over weighted sliding
windows. These steps are designed to ensure that data
privacy is maintained while still providing useful
insights into the distribution of data.

Algorithm 2　ESHP algorithm
D t ε

α

Input: : data stream, : current timestamp, : privacy budget,
: privacy budget allocation ratio.

noise histogram G̃t at the current timestamp.Output:

Calculate all interval count Ĝt for a histogram by AESketch1:
t　in the current timestamp ;
ε1 = αε ε2 = (1−α)ε2: Allocate privacy budget: and ;

3: Determine whether to add Laplace noise to the current data:

|Ĝt −Gt | ⩾
√

2θ
ε1

5: Ĝt =Gt +Lap
(
θ

ε1

)4: 　if then

;

6: 　end if
7: Use grouping method based on greedy clustering:

Ĝt = sort (Ĝt)8: 　 ;

C = Clustering (Ĝt)9: 　 ;
10: Calculate the mean of the current histogram:

Ci ∈C11: 　for do

C̃i =
∑

Ĥ∈Ci

H j

|Ci|
12: 　　 ;

13: 　end for
14: Calculate the noise value of the current histogram:

for every Ĥ j ∈ Ĝt do15: 　

H̃ j = C̃i +Lap
(
θ

ε2

)
/|Ci|16: 　　 ;

17: 　end for
18: Non-negative constraint on the count of each histogram
　 interval:

Ĝt ⩽ 019: 　if then
Ĝt = 020: 　　 ;

21: 　end if

 Xiujun Wang et al.: Streaming Histogram Publication over Weighted Sliding Windows Under Differential Privacy 1683

4.3　Advantages of the ESHP method

The ESHP method provides several significant
advantages over existing methods.

(1) The ESHP method utilizes the innovative
AESketch structure to reduce computational overhead
significantly. This allows for the real-time release of
histograms without the need to buffer all elements
within each sliding window, making it suitable for
processing data streams in real-time. It also minimizes
storage costs and alleviates the burden of continuously
releasing histograms through weighted sliding
windows.

(2) The ESHP method can maintain comparable data
utility to existing methods. The mechanism leverages
the difference between approximate statistical
information for each histogram interval and the noise
value to select better counting information. It employs
a greedy grouping approach to count all intervals
within the weighted sliding window, ensuring that the
data utility for querying data remains similar in most
cases.

In conclusion, the ESHP method excels in the
continuous real-time publication of histograms,
ensuring differential privacy, accommodating data
streams with different weights and preserving data
utility. It serves as an efficient and privacy-preserving
approach to histogram generation that finds
applicability in various scenarios involving data
processing.

5　Theoretical Analysis

In this section, we analyze the space complexity and
time complexity of the ESHP algorithm and verify the
privacy of the ESHP algorithm.

k× log(w)×MTheorem 6　ESHP algorithm requires
bits of memory.

Si k× log2 (w) B

log2 (w) w
w

M
k× log2 (w)×M

M
B

Proof　The space overhead of the ESHP algorithm
is mainly determined by the AESketch data structure.
From Theorem 2, we know that the binary data stream

 requires bits. Specifically, the array in
the AESketch data structure should record the
timestamp of each element from the data stream, and
we need bits to accurately represent the
different timestamps of the elements contained in a
sliding window. For intervals, the size of the
memory space we need is bits. Finally,
since there are intervals and each interval requires
one array , we can conclude that the ESHP method

k× log2 (w)×Mrequires a total memory bits. ■

M
O (M+ k)

Theorem 7　Assuming that the number of packets
in the ESHP algorithm is , the time cost of the ESHP
algorithm is .

et

et

et O (k)

B M
M

O (M+ k)

Proof　The ESHP method utilizes a data structure
called AESketch to store each element in the current
sliding window and then employs it to generate a
differential private histogram. Specifically, when a new
element arrives, the ESHP method identifies to
which belongs and stores crucial information about

 in a block containing bits of AESketch data
structure (see Theorem 2). Subsequently, the ESHP
method generates a differential private histogram by
scanning the array , which contains blocks (each
block corresponds to an interval). Here, represents
the number of intervals, and the computational
complexity of the ESHP method is .

Please note that Theorems 1–3 lay the foundation for
the theorems proved in this section, and we show this
relationship in Fig. 3. ■

ε

Theorem 8　The proposed ESHP algorithm satisfies
-differential privacy.
Proof　For the ESHP algorithm, it is composed of

two combined algorithms. The first part is the adaptive
selection algorithm based on AESketch, and the second
part is the noisy grouping algorithm based on the
greedy approach.

Our proof involves two facts as follows:

bits.

Fig. 3 Diagram of the relationship between theorems.

 1684 Tsinghua Science and Technology, December 2024, 29(6): 1674−1693

ε1

(1) Adaptive selection algorithm based on
AESketch: The proposed ESHP algorithm selects an
appropriate value by comparing the difference between
the estimated value and the noise value in the adaptive
selection section (the adaptive selection section
satisfies -differential privacy).

ε2

(2) Noisy grouping algorithm based on greedy
approach: The ESHP algorithm uses a greedy
grouping strategy to add Laplace noise into the
grouping section (thus, the grouping section satisfies

-differential privacy).
ε = ε1+ε2

ε

With these two facts and , we can conclude
that the ESHP algorithm satisfies -differential privacy
according to the combined properties of differential
privacy[49].

6　Experiment

In this section, we present the experiment setting and
the used datasets. We compare the proposed method:
the ESHP algorithm with three typical data publishing
for data stream methods: APB algorithm[33],
RTP_DMM algorithm[39], and FAST algorithm[41], and
the most recent negative survey algorithm proposed in
Ref. [45] to process time-series data. For brevity, we
denote the negative survey algorithm in Ref. [45] by
NS in the following.

6.1　Experiment setting

The experimental hardware setup comprises an AMD
Ryzen R7 5800X3D 3.4 GHz processor with eight
cores, 16 GB of RAM, and 750 GB of hard disk
storage. The software environment used for the
experiment is Windows 10 operating system.

All algorithms utilized in the experiment have been
implemented in the Matlab programming language.

The experimental evaluation is conducted using two
real datasets.

The first dataset consists of traffic accident
information extracted from the UK car accident
dataset[50]. Each stream element in the dataset contains
records such as the age of injury and death. The age
ranges are set to [0, 20], [20, 40], [40, 60], [60, 80],

and [80, 100]†.
The second dataset consists of records of the number

of passengers in a car extracted from the NYC yellow
taxi trip dataset[51]. The number of passengers ranges
from 1 to 6‡.

To evaluate the effectiveness of the proposed
algorithms, we have implemented five different
algorithms in the Matlab programming language. We
use Mean Square Error (MSE) to measure the usability
and accuracy of the published data. A smaller value of
MSE indicates better usability of data. We experiment
with three different privacy budgets of 0.5, 1, and 1.5.
To ensure reproducibility and eliminate randomness,
each evaluation result is an average of 30 independent
runs.

MSE is calculated as follows:

MSE (Q) =

∑
H∈G

(H̃−H)2

|Q|
(12)

|Q| H̃
H

where is the number of queries, represents the
statistical result of adding noise to an interval, and
represents the statistical result of an interval.

α

We conduct an experiment to evaluate the impact of
different methods for allocating the privacy budget on
the accuracy of our algorithm, utilizing the NYC
yellow taxi trip dataset. Specifically, we vary the
allocation ratio of the privacy budget from 0.1 to 0.9,
and assess the accuracy of our algorithm using MSE, as
illustrated in Fig. 4.

α

α

From Fig. 4, we can observe that the MSE of the
published data decreases when the privacy budget
allocation parameter increases. This observation can
be attributed to two factors. Firstly, our ESHP
algorithm effectively reduces the overall algorithmic
error by approximating the difference between the
statistical value and the noise value, and selecting an
appropriate value of through an approximate
estimation method. This selection process mitigates the
impact of Laplace noise on the data. Secondly, the
ESHP algorithm incorporates Laplace noise using the
privacy budget. With an increasing privacy budget

†The UK Traffic Accidents dataset (2014): This dataset is obtained from
pertinent governmental organizations in the United Kingdom and
encompasses comprehensive road safety information regarding personal
injury traffic accidents that occurred in the UK between 2005 and 2014.
It includes detailed data, such as accident date, time, location, severity of
injuries, weather conditions, and types of vehicles involved. These data
hold substantial value in investigating the incidence of traffic accidents,
analyzing their causative factors, and formulating effective traffic safety
policies.

‡The New York City Yellow Taxi Trip dataset (2019): This dataset is
acquired from pertinent governmental agencies in New York City and
provides extensive information about yellow taxi trips undertaken within
the city during the year 2019. It comprises various fields, such as the trip
date and time, pickup and drop-off locations, trip distance, itemized
fares, rate types, payment methods, and passenger count as reported by
the driver. This dataset serves as a significant resource for
comprehending the functioning of taxi services in New York City,
analyzing passenger behavior, and studying traffic congestion, among
other aspects.

 Xiujun Wang et al.: Streaming Histogram Publication over Weighted Sliding Windows Under Differential Privacy 1685

αallocation ratio , the noise value associated with
histogram statistics grows, resulting in an increase in
the total error of the ESHP algorithm.

α

Based on the aforementioned findings, we have set
the privacy budget allocation ratio in our algorithm
to 0.1 for all subsequent experiments conducted in this
paper. This decision is supported by our results, which
indicate that this ratio strikes a favourable balance
between privacy protection and the accuracy of the

published data.

6.2　Comparisons for average running time

γ

In our experiment, we aimed to analyze the influence
of different window sizes on data usability by
comparing various algorithms. To ensure consistency,
we set the weight factor to 0.91 and considered
sliding window sizes of 2000, 4000, 6000, 8000, and
10 000. We evaluat the algorithms’ values of average
running time using the UK car accident dataset and the
NYC yellow taxi trip dataset, and the experimental
results are presented in Figs. 5 and 6.

The comparison of five algorithms on their values of
average running time under different window sizes
reveals some interesting findings. For the FAST, APB,
and RTP_DMM algorithms, the total execution time
increases as the sliding window size increases. On the
other hand, the NS algorithm’s execution time depends
on the sample set size rather than the window size.

w
ε

For example, with a window size of 6000 (= 6000)
and = 1 on the UK car accident dataset, the average

Fig. 4 MSE on NYC yellow taxi trip dataset under
different privacy budget allocations using ESHP algorithm.

Fig. 5 Average running time under different sliding window sizes (UK car accident dataset).

Fig. 6 Average running time under different sliding window sizes (NYC yellow taxi trip dataset).

 1686 Tsinghua Science and Technology, December 2024, 29(6): 1674−1693

9×10−3

1.68×10−2 4×10−2 2.2×10−2 2.4×10−2

1.08×10−2 2.02×10−2

4.80×10−2 2.64×10−2 2.88×10−2

values of running time of ESHP, RTP_DMM, APB,
FAST, and NS algorithms are approximately s,

 s, s, s, and s,
respectively. Similarly, with the same parameters on the
NYC yellow taxi trip dataset, the average running values
of time of ESHP, RTP_DMM, APB, FAST, and NS
algorithms are approximately s, s,

 s, s, and s, respectively.

O (k+M) k
M

O (w+M)

O (w+ s+M) s

In contrast, the ESHP algorithm’s total execution
time is almost unaffected by the window size. The
processing time of the ESHP algorithm follows a
complexity of , where is the number of bins
and is the number of data points. Although the
window size impacts the space complexity of the
ESHP algorithm, it does not affect the total execution
time significantly. The RTP_DMM algorithm, which
employs a binary tree, requires space
complexity. The NS algorithm needs to cache the entire
sliding window, resulting in a time complexity of

, where is the sample set size. Both the
APB and FAST algorithms spend considerable time
caching all data in the window when publishing
histograms, resulting in a logarithmic linear
relationship with the window size.

Compared to the NS algorithm, our ESHP algorithm
reduces the average execution time by 62%. These
results highlight the efficiency of the ESHP algorithm,
which is especially notable in scenarios where the
window size varies.

6.3　Comparisons for memory usage

γ

In this experiment, we aim to analyze the impact of
different window sizes on data usability by comparing
statistics histograms obtained from each time stamp in
the sliding window. To maintain consistency, we set
the weighted factor to a fixed value of 0.91. The

sliding window sizes we considered are 2000, 4000,
6000, 8000, and 10 000.

We evaluate five algorithms, namely ESHP, FAST,
RTP_DMM, APB, and NS, using two datasets: the UK
accident dataset and the NYC yellow taxi trip dataset.
Our focus is on examining the memory consumption of
these algorithms across various window sizes. The
experimental results, depicted in Figs. 7 and 8, clearly
indicate that the values of memory usage of these
algorithms increase with larger window sizes.

w
ε

6×103 1.9×104 9×103

9×103 1×104

For instance, when the window size is set to 6000 (=
6000) and the value of is fixed at 1, the average
values of memory usage of ESHP, RTP_DMM, APB,
FAST, and NS for the UK car accident dataset are
approximately bits, bits, bits,

 bits, and bits, respectively.

w ε

6.7×103

2.1×104 1×103 1×103 1.1×104

Similarly, for the NYC yellow taxi trip dataset with a
window size of 6000 (= 6000) and = 1, the average
values of memory usage of ESHP, RTP_DMM, APB,
FAST, and NS are approximately bits,

 bits, bits, bits, and
bits, respectively.

k× log2(w)×M

w×M

w× 1− (1/2)log2(w+1)−1

1−1/2

(w+ s)×M

ESHP employs a novel sketch structure that requires
 memory space. FAST and APB need to

cache all the data within the window, thus requiring
 memory space. RTP_DMM utilizes a binary tree

structure, which necessitates
memory space. On the other hand, the NS algorithm
requires memory space. Comparatively, our
algorithm exhibits an average reduction of 76% in
memory consumption when compared to the NS
algorithm.

Overall, these findings highlight the trade-off
between window size and memory usage,

Fig. 7 Memory usage under different window sizes (UK car accident dataset).

 Xiujun Wang et al.: Streaming Histogram Publication over Weighted Sliding Windows Under Differential Privacy 1687

demonstrating the influence of different window sizes
on the usability of data.

6.4　Comparisons for data accuracy

All four algorithms are compared between these two
datasets to evaluate the values of accuracy of the data.
6.4.1　Accuracy under different window sizes

γ

In this experiment, our objective is to analyze the
impact of different window sizes on data usability. To
maintain consistency, we keep the weighted factor
fixed at a value of 0.91. The sliding window sizes
considered are 2000, 4000, 6000, 8000, and 10 000.
The experimental results, presented in Figs. 9 and 10,
offer a comparison among these window sizes.

From the analysis of Figs. 9 and 10, it is evident that
ESHP exhibits the smallest MSE among the four
algorithms as the window size increases. On the other
hand, FAST introduces noise to individual elements
and thus has a relatively higher MSE. The RTP_DMM
algorithm introduces noise to the statistical information
within the weighted sliding window, resulting in a

smaller MSE compared to FAST. In the case of ESHP,
due to the window size approaching a constant value,
the total MSE tends to stabilize at a constant value.
ESHP employs an adaptive noise-adding method,
which avoids significant errors caused by directly
adding noise to the sliding window.

Furthermore, when the weighted sliding window is
small, the MSE of APB is smaller than that of ESHP.
However, as the window size increases, the MSE of
ESHP becomes smaller than those of APB, FAST, and
RTP_DMM.

ε

5.9×104

6.2×104

For instance, when the window size is set to 6000
and is fixed at 1, the MSE of the NS algorithm is
approximately , while the ESHP algorithm
achieves a lower MSE of approximately .

It is noteworthy that the NS algorithm satisfies the
conditions of differential privacy while ensuring data
usability, indicating that both ESHP and NS algorithms
are capable of meeting the error range required by
users. In most cases, the ESHP algorithm ensures
competitive data usability when compared to the other

Fig. 8 Memory usage under different window sizes (NYC yellow taxi trip dataset).

Fig. 9 Accuracy under different window sizes (UK car accident dataset).

 1688 Tsinghua Science and Technology, December 2024, 29(6): 1674−1693

algorithms.
6.4.2　Accuracy under different weighted factors

γ

In this experiment, we aim to analyze the influence of
different weighted factors on data usability. We
consider weighted factors of 0.91, 0.93, 0.95, 0.97,
and 0.99. The experimental results, depicted in Figs. 11
and 12, illustrate the comparison among these weighted
factors.

From the analysis of Figs. 11 and 12, it is evident
that the values of MSE of the ESHP and APB
algorithms are positively correlated with the weighted
factor, whereas the values of MSE of the FAST and
RTP_DMM algorithms remain constant, independent
of the weighted factor.

When the weighted factor is relatively small, the
MSE of the ESHP algorithm is lower than those of
FAST, RTP_DMM, and APB algorithms. This can be
attributed to the fact that increasing the weighted factor
changes the global sensitivity and affects the level of
noise added to the data.

ε

2×104

1.9×104

For instance, when the weighted factor is set to 0.95
and is fixed at 1, the MSE of the NS algorithm is
approximately , while the ESHP algorithm
achieves a lower MSE of approximately .

It is noteworthy that the NS algorithm satisfies the
conditions of differential privacy while ensuring data
usability, indicating that both the ESHP and NS
algorithms can meet the error range required by users.
Furthermore, as the weighted factor increases, the
ESHP algorithm consistently provides competitive data
usability in most cases.

These findings highlight the influence of the
weighted factor on data usability, with the MSE of the
ESHP and APB algorithms being positively affected by
the weighted factor. On the other hand, the FAST and

RTP_DMM algorithms maintain a constant MSE
regardless of the weighted factor.
6.4.3　Accuracy under different approximate error

factors

β

In this experiment, we aim to analyze the influence of
different approximate error factors on data usability
while keeping the weighted factor fixed at 0.91. The
approximate error factors considered are 0.1, 0.3, 0.5,
0.7, and 0.9. The experimental results, illustrated in
Figs. 13 and 14, provide a comparison among these
approximate error factors.

From the analysis of Figs. 13 and 14, it is evident
that the values of query error of the ESHP and APB
algorithms are positively correlated with the
approximate error factor, while the values of MSE of
the FAST and RTP_DMM algorithms remain constant
and independent of the approximate error factor.

When the approximate error factor is relatively
small, the MSE of the ESHP algorithm is significantly
lower than that of the APB algorithm. This can be
attributed to two reasons. Firstly, reducing the
approximate error factor modifies the global sensitivity
and the level of Laplacian noise added, resulting in a
decrease in MSE. Secondly, the ESHP algorithm
utilizes an adaptive selection strategy to avoid directly
adding Laplacian noise to the weighted sliding
window, leading to a reduction in MSE.

β

The MSE of the RTP_DMM algorithm remains
constant regardless of the approximate error factor.
However, as the approximate error factor increases,
the MSE of the ESHP algorithm becomes larger than
that of the RTP_DMM algorithm.

γ β εFor instance, when = 0.91, = 0.5, and = 1, the
average values of MES of ESHP, RTP_DMM, APB,

Fig. 10 Accuracy under different window sizes (NYC yellow taxi trip dataset).

 Xiujun Wang et al.: Streaming Histogram Publication over Weighted Sliding Windows Under Differential Privacy 1689

6×104 6×104 8.5×104 1.3×105

7×104

γ β ε

7.2×104 7.2×104

1.02×105 1.56×105 8.4×104

FAST, and NS for the UK car accident dataset are
approximately , , , , and

, respectively. Similarly, for the NYC yellow
taxi trip dataset with = 0.91, = 0.5, and = 1, the
average values of MES of ESHP, RTP_DMM, APB,
FAST, and NS are approximately , ,

, , and , respectively.

It is noteworthy that the NS algorithm satisfies the
conditions of differential privacy while ensuring data
usability, indicating that both the ESHP and NS
algorithms can meet the error range required by users.
However, Figs. 13 and 14 clearly demonstrate that the
ESHP algorithm consistently provides competitive
usability of published data across a wide range of

Fig. 11 Accuracy under different weighted factors (UK car accident dataset).

Fig. 12 Accuracy under different weighted factors (NYC yellow taxi trip dataset).

Fig. 13 Accuracy under different approximate error factors (UK car accident dataset)

 1690 Tsinghua Science and Technology, December 2024, 29(6): 1674−1693

γ βvalues for and .
Overall, the results emphasize that the ESHP

algorithm delivers enhanced data usability for most
combinations of weighted factors and approximate
error factors.

7　Conclusion

This research paper presents ESHP, an online
algorithm designed for continuously publishing
histograms over weighted sliding windows. The
algorithm capitalizes on the concept of approximate
statistics in data streams and introduces a novel
sketching structure called the Approximate-Estimate
Sketch. This sketching structure effectively maintains
counting information for each histogram interval at
every time instance. To ensure the competitiveness of
query data in most cases, a greedy clustering algorithm
is employed to group and add Laplace noise. The
rigorous theoretical analysis and extensive
experimental evaluation demonstrate the effectiveness
of the proposed ESHP method. It achieves the same
level of data utility while significantly reducing
computational overhead and storage costs compared to
existing methods. These results highlight the potential
of ESHP for practical applications involving histogram
publishing in data streams. In future work, we aim to
explore the integration of reinforcement learning
techniques with data stream privacy protection.

Acknowledgment

This research was supported by the Program for Synergy
Innovation in the Anhui Higher Education Institutions of
China (No. GXXT-2020-012), the National Natural
Science Foundation of China (No. 62172003), the Anhui

Provincial Natural Science Foundation (No.
2108085MF218), the Anhui Province University Natural
Science Research Project (No. 2022AH040052), and
the Science and Technology Innovation Program of
Ma’anshan, China (No. 2021a120009).

References

 A. McAfee and E. Brynjolfsson, Big data: The
management revolution, Harv. Bus. Rev., vol. 90, no. 10,
pp. 60–68, 2012.

[1]

 X. Wang, Z. Liu, Y. Gao, X. Zheng, Z. Dang, and X.
Shen, A near-optimal protocol for the grouping problem in
RFID systems, IEEE Trans. Mobile Comput., vol. 20, no.
4, pp. 1257–1272, 2021.

[2]

 Z. Hu and D. Li, Improved heuristic job scheduling
method to enhance throughput for big data analytics,
Tsinghua Science and Technology, vol. 27, no. 2, pp.
344–357, 2022.

[3]

 R. Pan, Z. Li, J. Cao, H. Zhang, and X. Xia, Electrical load
tracking scheduling of steel plants under time-of-use
tariffs, Comput. Ind. Eng., vol. 137, p. 106049, 2019.

[4]

 A. Belhassena and H. Wang, Trajectory big data
processing based on frequent activity, Tsinghua Science
and Technology, vol. 24, no. 3, pp. 317–332, 2019.

[5]

 C. Zhan, H. Hu, Z. Liu, Z. Wang, and S. Mao, Multi-
UAV-enabled mobile-edge computing for time-
constrained IoT applications, IEEE Internet Things J., vol.
8, no. 20, pp. 15553–15567, 2021.

[6]

 D. Wei, H. Ning, F. Shi, Y. Wan, J. Xu, S. Yang, and L.
Zhu, Dataflow management in the internet of things:
Sensing, control, and security, Tsinghua Science and
Technology, vol. 26, no. 6, pp. 918–930, 2021.

[7]

 I. Lee and K. Lee, The internet of things (IoT):
Applications, investments, and challenges for enterprises,
Bus. Horiz., vol. 58, no. 4, pp. 431–440, 2015.

[8]

 J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
Internet of things (IoT): A vision, architectural elements,
and future directions, Future Gener. Comput. Syst., vol.
29, no. 7, pp. 1645–1660, 2013.

[9]

 M. A. Khan and K. Salah, IoT security: Review,[10]

Fig. 14 Accuracy under different approximate error factors (NYC yellow taxi trip dataset).

 Xiujun Wang et al.: Streaming Histogram Publication over Weighted Sliding Windows Under Differential Privacy 1691

blockchain solutions, and open challenges, Future Gener.
Comput. Syst., vol. 82, pp. 395–411, 2018.
 Z. Liu, Q. Li, X. Chen, C. Wu, S. Ishihara, J. Li, and Y. Ji,
Point cloud video streaming: Challenges and solutions,
IEEE Netw., vol. 35, no. 5, pp. 202–209, 2021.

[11]

 Z. Liu, C. Zhan, Y. Cui, C. Wu, and H. Hu, Robust edge
computing in UAV systems via scalable computing and
cooperative computing, IEEE Wirel. Commun., vol. 28,
no. 5, pp. 36–42, 2021.

[12]

 Z. Liu, J. Li, X. Chen, C. Wu, S. Ishihara, Y. Ji, and L. Li,
Fuzzy logic-based adaptive point cloud video streaming,
IEEE Open J. Comput. Soc., vol. 1, pp. 121–130, 2020.

[13]

 C. Xiang, W. Cheng, C. Lin, X. Zhang, D. Liu, X. Zheng,
and Z. Li, LSTAloc: A driver-oriented incentive
mechanism for mobility-on-demand vehicular
crowdsensing market, IEEE Trans. Mobile Comput., doi:
10.1109/TMC.2023.3271671.

[14]

 A. Cela, T. Jurik, R. Hamouche, R. Natowicz, A. Reama,
S. I. Niculescu, and J. Julien, Energy optimal real-time
navigation system, IEEE Intell. Transp. Syst. Mag., vol. 6,
no. 3, pp. 66–79, 2014.

[15]

 H. Yi, H. Jung, and S. Bae, Deep neural networks for
traffic flow prediction, in Proc. 2017 IEEE Int. Conf. Big
Data and Smart Computing, Jeiu, Republic of Korea,
2017, pp. 328–331.

[16]

 L. Zhao, K. Yang, Z. Tan, X. Li, S. Sharma, and Z. Liu, A
novel cost optimization strategy for SDN-enabled UAV-
assisted vehicular computation offloading, IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 6, pp. 3664–3674, 2020.

[17]

 C. Wu, Z. Liu, F. Liu, T. Yoshinaga, Y. Ji, and J. Li,
Collaborative learning of communication routes in edge-
enabled multi-access vehicular environment, IEEE Trans.
Cognit. Commun. Netw., vol. 6, no. 4, pp. 1155–1165,
2020.

[18]

 B. Almadani, B. Saeed, and A. Alroubaiy, Healthcare
systems integration using real time publish subscribe
(RTPS) middleware, Comput. Electr. Eng., vol. 50, pp.
67–78, 2016.

[19]

 C. B. Rjeily, G. Badr, A. H. El Hassani, and E. Andres,
Medical data mining for heart diseases and the future of
sequential mining in medical field, in Machine Learning
Paradigms, G. A. Tsihrintzis, D. N. Sotiropoulos, and L.
C. Jain, eds. Cham, Switzerland: Springer, 2019, pp.
71–99.

[20]

 C. Xu, Y. Chen, and R. Bie, Sequential pattern mining in
data streams using the weighted sliding window model, in
Proc. 2009 15th Int. Conf. Parallel and Distributed
Systems, Shenzhen, China, 2009, pp. 886–890.

[21]

 P. S. M. Tsai, Mining frequent itemsets in data streams
using the weighted sliding window model, Exp. Syst.
Appl., vol. 36, no. 9, pp. 11617–11625, 2009.

[22]

 G. Lee, U. Yun, and K. H. Ryu, Sliding window based
weighted maximal frequent pattern mining over data
streams, Exp. Syst. Appl., vol. 41, no. 2, pp. 694–708,
2014.

[23]

 D. H. Vu, K. M. Muttaqi, A. P. Agalgaonkar, and A.
Bouzerdoum, A multi-feature based approach
incorporating variable thresholds for detecting price spikes
in the national electricity market of Australia, IEEE

[24]

Access, vol. 9, pp. 13960–13969, 2021.
 M. Yu, L. Wang, G. Xie, and T. Chu, Stabilization of
networked control systems with data packet dropout via
switched system approach, in Proc. 2004 IEEE Int. Conf.
Robotics and Automation, Taipei, China, 2004, pp.
362–367.

[25]

 J. Jiang, H. Wang, and W. Li, A trust model based on a
time decay factor for use in social networks, Comput.
Electr. Eng., vol. 85, p. 106706, 2020.

[26]

 F. Liu, T. Yang, J. Zhou, W. Deng, Q. Yu, P. Zhang, and
G. Cheng, Spatial variability and time decay of rock mass
mechanical parameters: A landslide study in the Dagushan
open-pit mine, Rock Mech. Rock Eng., vol. 53, no. 7, pp.
3031–3053, 2020.

[27]

 A. Erramilli, O. Narayan, and W. Willinger, Experimental
queueing analysis with long-range dependent packet
traffic, IEEE/ACM Trans. Netw., vol. 4, no. 2, pp.
209–223, 1996.

[28]

 Y. Ren, Z. Zeng, T. Wang, S. Zhang, and G. Zhi, A trust-
based minimum cost and quality aware data collection
scheme in P2P network, Peer Peer Netw. Appl., vol. 13,
no. 6, pp. 2300–2323, 2020.

[29]

 A. Golatkar, A. Achille, and S. Soatto, Time matters in
regularizing deep networks: Weight decay and data
augmentation affect early learning dynamics, matter little
near convergence, in Proc. 33rd Conf. Neural Information
Processing Systems, Vancouver, Canada, 2019, pp.
10678–10688.

[30]

 J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M.
Winslett, Differentially private histogram publication,
VLDB J., vol. 22, no. 6, pp. 797–822, 2013.

[31]

 X. Zhang, C. Shao, and X. Meng, Accurate histogram
release under differential privacy, (in Chinese), J. Comput.
Res. Dev., vol. 53, no. 5, pp. 1106–1117, 2016.

[32]

 H. Tang, G. Yang, and Y. Bai, Histogram publishing
algorithm based on adaptive privacy budget allocation
strategy under differential privacy, (in Chinese), Appl. Res.
Comput., vol. 37, no. 7, pp. 1952–1957&1963, 2020.

[33]

 D. Chen, Y. Li, J. Chen, H. Bi, and X. Ding, Differential
privacy via Haar wavelet transform and Gaussian
mechanism for range query, Comput. Intell. Neurosci., vol.
2022, pp. 8139813, 2022.

[34]

 S. Zhang and X. Li, Differential privacy medical data
publishing method based on attribute correlation, Sci.
Rep., vol. 12, no. 1, p. 15725, 2022.

[35]

 F. Lin, Y. Wu, Y. Wang, and L. Sun, Differentially private
statistical publication for two-dimensional data stream, (in
Chinese), J. Comput. Appl., vol. 35, no. 1, pp. 88–92,
2015.

[36]

 X. J. Zhang and X. F. Meng, Streaming histogram
publication method with differential privacy, (in Chinese),
J. Softw., vol. 27, no. 2, pp. 381–393, 2016.

[37]

 X. Wu, N. Tong, Z. Ye, and Y. Wang, Histogram
publishing algorithm based on sampling sorting and
greedy clustering, in Proc. 1st Int. Conf. Blockchain and
Trustworthy Systems, Guangzhou, China, 2020, pp. 81–91.

[38]

 L. Sun, C. Ge, X. Huang, Y. Wu, and Y. Gao,
Differentially private real-time streaming data publication
based on sliding window under exponential decay,

[39]

 1692 Tsinghua Science and Technology, December 2024, 29(6): 1674−1693

Comput. Mater. Con., vol. 58, no. 1, pp. 61–78, 2019.
 G. Yang, T. Dong, X. Fang, and S. Su, Association data
release with the randomised response based on Bayesian
networks, Int. J. Comput. Sci. Eng., vol. 20, no. 1, pp.
120–129, 2019.

[40]

 L. Fan and L. Xiong, An adaptive approach to real-time
aggregate monitoring with differential privacy, IEEE
Trans. Knowl. Data Eng., vol. 26, no. 9, pp. 2094–2106,
2014.

[41]

 C. Dwork, Differential privacy: A survey of results, in
Proc. 5th Int. Conf. Theory and Applications of Models of
Computation, Xi’an, China, 2008, pp. 1–19.

[42]

 F. Esponda, Negative surveys, arXiv preprint arXiv:
math/0608176v1, 2006.

[43]

 H. Jiang, W. Luo, and Z. Zhang, A privacy-preserving
aggregation scheme based on immunological negative
surveys for smart meters, Appl. Soft Comput., vol. 85, p.
105821, 2019.

[44]

 W. Yang, X. Chen, Z. Xiong, Z. Xu, G. Liu, and X.
Zhang, A privacy-preserving aggregation scheme based on
negative survey for vehicle fuel consumption data, Inf.

[45]

Sci., vol. 570, pp. 526–544, 2021.
 H. Jiang and W. Luo, Multi-question negative surveys, in
Proc. 3rd Int. Conf. Data Mining and Big Data, Shanghai,
China, 2018, pp. 503–512.

[46]

 H. Liao, A study of negative surveys with background
knowledge, in Proc. 2019 IEEE 9th Int. Conf. Electronics
Information and Emergency Communication, Beijing,
China, 2019, pp. 301–302.

[47]

 H. Jiang, W. Luo, B. Duan, and C. Wu, Enhancing the
privacy of negative surveys using negative combined
categories, Appl. Soft Comput., vol. 96, p. 106578, 2020.

[48]

 F. D. McSherry, Privacy integrated queries: An extensible
platform for privacy-preserving data analysis, in Proc.
2009 ACM SIGMOD Int. Conf. Management of Data,
Providence, RL, USA, 2009, pp. 19–30.

[49]

 The UK Government, The UK car accident dataset,
https://data.gov.uk/dataset/road-accidents-safety-data,
2014.

[50]

 Taxi & Limousine Commission, NYC yellow taxi trip
dataset, https://www.nyc.gov/site/tlc/about/tlc-trip-record-
data.page, 2019.

[51]

Xiujun Wang received the BEng degree
in computer science and technology, from
Anhui Normal University, China in 2005,
and the PhD degree in computer software
and theory from University of Science and
Technology of China, China in 2011. He is
currently a lecturer at School of Computer
Science and Technology, Anhui University

of Technology. His research interests include data stream
processing, randomized algorithms, and the Internet of Things
(IoTs).

Lei Mo received the BEng degree in
computer science and technology from
Tongling University, China in 2018, and
the MEng degree in computer science and
technology from Anhui University of
Technology, China in 2021. He is
currently a system engineer at Baosight
Software (Anhui) Co. Ltd. His research

interests include data streaming processes and differential
privacy.

Xiao Zheng received the BEng degree
from Anhui University, China in 1997, the
MEng degree from Zhejiang University of
Science and Technology, China in 2003,
and the PhD degree in computer science
and technology from Southeast University,
China in 2014. He is currently a professor
at School of Computer Science and

Technology, Anhui University of Technology, Anhui, China. He
is also a guest professor at Institute of Artificial Intelligence,
Hefei Comprehensive National Science Center, China. His
research interests include service computing, mobile cloud
computing, and privacy protection. He has been a guest editor of
IEICE Transactions on Communications. He is a senior member
of CCF, and a member of IEEE and ACM.

Zhe Dang received the BEng degree from
Nanjing University, China in1987, and the
MEng and PhD degrees in computer
science from University of California,
Santa Barbara, CA, USA in 1998 and
2000, respectively. He is currently an
associate professor at School of Electrical
Engineering and Computer Science,

Washington State University, WA, USA. His current research
interests include model-checking and testing for infinite-state
and/or real-time systems and randomized algorithms.

 Xiujun Wang et al.: Streaming Histogram Publication over Weighted Sliding Windows Under Differential Privacy 1693

