
 

On Concept Lattices for Numberings
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Abstract: The theory of numberings studies uniform computations for families of mathematical objects. In this

area,  computability-theoretic properties of  at  most countable families of  sets  are typically  classified via the

corresponding  Rogers  upper  semilattices.  In  most  cases,  a  Rogers  semilattice  cannot  be  a  lattice.  Working

within  the  framework  of  Formal  Concept  Analysis,  we  develop  two  new  approaches  to  the  classification  of

families .  Similarly  to  the classical  theory  of  numberings,  each of  the  approaches assigns to  a  family  its

own  concept  lattice.  The  first  approach  captures  the  cardinality  of  a  family :  if  contains  more  than

2 elements,  then  the  corresponding  concept  lattice  is  a  modular  lattice  of  height , such  that  the

number of its atoms to the cardinality of . Our second approach gives a much richer environment. We prove

that  for  any  countable  poset ,  there  exists  a  family  such  that  the  induced  concept  lattice  is

isomorphic  to  the  Dedekind-MacNeille  completion  of .  We  also  establish  connections  with  the  class  of

enumerative lattices introduced by Hoyrup and Rojas in their studies of algorithmic randomness. We show that

every lattice  is anti-isomorphic to an enumerative lattice. In addition, every enumerative lattice is anti-

isomorphic to a sublattice of the lattice  for some family .

Key words:  theory  of  numberings; concept  lattice; index  set; complete  lattice; enumerative  lattice; Formal

Concept Analysis

1　Introduction

S
ν S

ω S

The  theory  of  numberings  investigates  uniform
computational procedures for families of mathematical
objects.  Let  be  an  at  most  countable  family.  A
numbering  of the family  is  a surjective map from
the set of natural numbers  onto .

Numberings  have  emerged  as  an  important
{φe (x)}e∈ω

ψ (e, x) := φe (x)

methodological tool with the rise of the modern formal
notion  of  algorithmic  computation.  Gödel[1] employed
an  effective  numbering  of  first-order  formulae  in  the
proof  of  his  seminal  incompleteness  theorems.
Kleene[2] (see  also  Theorem  XXII  in  Ref.  [3])
constructed  the  celebrated  numbering  of  the  family  of
all  partial  recursive functions—this is a list 
enumerating  all  unary  partial  recursive  functions.  The
key  property  of  the  numbering  is  that  the  binary
function  is also partial recursive. In the
1950’s,  the  foundations  of  the  modern  theory  of
numberings  were  developed  by  Kolmogorov  and
Uspenskii[4],  Uspenskii[5],  and  independently  by
Rogers[6].

A key classification tool in the theory of numberings
is  provided  by  the  notion  of  a  Rogers  semilattice.  In
order  to  put  things  into  perspective,  here  we  briefly
discuss Rogers semilattices for computable families of
sets. We refer the reader to Ref. [7] for the background
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on computability theory.
S

A S ω

ν S
{(k, x) : k ∈ ω, x ∈ ν (k)}

S
S

Let  be a family of computably enumerable (or c.e.,
for short) sets, i.e., each set  from  is a subset of 
which  can  be  enumerated  by  a  Turing  machine.  A
numbering  of  the  family  is  computable  if  the  set

 is computably enumerable. One
can  say  that  a  computable  numbering  provides  a
uniform  algorithmic  enumeration  for  the  family .  A
family  is called computable if it admits a computable
numbering.

ν

µ ν ⩽ µ
f (x) ν(k) = µ ( f (k))

k ∈ ω ν ⩽ µ
ν

A ∈ S µ A
ν µ ν ≡ µ

ν ⩽ µ µ ⩽ ν [ν]≡ ≡
ν

A natural preorder on numberings is provided by the
notion of reducibility. A numbering  is reducible to a
numbering ,  denoted  by ,  if  there  is  a  total
computable function  such that , for
all .  Informally  speaking,  a  reduction  is
realized by an algorithmic procedure, which given a -
index of an object , outputs a -index of . Two
numberings  and  are equivalent, denoted by , if

 and .  By  we denote  the -equivalence
class of the numbering .

S
R (S) R (S)

For  a  computable  family ,  its  Rogers  semilattice
 is the following poset: the domain of  is the

set
  {

[ν]≡ : ν is a computable numbering of S
}
,

R (S)
⩽ R (S)

R (S)
R (S)

{a, b} R (S)

and the ordering of  is induced by the reducibility
.  It  is  known  that  is  an  upper  semilattice.  On

the  other  hand[8],  if  the  poset  contains  at  least
two elements, then  cannot be a lattice (i.e., there
exists  a  pair  from ,  such that  the pair  does
not have an infimum).

S = {A0, A1, . . . , An}

Rogers  semilattices  allow  one  to  compare
algorithmic properties of different computable families.
For  example,  the  following  fact  is  well-known:  If  a
finite  family  of  c.e.  sets  has  the
property
 

∀ i and ∀ j, (i , j→ Ai \A j , ϕ) (1)

R (S)
S

then  the  semilattice  contains  only  one  element.
Roughly  speaking,  one  can  say  that  all  families 
satisfying Formula (1) exhibit the same behavior, if we
talk about their algorithmic enumerations.

S0 S1

R (S0) R (S1)

We  should  emphasize  that  in  general,  studying
isomorphism  types  of  Rogers  semilattices  is
notoriously hard. For example, to our best knowledge,
there  is  still  no  complete  answer  to  the  following
question. Let  and  be finite families of c.e.  sets.
When  are  the  Rogers  semilattices  and 
isomorphic?

We  refer  the  reader  to  Refs.  [9, 10]  for  the  latest
results  on  the  question  above.  Further  background  on
Rogers  semilattices  of  computable  families  can  be
found, e.g., in Refs. [11−13].

S

S
FCi (S) i ∈ {1, 2}

In  this  paper,  we  develop  two  new  approaches  to
classification  of  families  of  sets  and  their
numberings.  These  approaches  are  based  on  Formal
Concept Analysis[14]. Similarly to the notion of Rogers
semilattice,  for  an  at  most  countable  family ,  we
introduce  the  posets ,  where .  In
contrast  to  the  classical  Rogers  semilattices,  the
introduced posets are complete lattices.

The paper is arranged as follows. Section 2 contains
the necessary preliminaries.

FC1 (S) S
∆ FC1 (S)
∆ ω ∆

S
FC1 (S)

S FC1 (S)
FC1 (S)
κ κ

S

Section  3  gives  a  brief  overview  of  our  first
approach:  the  lattices .  For  a  family ,  a
concept  from  has the following property: the
extent  of  is  a  subset  of ,  and  the  intent  of  is  a
subfamily of . We give a complete characterization of
all  possible  isomorphism  types  of  (Theorem
1).  If  has  only  one  element,  then  is  a  one-
element lattice; otherwise,  is a modular lattice
of  height  3  with  precisely  atoms,  where  is  the
cardinality of the family .

FC2 (S)
Section 4 discusses our second approach (the lattices

).  All  results  of  Section  4  (except  Proposition
1) are new.

FC2 (S)

FC2 (S)

FC2 (S)

We  show  that  the  lattices  are  closely
connected  to  the  enumerative  lattices  introduced  by
Hoyrup  and  Rojas[15] in  their  investigations  of
algorithmic  randomness  on  computable  metric  spaces.
We show that  every  lattice  is  anti-isomorphic
to  an  enumerative  lattice  (Theorem  2).  On  the  other
hand,  we  prove  that  every  enumerative  lattice  is  anti-
isomorphic  to  a  sublattice  of  some  lattice 
(Theorem 3).

L

L FC2 (S)
S

FC2 (S)

FC1 (S)

In addition, we prove the following: if a lattice  is
the Dedekind-MacNeille completion of some countable
poset,  then  is  isomorphic  to  the  lattice  for
some  family  (Proposition  2).  This  fact  gives  us  a
large  list  of  examples  of  the  lattices :  in
particular,  this  shows  that  our  second  approach
provides a much richer environment than the approach
of .

FC2 (S)
We also give an example of an uncountable complete

lattice  which  is  not  isomorphic  to  any 
(Proposition  3).  This  gives  an  answer  to  an  open
question from Ref. [16].

In  Section  5,  we  consider  the  complexity  of  the
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T FC2 (S)

FC2 (T )

following  isomorphism  problem:  For  two  families 
and , when are the corresponding lattices  and

 isomorphic?

Σ1
1 Σ1

1

Theorem 4 proves that  the index set  associated with
the problem is -hard (i.e.,  any set  from the class 
of the analytical hierarchy is many-one reducible to the
set).  We  give  a  new  proof  of  Theorem  4:  this  proof
employs the known facts on computable linear orders.

Section 6 concludes the paper.

2　Preliminary

ω

X X P (X)
card (X) X

Following  the  usual  conventions  of  computability
theory, by  we denote the set of natural numbers. For
a  set ,  the  power  set  of  is  denoted  by .  By

 we denote the cardinality of .
We assume that the reader is familiar with the basic

notions  of  computability  theory  and  computable
structure  theory.  We  refer  to  the  Refs.  [7, 17]  for  the
background.

2.1　Formal concept analysis

The preliminaries  on  Formal  Concept  Analysis  follow
Ref. [18]. For the background in lattice theory, we refer
to Refs. [19, 20].

K = (G, M, I)
G M
I ⊆G×M K

A ⊆G

Recall that a formal context  consists of
the  set  of  objects ,  the  set  of  attributes , and  the
incidence  relation .  If  is  a  formal  context
and , then
 

αK(A) :=
{
m ∈ M : (∀g ∈ A) [(g, m) ∈ I]

}
.

B ⊆ MFor , we have
 

βK(B) :=
{
g ∈G : (∀m ∈ B) [(g, m) ∈ I]

}
.

K
K α (A)

αK (A)

If  the  triple  is  clear  from the  discussion,  then  we
omit  the  subscript ,  e.g.,  we  write  in  place  of

.
K (A, B)

A ⊆G B ⊆ M B = αK(A) A = βK(B)
∆ = (A, B) A ∆

B ∆

A  formal  concept  of  the  context  is  a  pair ,
such that , , , and . For
a formal concept ,  is called the extent of ,
and  is the intent of .

KThe  ordering  of  the  concepts  of  is  defined  as
follows:
 

(A0, B0) ⩽ (A1, B1) ⇔ A0 ⊆ A1 ⇔ B0 ⊇ B1.

The basic theorem on concept lattices (see Ref. [18])
establishes the following:

K

K L (K)

(1)  The  ordering  on  the  set  of  all  concepts  of 
induces  a  complete  lattice.  This  lattice  is  called  the
concept lattice of , and we denote it by .

L(2) Let  be a complete lattice. Consider the formal

KL = (L, L, ⩽L) L (KL)
L KL

context .  Then  the  lattice  is
isomorphic to . In addition, every concept of  is of
the form
 

(â, ǎ) = ({b : b ⩽L a}, {c : a ⩽L c})
a ∈ Lfor some element .

(P, ⩽) f : P→ P
(P, ⩽)

Let  be  a  poset.  A  function  is  a
closure operator (on ) if it satisfies the following
properties:

x ⩽ f (x)(1) ;
x ⩽ y f (x) ⩽ f (y)(2) if , then ;

f ( f (x)) = f (x)(3) .
x ∈ P f

f (x) = x
An element  is called closed (with respect to )

if .
K = (G, M, I)

β◦α
(P(G), ⊆)

K
β◦α

(P(G), ⊆)

Let  be  a  formal  context.  Then  the
function  is  a  closure  operator  on  the  poset

 (see,  e.g.,  Proposition  8  in  Ref.  [18]).  In
addition,  the  set  of  extents  of  formal  concepts  of 
contains  precisely  the -closed  elements  of

.

2.2　Related work in the theory of numberings

S

R (S)

There  is  a  large  body  of  literature  on  Rogers
semilattices  of  computable  families.  Here  we  mention
only  a  few  classical  results  in  this  area.  Let  be  a
computable  family  of  c.e.  sets.  Since  there  are  only
countably many c.e.  sets,  the Rogers semilattice 
is  at  most  countable.  In  addition,  it  is  not  hard  to
observe  that  there  are  at  most  countably  many
isomorphism  types  of  Rogers  semilattices  (for
computable families).

R (S)
R (S)

R (S)

Si

i ∈ ω
R (Si)

Khutoretskii[21] proved  the  following:  if  the  Rogers
semilattice  contains more than one element, then

 is  infinite.  The  aforementioned  result  of
Selivanov[8] shows  that  an  infinite  semilattice 
cannot  be  a  lattice.  Ershov  and  Lavrov[22] (see  also
Refs. [9, 11]) proved that there exist finite families ,

,  of  c.e.  sets,  such  that  the  Rogers  semilattices
 are pairwise non-isomorphic. V’yugin[23] proved

that  there  are  infinitely  many  pairwise  non-
elementarily  equivalent  Rogers  semilattices  of
computable families.

Goncharov  and  Sorbi[24] started  developing  the
theory  of  generalized  computable  numberings.  This
area  has  become  a  fruitful  line  of  research  which
focuses  on  numberings  in  various  computability-
theoretic  hierarchies,  and  the  corresponding  Rogers
semilattices. Nowadays, a plethora of results are known
for Rogers semilattices in the following hierarchies:

● Arithmetical hierarchy—see Refs. [25−27];
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● Hyperarithmetical hierarchy[28, 29];
● Ershov hierarchy[30−32];
● Analytical hierarchy[33−35].

3　Overview of the First Approach

Our first approach is based on the following definition:
S

ν S
Definition 1　Let  be an at most countable family,

and let  be a numbering of the family . Consider the
relation
 

Iν :=
{
(n, ν (n)) : n ∈ ω}.

FC1 (S)
K = (ω, S, Iν)

By  we  denote  the  concept  lattice  of  the
formal context .

FC1 (S)
S

It  turns  out  that,  informally  speaking,  the
isomorphism  type  of  the  lattice  encodes  only
the cardinality of the family . This is witnessed by the
following result.

n ⩾ 2 Mn

3 n Mω

3

For  a  natural  number ,  let  be  a  modular
lattice  of  height  with  atoms.  By  we  denote  a
modular lattice of height  with countably many atoms.

S
S

FC1 (S) FC1 (S)
Mcard (S)

Theorem  1 Let  be  an  at  most  countable,  non-
empty  family.  If  contains  only  one  element,  then

 is a one-element lattice. Otherwise,  is
isomorphic to .

f
X Y

card (Y) ⩾ 2
L(X, Y, Γ f ) Γ f f

Mcard (Y)

The  proof  of  Theorem  1  is  based  on  the  following
general  lattice-theoretic  lemma.  Suppose  that  is  a
surjective  map  from  a  set  onto  a  set ,  where

. Then one can show that the concept lattice
,  where  is  the  graph  of  the  map ,  is

isomorphic to the lattice .
The  content  of  the  current  paper  is  focused  on  new

results,  thus,  we  omit  the  formal  proof  of  Theorem 1.
The full  proof of  Theorem 1 is  published in Section 3
of Ref. [16].

FC1 (S)
ν FC1 (S)

S

Note that Theorem 1 justifies our choice of notations
in  Definition  1 —indeed,  the  isomorphism  type  of  the
poset  does  not  depend  on  the  choice  of  a
numbering .  Informally  speaking,  the  lattice 
is  an  invariant,  which  provides  some  kind  of
characterization for all possible numberings of .

4　The Second Approach

S ⊂ P (ω)
In  this  section,  we  only  work  with  at  most  countable,
non-empty families .  Our second approach is
based on the following definition:

ν SDefinition 2　Let  be a  numbering of  a  family .
Consider a binary relation
 

Qν =
{
(x, n) : n ∈ ω, x ∈ ν (n)

} ⊆ ω×ω.

FC2 (S) L (ω, ω,
Qν)

By  we  denote  the  concept  lattice 
.

Qν

FC2 (S)

Intuitively  speaking,  our  second  approach  is  more
expressive  than  the  approach  of  Section  3:  here  the
relation  is not necessarily the graph of a surjective
function  and  hence,  the  restrictions  provided  by
Theorem 1 do not apply to .

First, we establish the following useful result:
S ω

ν S X ⊆ ω
β◦α (ω, ω, Qν)

Lemma 1　Let  be a family of subsets of  and let
 be a numbering of the family . For a set , its

-closure  in  the  formal  context  satisfies
the following:
 

β◦α (X) =
∩{Z ∈ S : X ⊆ Z} (2)

X ⊆ ωProof　For a set , we have
 

α (X) =
{
n : (∀x ∈ X) [(x,n) ∈ Qν]

}
={

n : X ⊆ ν (n)
}
,

β◦α(X) =
{
x : ∀n [X ⊆ ν (n)→ x ∈ ν (n)]

}
=∩ {

ν (n) : X ⊆ ν (n)
}
=∩ {

Z ∈ S : X ⊆ Z
}
.

Lemma 1 is proved. ■
The following result is the consequence of Lemma 1.

S ω

FC2 (S)
FC2 (S)
ν

Proposition  1　Let  be  a  family  of  subsets  of .
The  structure  is  well-defined,  i.e.,  the
isomorphism  type  of  the  lattice  does  not
depend on the choice of a numbering .

β◦α
X ν

FC2 (S) ν

Proof　By Lemma 1, the -closure of a given set
 does  not  depend  on  the  choice  of  a  numbering .

Hence, it is easy to show that the isomorphism type of
 also does not depend on . ■

4.1　Connections with enumerative lattices

FC2 (S)Here  we  show  that  the  lattices  are  closely
connected  to  the  enumerative  lattices  introduced  by
Hoyrup and Rojas[15].

(A, γ) A
γ

A

A  numbered  set  is  a  pair ,  where  is  a  non-
empty, at most countable set,  and  is a numbering of
the set .

(L, ⩽, A)
Definition  3 (Definition  3.1.1  of  Ref.  [15])  An

enumerative lattice is a triple , such that:
(L, ⩽)●  is a complete lattice;
A = (A, γ) A ⊆ L●  is a numbered set satisfying ;

b ∈ L
A

●  Every  element  is  the  supremum  of  some
subset of .

(L, ⩽, A)

For a detailed discussion of enumerative lattices, we
refer the reader to Refs. [15, 36]. In this section, by the
isomorphism  type  of  an  enumerative  lattice 
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(L, ⩽)we mean the isomorphism type of the lattice .
First, we obtain the following result:

S ⊂ P(ω)
FC2 (S)

Theorem 2　Let  be a non-empty, at  most
countable  family.  Then  the  lattice  is  anti-
isomorphic to an enumerative lattice.

S
FC2 (S)

ν S

Proof　 For  a  family ,  we  consider  the  lattice
.  As  in  Definition  2,  we  choose  some

numbering  of the family .
(L, ⩽0, A)We  define  an  enumerative  lattice  as

follows:
L β◦α

ω

●  Elements  of  are  precisely  the -closed
subsets of ;

a ⩽0 b a ⊇ b●  if and only if ;
A (S, ν)● The numbered set  is equal to .

β◦α ω

(ω, ω, Qν)
(L, ⩽0)

FC2 (S)

Since -closed  subsets  of  are  precisely  the
extents  of  formal concepts (in the context ),
it  is  clear  that  is  a  complete  lattice  which  is
anti-isomorphic to .

Y ∈ SSuppose that . Then by Eq. (2), we have
 

Y ⊆ β◦α (Y) =
∩
{Z ∈ S : Y ⊆ Z} ⊆ Y.

Y β◦α
S ⊆ L

Hence,  the  set  is -closed.  Consequently,  we
have .

b ∈ L
⩽0

{z ∈ S : b ⊆ z} (L, ⩽0, A)

FC2 (S)

In addition, Eq. (2) implies that every element 
is  the  supremum  (with  respect  to )  of  the  set

. We conclude that the triple  is
an enumerative lattice  which is  anti-isomorphic to  our
lattice . Theorem 2 is proved. ■

Second,  we  establish  another  interesting  connection
with enumerative lattices:

(L, ⩽, A)
S ⊂ P (ω)

(L, ⩽) FC2 (S)

Theorem 3　Let  be an enumerative lattice.
Then there exists a family  such that the lattice

 is anti-isomorphic to a sublattice of .
(L, ⩽,

A) A = (A, γ)
(S, ν) ν k ∈ ω

Proof　 We  consider  an  enumerative  lattice 
,  where  is  a  numbered  set.  We  define  a

numbered set  via the numbering : for , we
put
 

ν(k) =
{
m ∈ ω : γ (m) ⩽̸ γ(k)

}
.

ν (k) ⊆ ν (ℓ) γ (k) ⩾ γ (ℓ)
ν (k) β◦α

Note  that  if  and  only  if .  In
addition, every set  is -closed.

a ∈ L ↓γ aFor an element , by  we denote the set
 

↓γ a =
{
m ∈ ω : γ(m) ⩽ a

}
.

(↓γ a)c ω \ (↓γ a)
(↓γ γ (k))c = ν (k) k ∈ ω

By  we denote  its  complement,  i.e., .
Notice that , for all .

a LFor an arbitrary element  from , we define the set
 

ψ (a) :=
∩{

ν (k) : (↓γ a)c ⊆ ν (k)
}
.

ψ (a) β◦αBy  Eq.  (2),  every  is  a -closed  set,  and

ψ (a)
FC2 (S) ψ (γ (ℓ)) = ν (ℓ)

ℓ ∈ ω

hence,  can be viewed as an element of the lattice
.  In  addition,  we  note  that ,  for

each .
ψ

(L, ⩽) FC2 (S)
We  show  that  the  map  is  an  anti-isomorphism

acting from  onto some sublattice of .
a ⩽ b ↓γ a ⊆ ↓γ b (↓γ a)c ⊇ (↓γ b)c ψ (a) ⊇

ψ (b)
If , then , , and 

.
a ⩽̸ b (L, ⩽, A)Now  suppose  that .  Since  is  an

enumerative lattice, we have
 

a = supL
{
γ (k) : γ (k) ⩽ a

}
,

k0 γ (k0) ⩽ a γ (k0) ⩽̸ b
(↓γ a)c ⊆ ν (k0) k0 ∈ (↓γ b)c

ψ (a) ⊆ ν (k0) k0 ∈ ψ (b)
k0 < ν (k0) ψ (a) ⊉ ψ (b)

and  there  exists , such  that  and .
Hence,  and . This implies that

 and .  On  the  other  hand,  since
, we deduce that .

ψ

(L, ⩽) FC2 (S)
The discussed argument  shows that  the  map  anti-

isomorphically embeds  into . Theorem 3
is proved. ■
4.2　Dedekind-MacNeille completions

(P, ⩽) A ⊆ PLet  be a poset. For a set , one defines:
 

Au =
{
x ∈ P : (∀a ∈ A) (a ⩽ x)

}
,

Aℓ =
{
x ∈ P : (∀a ∈ A) (x ⩽ a)

}
.

DM (P)By  we denote the set
 

DM (P) =
{
A ⊆ P : (Au)ℓ = A

}
.

(DM (P), ⊆)
(P, ⩽)

The  poset  is  called  the  Dedekind-
MacNeille completion of the poset .

The following results are known (see Theorems 7.40
and 7.41 in Ref. [19]):

φ : x 7→ ↓ x = {y ∈ P : y ⩽ x}
(P, ⩽) (DM(P), ⊆) φ

P

(1)  The  map  is  an  order
embedding from  into . In addition, 
preserves all infima and suprema which exist in .

(DM (P), ⊆)(2) The poset  is a complete lattice.
P P(3)  If  itself  is  a  complete  lattice,  then  is

isomorphic to its Dedekind-MacNeille completion.
In addition, the Dedekind-MacNeille completion of a

Boolean  algebra  is  also  a  Boolean  algebra  (see
Theorem XII.2.13 in Ref. [20]).

FC2 (S)
We  obtain  the  following  result  which  provides  us

with a rich class of examples of lattices :
(P, ⩽)

S ⊂ P (ω)
FC2 (S)

(DM (P), ⊆)

Proposition  2　 Let  be  at  most  countable
poset.  Then  there  exists  a  family  such  that
the  lattice  is  isomorphic  to  the  Dedekind-
MacNeille completion .

P ω S
Proof　Without loss of generality, one may assume

that  is a subset of . The desired family  contains
all sets of the form
 

↓b = {x ∈ P : x ⩽ b}, for b ∈ P.

    1646 Tsinghua Science and Technology, December 2024, 29(6): 1642−1650

 



X ⊆ ω β◦α
(ω, ω, Qν)

By Eq. (2), a set  is -closed (in the context
) if and only if

 

X =
∩ {↓b : X ⊆ ↓b} =∩ {↓b : b ∈ Xu} = (Xu)ℓ.

DM (P) β◦α
ω (DM (P), ⊆)

FC2 (S)

Therefore,  the  Dedekind-MacNeille  completion
 contains  precisely  the -closed  subsets  of

.  This  fact  implies  that  the  lattice  is
isomorphic to . Proposition 2 is proved. ■

(S)4.3　Examples of lattices FC2 

FC2 (S)
S

First,  we  list  some  examples  which  are  provided  by
Proposition  2.  Each  of  the  following  complete  lattices
can  be  realized  as  the  lattice  for  some  family

.
(1) For every at most countable complete lattice, note

that  another  proof  of  this  fact  is  given  in  Theorem
4.1.(b) of Ref. [16].

[0, 1]

([0,1]∩Q, ⩽)

(2) The real unit interval . This is the Dedekind-
MacNeille  completion  of  the  countable  poset

—see Example 7.44.(1) in Ref. [19].
P (ω) ω(3)  The  Boolean  algebra  of  all  subsets  of .

This is the completion of the countable poset
  ({{k} : k ∈ ω}∪ {ω \ {k} : k ∈ ω}; ⊆ ),
see Example 7.44.(3) of Ref. [19].

(4)  The  quotient  Boolean  algebra  of  Borel  sets  (of
reals)  modulo  meager  sets.  This  is  the  completion  of
the countable atomless Boolean algebra—see Ref. [37].

L
L

FC2 (S)

On  the  other  hand,  we  give  an  example  of  an
uncountable  complete  lattice ,  such  that  Zermelo-
Fraenkel set theory with Choice (ZFC) proves that  is
not  isomorphic  to  any .  This  provides  an
answer to Problem 5.2 of Ref. [16].

(L, ⩽) L∗

L∗ = (L, ⩾)
ω1

For  a  linear  order ,  by  we  denote  the
corresponding  reverse  ordering,  i.e., .  As
usual, by  we denote the least uncountable ordinal.

α

α∗

FC2 (S)

Proposition  3　Let  be  an  uncountable  successor
ordinal.  Then  the  linear  order  is  a  complete  lattice
which cannot be isomorphic to any lattice .

α∗

α∗ FC2 (S)
S ⊂ P (ω)

ψ α FC2 (S)

Proof　 First,  we  observe  that  is  indeed  a
complete lattice. Now, towards a contradiction, assume
that  is  isomorphic  to  the  lattice  for  some
family .  Then  there  exists  an  anti-
isomorphism  acting from the ordinal  onto .

ν S k ∈ ω
βk := ψ−1 (ν (k))

Choose  a  numbering  of  the  family .  For ,
define . Recall that by Eq. (2), we have
 

ψ (ω1) =
∩ {

ν (ℓ) : ψ (ω1) ⊆ ν (ℓ)
}
.

ψSince  is an anti-isomorphism, we deduce that

 

ω1 = sup {βℓ : ω1 ⩾ βℓ}.

(γi)i∈ω ω1 = limi γi

limi γi sup {γi : i ∈ w}
ω1

ω1

Therefore,  there  exists  a  countable  increasing
sequence  of  ordinals ,  such  that ,

 is  equal  to .  This  means  that  the
cofinality  of  is  countable.  We  note  that  this
contradicts the following known fact: ZFC proves that

 is a regular cardinal (see Corollary 5.3 in Ref. [38]).

(S)
5　Isomorphism  Problem  for  Lattices

 FC2 

K

K
ν

K

Let  be  a  class  of  algebraic  structures.  Within  the
framework  of  computable  structure  theory,  the
algorithmic complexity of the isomorphism problem on
the  class  is  typically  measured  via  the  following
approach. One fixes an appropriate numbering  of the
set of all computable members of , and then one aims
to  obtain  complexity  bounds  for  the  following  index
set:
 

Iso (K) =
{
(i, j) ∈ ω×ω : ν (i) � ν ( j)

}
.

Iso (K)Typically,  one  wants  to  prove  that  the  set  is
complete (with respect to many-one reducibility) in one
of  the  levels  of  a  familiar  computability-theoretic
hierarchy (e.g., the arithmetical hierarchy).

As an example of a recent application of index sets,
we  mention  the  following:  Ref.  [39]  established  that
there is  no reasonable syntactic characterization of the
algebraic  structures  which  have  a  polynomial-time-
computable isomorphic copy. For a detailed discussion
of index sets, we refer to the surveys of Refs. [40, 41].

FC2 (S)

In  this  section,  we  apply  the  discussed  approach  to
measure  the  complexity  of  the  isomorphism  problem
for the lattices .

Here  we  work  with  index  sets  in  the  setting  of  the
theory  of  numberings.  Within  this  framework,  the
systematic investigations of index sets were initiated by
McLaughlin[42].  For the known results in this area,  we
refer to Ref. [43].

{φe}e∈ω

e ∈ ω We dom (φe)

Recall  that  is  Kleene’s  numbering  of  the
family  of  all  unary  partial  computable  functions.  As
usual, for ,  denotes the c.e. set .

i, k ∈ ω
We  consider  the  following  effective  listing.  For

, let
 

θi (k) =

Wφi (k), if φi (k) is defined;
ϕ, otherwise.

{θi}i∈ωIt  is  well-known  that  the  list  enumerates  all
computable  numberings  of  all  computable  families.  In
addition,  there  exists  a  total  computable  function
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h0 (x, y) θi (k) =Wh0 (i, k) i k, such that  for all  and .
i ∈ ω Ti

θi

For ,  by  we  denote  the  family  of  c.e.  sets,
which is indexed by the numbering , i.e.,
 

Ti =
{
θi(k) : k ∈ ω}.

ωCK
1

η

As  usual,  by  we  denote  the  least  non-
computable ordinal. The standard linear ordering of the
rationals is denoted by .

FC2 (S)
A  lower  bound  for  the  complexity  of  the

isomorphism  problem  for  the  lattices  is
provided by the following result.

Theorem 4　The index set
 

IFC =
{
(i, j) : FC2 (Ti) � FC2 (T j)

}
Σ1

1 Σ1
1

IFC

is -hard  (i.e.,  every  set  from  the  level  of  the
analytical  hierarchy  is  many-one  reducible  to  the  set

).

ωCK
1 · (1+η)

ωCK
1 · (1+η)

Proof　Recall that Harrison[44] proved that the linear
order  has  a  computable  isomorphic  copy.
Notice  that  the  order  contains  infinite
descending chains.

Σ1
1 X ⊆ ω
(Ln)n∈ω

In  addition,  the  following  fact  is  known  (see
Proposition  3.2  in  Ref.  [45]).  For  any  set ,
there  exists  a  computable  sequence  of
computable linear orders, such that

n ∈ X Ln � ωCK
1 · (1+η)● if , then ;

n < X Ln●  if ,  then  is  isomorphic  to  a  computable
ordinal.

XIn what follows, we assume that  is non-empty.
(Ln)n∈ω Mn :=Ln+1

n ∈ ω
n Mn

ω

Given the sequence , we define ,
for  each .  Without  loss  of  generality,  one  may
assume that for each , the domain of the order  is
equal to .

n ∈ ω
Sn

Similarly  to  Proposition  2,  for  a  given ,  we
define a  computable  family  of  sets  as  follows.  We
put
 

Sn =
{
νn (k) : k ∈ ω},

νn (k) = {x ∈ ω : x ⩽Mn k}
FC2 (Sn)

Mn

where .  Then  one  can  show
that the lattice  is isomorphic to the Dedekind-
MacNeille completion of the order .

g (x) n ∈ ω
Sn Tg (n)

n Ln

Ln Mn Sn

Mn

g (x)

Consider  a  function , such  that  for  every ,
the  family  is  equal  to .  All  the  described
transformations  (i.e.,  mapping  to ,  transforming

 into ,  and  constructing  the  family  from the
order )  are  effective.  Thus,  one  can  show  that  the
function  is computable.

e0 ∈ XFix  a  number .  Consider  the  following
computable function:

 

h (x) := (g (e0), g (x)).

hWe notice the following properties of the function .
n ∈ X Mn �Me0 � ω

CK
1 · (1+η)+1

FC2 (Sn) FC2 (Se0 )
h (n) ∈ IFC

If ,  then  we  have .
Thus,  the  lattices  and  are
isomorphic, and .

n < X Mn

Mn

Mn

FC2 (Sn) FC2 (Se0 )
h (n) < IFC

If ,  then  is  isomorphic  to  a  computable
successor ordinal. Hence,  is a complete lattice, and
its  completion  is  isomorphic  to .  Therefore,

 is  not  isomorphic  to ,  and
.

h
X IFC

IFC Σ1
1

We  conclude  that  the  function  provides  a  many-
one  reduction  from  the  set  to  the  index  set .
Therefore, the set  is -hard. Theorem 4 is proved.

6　Conclusion and Future Work

S ⊂ P (ω)
In  this  paper,  we  develop  two  new  approaches  to
classification  of  at  most  countable  families .
The  approaches  are  based  on  the  methods  of  Formal
Concept Analysis and the theory of numberings.

S
FC1 (S)

FC1 (S)

The first approach assigns to a family  the concept
lattice .  We  obtained  a  complete
characterization  of  the  isomorphism  types  of  the
lattices .

FC2 (S)
P

FC2 (S) S
FC2 (S)

Within  the  second  approach,  the  induced  concept
lattices  can  realize  a  plethora  of  isomorphism
types:  in  particular,  for  any  countable  poset ,  its
Dedekind-MacNeille  completion  is  isomorphic  to  the
lattice ,  for  an  appropriately  chosen  family .
The  lattices  are  also  closely  connected  to  the
enumerative lattices introduced by Hoyrup and Rojas.

FC2(S)
The  work  leaves  open  several  questions  about  the

isomorphism  types  of  the  lattices .  Here  we
state three of them:

E
FC2 (S) S

E
FC2 (S)

(1) Is every enumerative lattice  anti-isomorphic to
the  lattice  for  some  family ?  Note  that
Theorem  3  only  says  that  is  anti-isomorphic  to  a
sublattice of .

IFC
IFC

(2)  Find  the  computability-theoretic  complexity  of
the  index  set  from  Theorem  4.  More  formally,
what is the many-one degree of ?

Σ1
1

FC2 (S)

(3)  Is  every  equivalence  relation  computably
reducible  to  the  isomorphism  relation  on  the  lattices

?
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