

Approximation Algorithms for Maximization of k-Submodular
Function Under a Matroid Constraint

Yuezhu Liu, Yunjing Sun, and Min Li*

k

1−ε ε

k

Abstract: In this paper, we design a deterministic 1/3-approximation algorithm for the problem of maximizing

non-monotone -submodular function under a matroid constraint. In order to reduce the complexity of this

algorithm, we also present a randomized 1/3-approximation algorithm with the probability of , where is

the probability of algorithm failure. Moreover, we design a streaming algorithm for both monotone and non-

monotone objective -submodular functions.

Key words: k-submodular; matroid constraint; deterministic algorithm; randomized algorithm; streaming algorithm

1　Introduction

k

k
k

k

k/(2k−1) k

max {1/3,1/(1+a)}
a =max

{
1,
√

(k−1)/4
}

1/2

(k2+1)/(2k2+1) k ⩾ 3

-submodular function is a generalization of
submodular function[2] and has been applied in
machine learning and data mining, including influence
maximization with kinds of topics or sensor
placement with kinds of sensors. For the problem of
maximizing monotone -submodular functions, Ward
and Živný[3] gave the deterministic 1/2-approximation
algorithm. Later, Iwata et al.[4] presented a randomized
approximation algorithm with approximation ratio

. For the maximization of non-monotone -
submodular function without constraints, the
approximation ratio of is given,
where [3]. Later, Iwata et al.[4]

improved the approximation guarantee to based on
randomized algorithm. Based on their algorithm,
Oshima[5] improved it again and obtained a

-approximation for . Meanwhile,

(
√

17−3)/2
k = 3

k

1/2 1/3

k

(1/2−1/2e)

1/2
1/3

k

k

he also gave a randomized -approximation
algorithm for . Besides, there are also some results
on the maximization of monotone -submodular
functions with constraints. Under the size constraint,
Ohsaka and Yoshida[6] gave constant-factor
approximation algorithms with approximation ratios of

 for the total size constraint and for the
individual size constraint. Later, Nguyen and Thai[7]

proposed new streaming algorithms for the
maximization of -submodular functions with a total
size constraint. Under the knapsack constraint, Tang
et al.[8] presented a deterministic -
approximation algorithm. With a matroid constraint,
Calinescu et al.[9] designed a greedy algorithm that
outputs a -approximation solution. Furthermore,
there is a deterministic -approximation algorithm
for the maximization of non-monotone -submodular
functions with a total size constraint[7]. For more
research on -submodular maximization, we can see
the Refs. [10–14].

k
In this paper, we plan to study the the problem of

maximizing the -submodular function under a matroid
constraint and give the following contributions:

1/3
O (|V |r (a+ kb)) k

|V |
V r a

● We design a deterministic algorithm with an
approximation ratio of and complexity of

 for the non-monotone -submodular
function, where represents the number of elements
in , represents the rank of the given matroid, is

 Yuezhu Liu, Yunjing Sun, and Min Li are with School of

Mathematics and Statistics, Shandong Normal University, Jinan
250014, China. E-mail: lyz01301111@163.com; syj985211@
163.com; liminEmily@sdnu.edu.cn.

● A preliminary version of this paper appears in Proceedings of
the 17th International Conference on heory and Applications of
Models of Computation (TAMC)[1].

* To whom correspondence should be addressed.
 Manuscript received: 2023-01-16; revised: 2023-05-31;

accepted: 2023-09-11

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 01/20 pp1633−1641
DOI: 10 .26599 /TST.2023 .9010122
Volume 29, Number 6, December 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

b
k

the number of times to calculate whether a set is an
independent set in this matroid, and is the number of
times to calculate a value of the -submodular
function.

1/3
1−ε

k

O
(
|V |

(
a log

r
ε1
+ kb log

r
ε2

)
logr

)
ε =max {ε1,

ε2} ε1 and ε2

● We design a randomized -approximation
algorithm with the probability of for the non-
monotone -submodular function, which reduces the
complexity of the deterministic algorithm to

, where
, and denote the probabilities of algorithm

failure.

k
● We also try to give a streaming algorithm for both

monotone and non-monotone -submodular functions.

k
k

The rest of this paper is organized as follows. In
Section 2, we briefly introduce the relevant knowledge
of -submodular functions and matroid. In Section 3,
two algorithms are included for the non-monotone -
submodular functions. Furthermore, a streaming
algorithm is introduced for the monotone and non-
monotone objective functions in Section 4. We give the
final conclusions in Section 5.

2　Preliminary

V
f : 2V → R

At beginning, we give the definition of the submodular
functions. Given a finite set , a real-valued set
function is called a “submodular function”
if

f (S)+ f (T) ⩾ f (S ∪T)+ f (S ∩T), ∀S , T ⊆ V.

S ⊆ V e ∈ V \S

The submodular functions are also known for the
property of diminishing marginal gain. For any subset

 and an element , we use

fS (e) = f (S ∪{e})− f (S)

e S
f
to denote the the marginal gain of added to . Then

 is a submodular function if and only if

fS (e) ⩾ fT (e), ∀S ⊆ T, ∀e ∈ V \T.

k

V

k
V k

k V
k

[k] := {1, 2, . . . , k} (k+1)V :=

The -submodular function is a generalization of the
submodular function. Suppose that there is a position
for each element in ground set , the submodular
function just decides whether the element is chosen or
not. That is, there are only two choices for each
element. But there will be positions for each item of

 for -submodular functions. Now, we introduce the
definition of -submodular functions. We still use to
denote the finite ground set, assume is a positive
integer, and denote . Let

{(S 1, S 2, . . . , S k) | S i ⊆ V, ∀i ∈ [k], S i∩S j = ∅, ∀i, j ∈ [k],

i , j} k, then the -submodular functions can be defined
as follows.

f : (k+1)V → R
k S = (S 1,

S 2, . . . , S k) T = (T1, T2, . . . , Tk) (k+1)V

Definition 1　 A set function is
called a “ -submodular function” if for any

 and in ,

f (S)+ f (T) ⩾ f (S⊓T)+ f (S⊔T),

where

S⊓T = (S 1∩T1, S 2∩T2, . . . , S k ∩Tk),

S⊔T =
(
(S 1∪T1) \

(∪
i,1

(S i∪Ti)
)
,

(S 2∪T2) \
(∪

i,2

(S i∪Ti)
)
, . . . ,

(S k ∪Tk) \
(∪

i,k

(S i∪Ti)
))
.

k
k

S = (S 1, S 2, . . . , S k) ∈ (k+1)V e ∈ S i

S(e) = i e <
∪

i∈[k] S i S (e) = 0
S

S (S) =
∪

i∈[k] S i

S 1, S 2, . . . , S k

S (S)
S
k

S = (S 1, S 2, . . . , S k) T = (T1, T2, . . . , Tk)
(k+1)V S i ⊆ Ti i ∈ [k] S ⪯ T

k
S ⪯ T f (S) ⩽ f (T)

The domain of the -submodular functions can also
be expressed in the form of vectors. Given a -tuple

, we specify that if ,
then , otherwise , then . At
the same time, we define the support set of as

, which is composed of all elements
appearing in , regardless of location. The
cardinality of will be used to represent the size of

. Then we begin to characterize the relationship of the
-submodular definition field with partial order. The

partial ordering relation is defined as follows. Taking
 and in

, if for all , we define . Then,
we say that a -submodular function is “monotone” if
for any , we have .

k
(k+1)V S = (S 1, S 2, . . . , S k) ∈ (k+1)V

{(e, S(e))} e ∈ V

S (S) S
V = {e1, e2, e3} k = 2 S = ({e2}, {e1})
S = {(e1, 2), (e2, 1), (e3, 0)}
{(e1, 2), (e2, 1)}

S S = (S 1, S 2, . . . , S k) S i = {e}
S j = ∅ i , j (e, i) S

T = (T1, T2, . . . , Tk) ∈ (k+1)V

e ∈ V \S (T) e Ti

T+ (e, i)
e Ti T

For the convenience of subsequent expression, we
can also use the following symbols to represent the -
tuples in . Given ,
we can also denote it by with . Note
that we donnot distinguish the elements not included
by the support set of . For example, assume that

, , and take , then
, and it can be also denoted

by . If there is only one element in the
support of , i.e., with and

 for all , then we use to denote for
short. So for a given and

, that adding into can be expressed as
, and the corresponding marginal gain of

adding to of can be denoted by

 1634 Tsinghua Science and Technology, December 2024, 29(6): 1633−1641

fT (e, i) = f (T+ (e, i))− f (T) =
f (T1, T2, . . . , Ti−1, Ti∪{e},

Ti+1, . . . , Tk)− f (T).

k

fT (e, i) ⩾ 0 T = (T1, T2, . . . , Tk) ∈ (k+1)V

e ∈ V \S (T) i ∈ [k]

Using this definition, we can also obtain that the -
submodular function is monotone if and only if

 for any ,
 and .

k

k f

There are two important properties of -submodular
functions. One is orthant submodularity, the other is
pairwise monotonicity. A -submodular function is
“orthant submodular” if

fS (e, i) ⩾ fT (e, i),

S and T (k+1)V ∀i ∈ [k] S ⪯ T
e ∈ V \S (T) k f
for all in and , where , and

. The -submodular function is “pairwise
monotone” if

fS (e, i)+ fS (e, j) ⩾ 0,

S ∈ (k+1)V e ∈ V \S (S) i, j ∈ [k] i , jfor any , and with .

k
There has been an important result about how to

characterize the -submodular functions by orthant
submodularity and pairwise monotonicity.

f : (k+1)V → R k
f

Theorem 1 (Ward and Živný[3]) A function
 is a -submodular function if and only

if is orthant submodular and pairwise monotone.
Now we present some definitions about matroid.

V
F ⊆ 2V V

(V, F)

Definition 2 (Korte and Vygen[15])　Assuming is
a finite set and (the power set of), the system

 is named a matroid if it satisfies the following
conditions:

(1) ∅ ∈ F ,
(2) X ⊆ Y ∈ F X ∈ F If , then ,
(3) X, Y ∈ F |X| < |Y |

e ∈ Y \X X∪ {
e
} ∈ F If and , then there is an element

, such that .
F

X
X F X

basis
B
F X, Y ∈ B

|X| = |Y |
r

Each element in is called an “independent set” of
the matroid. For an independent set , if any subset
containing is not an independent set in , then is
called a “maximal independent set”, also called a .
In this paper, is used to represent the set formed by
the bases of . In fact, for any , we have

, and this size is called the “rank” of matroid. In
this paper, is used to represent the rank of the given
matroid.

Here is a property about the independent sets of a
matroid.

(V, F) X Y
X e ∈ V X

X∪{e} F

Lemma 1 (Korte and Vygen[15]) Given a matroid
, assume that is an independent set and is a

basis containing , then for any element not in
such that belongs to , there should be an

e′ Y \X (Y \ {e′})∪{e}element in satisfying that is a
basis too.

(V, F) k
f (k+1)V → R f (∅) = 0

k

Given a matroid as well as a -submodular
function : with , the problem of
maximizing -submodular function with a matroid
constraint (denoted by MkSfM for short) is expressed
as follows:

max
S∈(k+1)V

f (S) subject to S (S) ∈ F (1)

fIf the objective function is monotone, we use
mMkSfM to represent MkSfM. Otherwise, we use
nMkSfM to represent it.

In the following part, we introduce a special kind of
solutions of MkSfM.

S̄

T f (S̄) = f (T)
|S (S̄)| ⩾ |S (T)| S̄

Definition 3　A feasible solution to Formula (1) is
called a “maximal solution” if it satisfies: For any
feasible solution to Formula (1) with ,
we have . Specially, if is an optimal
solution with maximal support set size, then it is also
called a “maximal optimal solution”.

r

Calinescu et al.[9] proved that in the monotone case,
the size of the maximal optimal solution of the
mMkSfM problem is rank . Here, we will show that a
similar result can be obtained in the non-monotone
case.

r |S (S̄)| = r
Lemma 2 (Sun et al.[1]) For nMkSfM, the size of any

maximal optimal solution is still , that is, .
O

|S (O)| < r e
Proof　If not, there is a maximal optimal solution

with . Then the element satisfied the
following two conditions should exist:

e < S (O)(1) ,
{e}∪S (O) ∈ F(2) .

f e
i j O

fO (e, i)+ fO (e, j) ⩾ 0
fO (e, i) ⩾ 0 fO (e, j) ⩾ 0

fO (e, i) ⩾ 0
f (O) e O

O+ (e, i) f (O+ (e, i)) ⩾ f (O)
O

Since is pairwise monotone, if we add the above
to two different positions and of , the sum of
marginal gains should be nonnegative. That is,

. Thus, it is concluded that at least
one of and is true. If

 is correct, we find that it does not reduce
 by adding to . Then there is still a feasible

solution making . This is
in contradiction to that is a maximal optimal
solution. ■

3　Main Result for nMkSfM

1/3

In this part, we mainly analyze the nMkSfM problem,
and design a deterministic algorithm and a randomized
algorithm to obtain an approximation ratio of . The
difference between the two algorithms is that in the

 Yuezhu Liu et al.: Approximation Algorithms for Maximization of k-Submodular Function Under a Matroid... 1635

ε

randomized algorithm, the approximation ratio is
obtained under the failure probability of , but the
complexity of this algorithm is reduced.

3.1　Deterministic algorithm for nMkSfM

r
S

r S (S) ∈ B j
V (S j)

V
e S j

Calinescu et al.[9] designed a greedy algorithm for the
mMkSfM problem. Based on this algorithm, we give
the deterministic Algorithm 1 for the nMkSfM
problem. According to Lemma 2, we can know that the
algorithm requires a total of iterations, and the
number of elements in the final output solution of
Algorithm 1 is and . In each iteration , we
choose the element from a constructing set
rather than the total set . It can make sure that any
element added to the support set of is still an
independent set. Then we put the best position for these
elements and add the one with maximal gain.

1/3
O (|V | r (a+ kb))

Theorem 2　For nMkSfM problem, we can get the
approximation ratio of through Algorithm 1, and
the complexity of the algorithm is .

Proof　In fact, for the deterministic Algorithm 1, its
complexity is easy to obtain, so we will focus on the
derivation of the approximation ratio. Our analysis is
based on the idea of exchanging elements with their
positions between algorithm output solution and
optimal solution. Before showing the following proof,
we define several symbols.

j ∈ [r] e j and i j

n j ∈ [k] \ {i j}
i j

S0 = 0 S = Sr S j

j

S j = S j−1+ (e j, i j) O j

In each step , let represent the best
element and position selected greedily in this step of
Algorithm 1, respectively, and let be any
other position except the position . According to
Algorithm 1, , , where denotes the
solution output by Algorithm 1 when it reaches the -th
step. Obviously, there is a relationship of

. Next, we construct a sequence

j = 0, 1, . . . , r O0 = O Or = S
S (S j) S (O j) S j

O j L j+1 = S (O j) \S (S j)

for , such that , . Then
make and represent the support sets of
and , respectively, and let .

O j B j = 0, 1, . . . , r
Now, we explain how to construct a series of vectors
 in for , satisfying

O j

≻ S j, if j = 0, 1, . . . , r−1;
= S j, if j = r.

We use the following ways to exchange elements for
constructing the sequence:

o j =

e j, if e j ∈ L j;

any element in L j, otherwise.

Then we define

O j− 1
2 = O j−1− (o j, O j−1(o j)),

O j = O j− 1
2 + (e j, i j).

With the sequence constructed above, we begin to
prove the approximation ratio.

It can be known from Algorithm 1,

f (S j)− f (S j−1) = fS j−1 (e j, i j),

e j i j

j
Since and are greedily selected with the best

element and location in step of Algorithm 1, then we
have

fS j−1 (e j, i j) ⩾ fS j−1 (o j, O j−1 (o j)).

S j−1 ⪯ O j− 1
2Due to , then

fS j−1 (o j, O j−1(o j)) ⩾ f
O j− 1

2
(o j, O j−1(o j)) (2)

f n j , i j
By using the property of the pairwise monotonicity

of and , we have

f
O j− 1

2
(e j, i j)+ f

O j− 1
2

(e j, n j) ⩾ 0.

Therefore, applying this relationship to the right hand
of inequality (2), we get

f
O j− 1

2
(o j, O j−1(o j)) ⩾ f

O j− 1
2

(o j, O j−1(o j))−

f
O j− 1

2
(e j, i j)− f

O j− 1
2

(e j, n j).

S j−1 ⪯ O j− 1
2And using again, we can obtain

f
O j− 1

2
(o j, O j−1(o j)) ⩾ f

O j− 1
2

(o j, O j−1(o j))−

f
O j− 1

2
(e j, i j)− fS j−1 (e j, n j).

e j i jApplying the condition that and are the best
once more, we get

f
O j− 1

2
(o j, O j−1(o j)) ⩾ f

O j− 1
2

(o j, O j−1(o j))−

f
O j− 1

2
(e j, i j)− fS j−1 (e j, i j).

Algorithm 1　Deterministic algorithm for nMkSfM

k f : (k+1)V →
R+ (V, F) B r
Require: Non-monotone -submodular function

, matroid with bases and rank
S BEnsure: Vector whose support set belongs to

S0← ∅ j← 11: and ;
j ⩽ r2: while do

V (S j) :=
{
e ∈ V\S (S j−1) | S (S j−1)∪{e} ∈ F }3:　　Construct a set

　　　　 ;

(e, i)← argmaxe∈V(S j), i∈[k] f (S j−1 + (e, i))4:　　 ;

S j← S j−1 + (e, i)5:　　 ;
j← j+16:　　 ;

7: end while
S8: return

 1636 Tsinghua Science and Technology, December 2024, 29(6): 1633−1641

That is, the right side of the above inequality is
equivalent to

f (O j−1)− f (O j− 1
2)− f

O j− 1
2

(e j, i j)− fS j−1 (e j, i j).

After sorting out all the above inequalities, we can
get

2 fS j−1 (e j, i j) ⩾

f (O j−1)− f (O j− 1
2)− f

O j− 1
2

(e j, i j) =

f (O j−1)− f (O j− 1
2)− f (O j)+ f (O j− 1

2) =

f (O j−1)− f (O j).

Thus,

2 (f (S j)− f (S j−1)) ⩾ f (O j−1)− f (O j).

By summing the two sides of the above inequalion,
we get the following results:

f (O)− f (S) =
r∑

j=1

(f (O j−1)− f (O j)) ⩽

2
r∑

j=1

(f (S j)− f (S j−1)) = 2 f (S).

Finally, we draw the following conclusion:

f (S) ⩾
1
3

f (O). ■

O (|V | (a log r
ε1
+ kb log r

ε2
) logr)

1−ε
ε =max {ε1, ε2}

In the next subsection, we will design a randomized
algorithm in Algorithm 2. The complexity of this
randomized algorithm is ,
which is lower than that of the deterministic Algorithm
1 in this section, but it is possible to achieve the same
approximation ratio with probability at least ,
where .

3.2　Randomized algorithm for nMkSfM

R j
1 R j

2 r j
1

r j
2

In order to reduce the complexity of the deterministic
algorithm for the non-monotone case, we adopt the
uniform random sampling, which is shown as
Algorithm 2. In this algorithm, we construct two sets

 and by random sampling, and their sizes are
and respectively, where

r j
1 = |R

j
1| =min

{ |V | − j+1
r− j+1

log
(

r
ε1

)
, |V |

}
,

r j
2 = |R

j
2| =min

 r j
1− j+1
r− j+1

log
(

r
ε2

)
, |V(S j)|

 .
There are two main differences between

deterministic Algorithm 1 and randomized Algorithm
2. Firstly, the randomized algorithm randomly selects

V R j
1

R j
1
V (S j)

R j
1 \S (S j−1) V \S (S j−1)

V (S j) = {e ∈ R j
1 \S (S j−1) | S (S j−1)∪{e} ∈ F }

V (S j)
V (S j) R j

2

R j
2

some elements from to form , and reduces the
elements available for selection when constructing
independent sets by adding as the set. Then when
constructing independent set , the elements in it
are selected from instead of .
That is, .
Secondly, when is not empty, some elements are
randomly selected from to form . The
appearance of greatly reduces the number of
elements available for greedy selection and improves
the quality of selected elements. Based on the above
analysis, we can draw the following conclusions.

Pr (V(S j) , ∅) ⩾ 1−ε1
Pr (R j

2∩L j , ∅) ⩾ 1−ε2
0 ⩽ j ⩽ r

Lemma 3　 We can get ,
likewise, we can also obtain
for every .

0 ⩽ j ⩽ r r j
1 = |R

j
1| = |V |

e V\S (S j−1)
S (S j−1)∪{e} ∈ F Pr (V (S j) , ∅) = 1

|R j
1| < |V | j

Proof　 First, for , if , there
must be an element in to make

. Then . Then we
can assume that for some . In fact, in this
case, we have

Pr (V(S j) = ∅) =

[Pr ({e}∪S (S j−1) < F)]r j
1 =

[1−Pr ({e}∪S (S j−1) ∈ F)]r j
1 .

V (S j) r j
1− (j−1)

e
r− (j−1)

When we construct , there are
elements that can be selected, and there are at least

 elements that meet the condition of

Algorithm 2　Randomized algorithm for nMkSfM

k f : (k+1)V →
R+ (V, F) B r

ε1 ε2

Require: Non-monotone -submodular function
, matroid with bases , rank , and two failed

probabilities and
S S (S) ∈ BEnsure: Vector with

S0← ∅1: ;
j = 1 r2: for to do

R j
1← V

min
{
|V | − j+1
r− j+1

log
(

r
ε1

)
, |V |

}3:　　 a random subset uniformly chosen from with

 size ;

V (S j) :=
{
e ∈ R j

1\S (S j−1) | S (S j−1)∪{e} ∈ F }
4:　　Construct
 by using the independence oracle;

R j
2← V (S j)

min

 r j
1 − j+1

r− j+1
log

(
r
ε2

)
, |V(S j)|


5:　　 a subset picked uniformly from , whose size

 is ;

(e, i)← argmaxe∈R j
2, i∈[k] f (S j−1 + (e, i))6:　　 ;

S j← S j−1 + (e, i)7:　　 ;
8: end for

S9: return

 Yuezhu Liu et al.: Approximation Algorithms for Maximization of k-Submodular Function Under a Matroid... 1637

{e}∪S (S j−1) ∈ F , so

Pr ({e}∪S (S j−1) ∈ F) ⩾
r− (j−1)

r j
1− (j−1)

⩾
r− j+1
|V | − j+1

.

Thus, we have

Pr (V(S j) = ∅) ⩽
(
1− r− j+1
|V | − j+1

)r j
1
⩽

exp
{
− r− j+1
|V | − j+1

|V | − j+1
r− j+1

log
r
ε1

}
⩽ ε1.

V (S j) , ∅
1−ε1

Therefore, the probability of is at least
.

R j
2∩L j , ∅ 1−ε2

0 ⩽ j ⩽ r R j
2 V (S j) V (S j)

R j
2∩L j , ∅

Pr [R j
2∩L j , ∅] = 1 |R j

2| < |V (S j)|
R j

2 L j

p =
|L j|
|V (S j)| ⩾

r− j+1

r j
1− j+1

The following part uses the similar way to prove that
the probability of is at least . For

, if and have the same size, and
is not an empty set, obviously there is , then

. Otherwise for each
element in . If the probability of its occurrence in

is , then we have

Pr [R j
2∩L j = ∅] = (1− p)r j

2 ⩽

1− r− j+1

r j
1− j+1

r j
2

⩽

exp

− r− j+1

r j
1− j+1

r j
1− j+1
r− j+1

log
r
ε2

 ⩽ ε2.
■

In the following part, we will give the proof of
Theorem 3 based on Lemma 2, which shows that
Algorithm 2 does not fail with high probability.

1/3

O
(
|V |

(
a log

r
ε1
+ kb log

r
ε2

)
logr

)
1−ε ε =max {ε1, ε2}

Theorem 3　 For nMkSfM, we can obtain a -
approximation solution from Algorithm 2 in

complexity of with the
probability at least , where .

j ∈ [r]
O0 = O O1, . . . ,Or = S

O e j i j L j S j O j

S (S j) S (O j)

V (S j) R j
2∩L j

V (S j)

R j
2∩L j

o
V (S j) R j

2∩L j

Proof　For all , we will construct a sequence
, based on a maximal optimal

solution . Denote the symbols , , , , ,
, and as the same meanings as those in

deterministic case (see the proof of Theorem 2). If
 or is empty, we consider that the

algorithm fails. (When is an empty set, no more
elements can be selected so that the algorithm cannot
continue, so it is considered invalid. Under the random
algorithm, we want to adopt the same construction
mode as the deterministic algorithm, and when
is empty, cannot be constructed, then the algorithm is
considered invalid.) Suppose both and
are non-empty, we have the following definitions. We

e j ∈ R j
2∩L j o j = e j o j

R j
2∩L j

specify that if , then , otherwise, is
any element in . And we let

O j− 1
2 = O j−1− (o j, O j−1(o j)),

O j = O j− 1
2 + (e j, i j).

O j

Or = Sr

Based on the construction of the sequence above
and just like the deterministic Algorithm 1, if
Algorithm 2 does not fail, we have , and can get

2 (f (S j)− f (S j−1)) ⩾ f (O j−1)− f (O j).

Thus,

3 f (S) ⩾ f (O).

S (S j−1)∪{e}
r j

1

In Line 4 of Algorithm 2, we need to judge whether
 is an independent set, and there are at

most elements, so the number of times required for
this step is at most

a
r∑

j=1

r j
1 = a

r∑
j=1

|V | − j+1
r− j+1

log
r
ε1
=

a log
r
ε1

r∑
j=1

|V | − r+ j
j

⩽

a|V | log
r
ε1

r∑
j=1

1
j
⩽

a|V | log
r
ε1

logr.

k r j
2

k

kb
r∑

j=1
r j

2

Line 6 in Algorithm 2 needs to calculate the function
value of -submodular function. There are elements
in total. Each element needs to be selected from
positions, so the maximum number of times required

for this step is . The same operation as the
previous step yields

kb
r∑

j=1

r j
2 ⩽ kb|V | log

r
ε2

logr.

Therefore, the maximum number of times Algorithm
2 runs is

a
r∑

j=1

r j
1+ kb

r∑
j=1

r j
2 ⩽ |V |

(
a log

r
ε1

logr+ kb log
r
ε2

logr
)
.

■

4　Streaming Algorithm for Both mMkfSM
and nMkfSM

In some practical applications, the amount of relevant
data may be much larger than the memory capacity of
the computer. In this case, it will be very difficult to

 1638 Tsinghua Science and Technology, December 2024, 29(6): 1633−1641

k

α ∈ (0,1)
α/2 α/3

apply the above algorithm and analysis to solve this
problem. So we try to design an algorithm with higher
efficiency to process these large amounts of data[16]. In
the following part, we design a streaming Algorithm 3
to solve the problem of maximizing -submodular
function under a matroid constraint. Under some
assumption with constant factor , we obtain a

-approximation ratio for mMkfSM and a -
approximation ratio for nMkfSM.

α ∈ (0, 1) O
Assumption 1　 For MkfSM and a given constant

, there is a maximal optimization solution
satisfies

f (Õ) ⩽ (1−α) f (O) (3)

Õ ≺ Owhere .

O
This assumption makes sure that there is a certain

amount of descend when any part of is removing.

V

V (S j)
e

S (S j−1)∪{e}
i S j−1

(e, i) S j−1 S j

S j = S j−1

Then we design the streaming algorithm in
Algorithm 3, which is different from Algorithm 1. Let

 be the ground set with a pretend stream ordering and
these elements arrive one by one. Since only the
information of the current and before elements are
known, so the set cannot be constructed. When
an element arrives, in Line 3, we judge whether

 is an independent set. If yes, we find the
best position for this element based on in Line 4,
then adding into to form . If not, we will
discard this element, then .

α/2

O (|V |a+ krb) O (kr)

Theorem 4　 For mMkfSM and based on
Assumption 1, Algorithm 3 returns a -
approximation solution with the query complexity of

 and takes memory.
Proof　 In the next proof process, we still use the

idea of changing points to prove the approximation

e j i j j

S j

e j e j

S j = S j−1

S (S)
|S (S)| r

S l
S (S)

S = Sl O

O0 = O, O1, . . . , Ol Sl ⪯ Ol

ratio. Before proof, let us make the following
explanation. Assume that and represent the -th
element entering the algorithm and the position
selected in Algorithm 3, and represents the renewed
solution when arrives. If does not meet the
condition for forming an independent set in the
algorithm, then . According to Algorithm 3,
the support set must be a basis, i.e., it is a
maximal solution. So when = (the rank of the
matroid), the elements not arriving cannot be added to

. We might as well set as the number of steps used
when reaches a basis, and finally the output
solution . Let be an optimal solution satisfying
Assumption 1. Next, we will construct a sequence

 such that . Our construction
method is divided into two cases:

e j

e j ∈ S (O j−1)
(1) When satisfies the independent set condition,

we construct it in the following way. If ,
then

O j− 1
2 =

O j−1⊔S j, if O j−1
(
e j

)
, i j;

O j−1−
(
e j, O j−1

(
e j

))
, otherwise.

e j < S (O j−1)Otherwise, i.e., , let

O j− 1
2 = O j−1,

O j := O j− 1
2 + (e j, i j).

e j(2) When does not satisfy the independent set
condition, we make

O j− 1
2 = O j = O j−1.

S j−1 ⪯ O j− 1
2

Sl ⪯ Ol

k

Next we give proof according to the different cases.
In Case (1), we can draw the conclusion of
and from the construction of the above
sequence. Applying these two conclusions and -
submodularity, we have

f (O j−1)− f (O j) =

f (O j−1)− f (O j− 1
2)− (f (O j)− f (O j− 1

2)) ⩽

f (O j−1)− f (O j− 1
2) =

f
O j− 1

2
(e j, O j−1(e j)) ⩽

f
S j− 1

2
(e j, O j−1(e j)) ⩽

f
S j− 1

2
(e j, i j) =

f (S j)− f (S j−1).

k
The first inequality above is based on the

monotonicity condition of the -submodular function,
the second inequality above uses the partial order

Algorithm 3　Streaming algorithm for MkfSM
V k k f (V, F)
B

Require: , and -submodular function , matroid
with the bases

S S (S) ∈ BEnsure: vector with

S0← ∅, j← 11: ;
e ∈ V2: for each do

S (S j−1)∪{e} ∈ F3:　　if then

i← argmaxi∈[k] f (S j−1 + (e, i))4:　　　 ;

S j← S j−1 + (e, i)5:　　　 ;
6:　　end if

j← j+17:　　 ;
8: end for

S9: return

 Yuezhu Liu et al.: Approximation Algorithms for Maximization of k-Submodular Function Under a Matroid... 1639

S j−1 O j− 1
2

k
relationship between and , as well as the
orthant submodularity of -submodular function, then
the third inequality above is obtained by the greedy
algorithm to choose the best position.

e jFor Case (2), since does not meet the condition of
independent set, so we have

f (O j−1)− f (O j) = f (S j)− f (S j−1) = 0.

Therefore, in both cases, we have

f (O j−1)− f (O j) ⩽ f (S j)− f (S j−1).

Based on the above analysis, sum both sides of the
inequalities above, we obtain

l∑
j=1

(f (O j−1)− f (O j)) ⩽
l∑

j=1

(f (S j)− f (S j−1)).

Thus, we finally get

f (O)− f (Ol) ⩽ f (Sl) (4)
Ol = Sl

f (O) f (S)

Õ ⪯ O
Sl Ol = Õ⊔Sl

Õ , O

In this construction mode, we cannot get , so
Formula (4) cannot directly show the relationship
between and . We need to further analyze it
through the following analysis based on Assumption 1.
Let us use to denote the set of elements not
selected into . And then . Moreover, we
have by the construction of the above sequences.
Thus by Assumption 1, we have

f (Õ) ⩽ (1−α) f (O) (5)
kMoreover, from the definition of -submodular

function, we have

f (Ol) = f (Õ⊔Sl) ⩽ f (Õ)+ f (Sl).

Inequality (5) is combined with above ineqatily to
obtain

f (Ol) ⩽ (1−α) f (O)+ f (Sl).

f (Ol)At this point, an upper bound of is found.
Combining inequality (4), we have

f (S) ⩾
α

2
f (O). ■

By replacing the monotonicity by pairwise
monotonicity, we can get the following corollary.

α/3

O (|V |a+ krb) O(kr)

Corollary 1　 For nMkfSM and based on
Assumption 1, Algorithm 3 returns a -
approximation solution with the query complexity of

 and takes memory.

α

Remark The approximation ratios of the streaming
algorithm designed in this paper are presented with a
constant factor , which represents the decrease when

1/2
1/3

some elements in the optimal solution are removed. As
the decrease increases, the approximation ratios will be
better. Moreover, the memory complexity is nice.
However, the performance guarantee is close to as
the best case for mMkfSM and for nMkfSM.

5　Conclusion

k

1/3
k

k

In this paper, we have solved the problem of
maximizing the -submodular function under a matroid
constraint. At beginning, we design a deterministic
algorithm with approximation ratio of for the non-
monotone -submodular function. Later, we also
design a randomized algorithm to reduce the
complexity of this algorithm. Finally, we give a
streaming algorithm for both monotone and non-
monotone -submodular functions. In addition, we plan
to improve the streaming algorithm depending on the
property of basis of a matroid.

Acknowledgment

This work was supported by the Natural Science
Foundation of Shandong Province of China (No.
ZR2020MA029).

References

 Y. Sun, Y. Liu, and M. Li, Maximization of k-submodular
function with a matroid constraint, in Proc. 17th Annual
Conference of Theory and Applications of Models of
Computation, Tianjin, China, 2022, pp. 1−10.

[1]

 G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák,
Maximizing a monotone submodular function subject to a
matroid constraint, SIAM J. Comput., vol. 40, no. 6, pp.
1740–1766, 2011.

[2]

 J. Ward and S. Živný, Maximizing k-submodular functions
and beyond, ACM Trans. Algorithms, vol. 12, no. 4, pp.
1–26, 2016.

[3]

 S. Iwata, S. Tanigawa, and Y. Yoshida, Improved
approximation algorithms for k-submodular function
maximization, in Proc. 27th Annual ACM-SIAM
Symposium on Discrete Algorithms, Arlington, VA, USA,
2016, pp. 404–413.

[4]

 H. Oshima, Improved randomized algorithm for k-
submodular function maximization, SIAM J. Discrete
Math., vol. 35, no. 1, pp. 1–22, 2021.

[5]

 N. Ohsaka and Y. Yoshida, Monotone k-submodular
function maximization with size constraints, in Proc. 28th
International Conference on Neural Information
Processing Systems, Montreal, Canada, 2015, pp.
694–702.

[6]

 L. N. Nguyen and M. T. Thai, Streaming k-submodular
maximization under noise subject to size constraint, in
Proc. 37th International Conference on Machine
Learning, Virtual Event, 2020, pp. 7338–7347.

[7]

 Z. Tang, C. Wang, and H. Chan, On maximizing a[8]

 1640 Tsinghua Science and Technology, December 2024, 29(6): 1633−1641

monotone k-submodular function under a knapsack
constraint, Oper. Res. Lett., vol. 50, no. 1, pp. 28–31,
2022.
 G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák,
Maximizing a monotone submodular function subject to a
matroid constraint, SIAM J. Comput., vol. 40, no. 6, pp.
1740–1766, 2011.

[9]

 S. Fujishige and S. Iwata, Bisubmodular function
minimization, SIAM J. Discrete Math., vol. 19, no. 4, pp.
1065–1073, 2005.

[10]

 A. Huber and V. Kolmogorov, Towards minimizing k-
submodular functions, in Proc. of the Second international
conference on Combinatorial Optimization, Athens,
Greece, 2012, pp. 451−462.

[11]

 C. Pham, Q. Vu, D. Ha, and T. Nguyen, Streaming
algorithms for budgeted k-submodular maximization

[12]

problem, in Proc. 10th International Conference on
Computational Data and Social Networks, Virtual Event,
2021, pp. 27–38.
 A. Rafiey and Y. Yoshida, Fast and private submodular
and k-submodular functions maximization with matroid
constraints, in Proc. 37th International Conference on
Machine Learning, Virtual Event, 2020, pp. 7887–7897.

[13]

 Z. Tang, C. Wang, and H. Chan, Monotone k-submodular
secretary problems: Cardinality and knapsack constraints,
Theor. Comput. Sci., vol. 921, pp. 86–99, 2022.

[14]

 B. Korte and J. Vygen, Combinatorial Optimization:
Theory and Algorithms. Berlin, Germany: Springer, 2012.

[15]

 C. Chekuri, S. Gupta, and K. Quanrud, Streaming
algorithms for submodular function maximization, in
Proc. 42nd International Colloquium, ICALP 2015,
Kyoto, Japan, 2015, pp. 318–330.

[16]

Yuezhu Liu is currently an undergraduate
student at School of Mathematics and
Statistics, Shandong Normal University,
China. Her main research interest is the
algorithms for numerical optimization.

Yunjing Sun is currently an undergraduate
student at School of Mathematics and
Statistics, Shandong Normal University,
China. Her main research interest is the
algorithms for numerical optimization.

Min Li received the PhD degree in applied
mathematics from Coimbra University,
Portugal in 2013. She is currently an
associate professor at School of
Mathematics and Statistics, Shandong
Normal University, China. Her research
interests include combinatorial
optimization, robust optimization, and

mixed-integer programming.

 Yuezhu Liu et al.: Approximation Algorithms for Maximization of k-Submodular Function Under a Matroid... 1641

