
 

Approximation Algorithms for Maximization of k-Submodular
Function Under a Matroid Constraint
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Abstract: In  this  paper,  we  design  a  deterministic  1/3-approximation  algorithm for  the  problem of  maximizing

non-monotone -submodular  function  under  a  matroid  constraint.  In  order  to  reduce  the  complexity  of  this

algorithm, we also present a randomized 1/3-approximation algorithm with the probability of ,  where  is

the  probability  of  algorithm  failure.  Moreover,  we  design  a  streaming  algorithm  for  both  monotone  and  non-

monotone objective -submodular functions.
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-submodular  function  is  a  generalization  of
submodular  function[2] and  has  been  applied  in
machine learning and data mining, including influence
maximization  with  kinds  of  topics  or  sensor
placement with  kinds of sensors. For the problem of
maximizing  monotone -submodular  functions,  Ward
and  Živný[3] gave  the  deterministic  1/2-approximation
algorithm. Later, Iwata et al.[4] presented a randomized
approximation  algorithm  with  approximation  ratio

.  For  the  maximization  of  non-monotone -
submodular  function  without  constraints,  the
approximation  ratio  of  is  given,
where [3].  Later,  Iwata  et  al.[4]

improved the approximation guarantee to  based on
randomized  algorithm.  Based  on  their  algorithm,
Oshima[5] improved  it  again  and  obtained  a

-approximation  for .  Meanwhile,
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he  also  gave  a  randomized -approximation
algorithm for . Besides, there are also some results
on  the  maximization  of  monotone -submodular
functions  with  constraints.  Under  the  size  constraint,
Ohsaka  and  Yoshida[6] gave  constant-factor
approximation algorithms with approximation ratios of

 for  the  total  size  constraint  and  for  the
individual  size  constraint.  Later,  Nguyen  and  Thai[7]

proposed  new  streaming  algorithms  for  the
maximization  of -submodular  functions  with  a  total
size  constraint.  Under  the  knapsack  constraint,  Tang
et  al.[8] presented  a  deterministic -
approximation  algorithm.  With  a  matroid  constraint,
Calinescu  et  al.[9] designed  a  greedy  algorithm  that
outputs  a -approximation  solution.  Furthermore,
there  is  a  deterministic -approximation  algorithm
for  the  maximization  of  non-monotone -submodular
functions  with  a  total  size  constraint[7].  For  more
research  on -submodular  maximization,  we  can  see
the Refs. [10–14].

k
In  this  paper,  we  plan  to  study  the  the  problem  of

maximizing the -submodular function under a matroid
constraint and give the following contributions:

1/3
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●  We  design  a  deterministic  algorithm  with  an
approximation  ratio  of  and  complexity  of

 for  the  non-monotone -submodular
function,  where  represents  the number  of  elements
in ,  represents  the  rank  of  the  given  matroid,  is
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the  number  of  times  to  calculate  whether  a  set  is  an
independent set in this matroid, and  is the number of
times  to  calculate  a  value  of  the -submodular
function.
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●  We  design  a  randomized -approximation
algorithm  with  the  probability  of  for  the  non-
monotone -submodular  function,  which  reduces  the
complexity  of  the  deterministic  algorithm  to

,  where 
, and  denote the probabilities of algorithm

failure.

k
● We also try to give a streaming algorithm for both

monotone and non-monotone -submodular functions.

k
k

The  rest  of  this  paper  is  organized  as  follows.  In
Section 2, we briefly introduce the relevant knowledge
of -submodular  functions  and  matroid.  In  Section  3,
two  algorithms  are  included  for  the  non-monotone -
submodular  functions.  Furthermore,  a  streaming
algorithm  is  introduced  for  the  monotone  and  non-
monotone objective functions in Section 4. We give the
final conclusions in Section 5.

2　Preliminary

V
f : 2V → R

At beginning, we give the definition of the submodular
functions.  Given  a  finite  set ,  a  real-valued  set
function  is  called  a “submodular  function”
if
 

f (S )+ f (T ) ⩾ f (S ∪T )+ f (S ∩T ), ∀S , T ⊆ V.

S ⊆ V e ∈ V \S

The  submodular  functions  are  also  known  for  the
property  of  diminishing marginal  gain.  For  any subset

 and an element , we use
 

fS (e) = f (S ∪{e})− f (S )

e S
f
to denote the the marginal gain of  added to . Then

 is a submodular function if and only if
 

fS (e) ⩾ fT (e), ∀S ⊆ T, ∀e ∈ V \T.

k

V

k
V k

k V
k

[k] := {1, 2, . . . , k} (k+1)V :=

The -submodular function is a generalization of the
submodular  function.  Suppose  that  there  is  a  position
for  each  element  in  ground  set ,  the  submodular
function just decides whether the element is chosen or
not.  That  is,  there  are  only  two  choices  for  each
element. But there will be  positions for each item of

 for -submodular  functions.  Now,  we introduce  the
definition of -submodular functions. We still use  to
denote  the  finite  ground  set,  assume  is  a  positive
integer,  and  denote .  Let 

{(S 1, S 2, . . . , S k) | S i ⊆ V, ∀i ∈ [k], S i∩S j = ∅, ∀i, j ∈ [k],

i , j} k,  then the -submodular functions can be defined
as follows.

f : (k+1)V → R
k S = (S 1,

S 2, . . . , S k) T = (T1, T2, . . . , Tk) (k+1)V

Definition  1　 A  set  function  is
called  a “ -submodular  function” if  for  any 

 and  in ,
 

f (S)+ f (T) ⩾ f (S⊓T)+ f (S⊔T),

where
 

S⊓T = (S 1∩T1, S 2∩T2, . . . , S k ∩Tk),

S⊔T =
(
(S 1∪T1) \

(∪
i,1

(S i∪Ti)
)
,

(S 2∪T2) \
(∪

i,2

(S i∪Ti)
)
, . . . ,

(S k ∪Tk) \
(∪

i,k

(S i∪Ti)
))
.

k
k

S = (S 1, S 2, . . . , S k) ∈ (k+1)V e ∈ S i

S(e) = i e <
∪

i∈[k] S i S (e) = 0
S

S (S) =
∪

i∈[k] S i

S 1, S 2, . . . , S k

S (S)
S
k

S = (S 1, S 2, . . . , S k) T = (T1, T2, . . . , Tk)
(k+1)V S i ⊆ Ti i ∈ [k] S ⪯ T

k
S ⪯ T f (S) ⩽ f (T)

The  domain  of  the -submodular  functions  can  also
be  expressed  in  the  form  of  vectors.  Given  a -tuple

, we specify that if ,
then ,  otherwise ,  then .  At
the  same  time,  we  define  the  support  set  of  as

,  which  is  composed  of  all  elements
appearing in , regardless of location. The
cardinality of  will be used to represent the size of

. Then we begin to characterize the relationship of the
-submodular  definition  field  with  partial  order.  The

partial  ordering  relation  is  defined  as  follows.  Taking
 and  in

, if  for all , we define . Then,
we say that  a -submodular  function is “monotone” if
for any , we have .

k
(k+1)V S = (S 1, S 2, . . . , S k) ∈ (k+1)V

{(e, S(e))} e ∈ V

S (S) S
V = {e1, e2, e3} k = 2 S = ({e2}, {e1})
S = {(e1, 2), (e2, 1), (e3, 0)}
{(e1, 2), (e2, 1)}

S S = (S 1, S 2, . . . , S k) S i = {e}
S j = ∅ i , j (e, i) S

T = (T1, T2, . . . , Tk) ∈ (k+1)V

e ∈ V \S (T) e Ti

T+ (e, i)
e Ti T

For  the  convenience  of  subsequent  expression,  we
can also use the following symbols to represent the -
tuples in . Given ,
we  can  also  denote  it  by  with .  Note
that  we  donnot  distinguish  the  elements  not  included
by the support set  of . For example, assume that

, ,  and  take ,  then
,  and  it  can  be  also  denoted

by .  If  there is  only one element  in the
support of , i.e.,  with  and

 for  all ,  then  we use  to  denote  for
short. So for a given  and

,  that  adding  into  can be expressed as
,  and  the  corresponding  marginal  gain  of

adding  to  of  can be denoted by
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fT (e, i) = f (T+ (e, i))− f (T) =
f (T1, T2, . . . , Ti−1, Ti∪{e},

Ti+1, . . . , Tk)− f (T).

k

fT (e, i) ⩾ 0 T = (T1, T2, . . . , Tk) ∈ (k+1)V

e ∈ V \S (T) i ∈ [k]

Using  this  definition,  we  can  also  obtain  that  the -
submodular  function  is  monotone  if  and  only  if

 for  any ,
 and .

k

k f

There  are  two important  properties  of -submodular
functions.  One  is  orthant  submodularity,  the  other  is
pairwise  monotonicity.  A -submodular  function  is
“orthant submodular” if
 

fS (e, i) ⩾ fT (e, i),

S and T (k+1)V ∀i ∈ [k] S ⪯ T
e ∈ V \S (T) k f
for all  in  and , where , and

. The -submodular function  is “pairwise
monotone” if
 

fS (e, i)+ fS (e, j) ⩾ 0,

S ∈ (k+1)V e ∈ V \S (S) i, j ∈ [k] i , jfor any ,  and  with .

k
There  has  been  an  important  result  about  how  to

characterize  the -submodular  functions  by  orthant
submodularity and pairwise monotonicity.

f : (k+1)V → R k
f

Theorem  1 (Ward  and  Živný[3])  A  function
 is a -submodular function if and only

if  is orthant submodular and pairwise monotone.
Now we present some definitions about matroid.

V
F ⊆ 2V V

(V, F )

Definition 2 (Korte and Vygen[15])　Assuming  is
a finite set and  (the power set of ), the system

 is  named  a  matroid  if  it  satisfies  the  following
conditions:

(1) ∅ ∈ F ,
(2) X ⊆ Y ∈ F X ∈ F If , then ,
(3) X, Y ∈ F |X| < |Y |

e ∈ Y \X X∪ {
e
} ∈ F If  and , then there is an element

, such that .
F

X
X F X

basis
B
F X, Y ∈ B

|X| = |Y |
r

Each element in  is called an “independent set” of
the  matroid.  For  an  independent  set ,  if  any  subset
containing  is not an independent set in , then  is
called a “maximal independent set”, also called a .
In this paper,  is used to represent the set formed by
the  bases  of .  In  fact,  for  any ,  we  have

, and this size is called the “rank” of matroid. In
this paper,  is used to represent the rank of the given
matroid.

Here  is  a  property  about  the  independent  sets  of  a
matroid.

(V, F ) X Y
X e ∈ V X

X∪{e} F

Lemma  1 (Korte  and  Vygen[15])  Given  a  matroid
, assume that  is an independent set and  is a

basis containing , then for any element  not in 
such  that  belongs  to ,  there  should  be  an

e′ Y \X (Y \ {e′})∪{e}element  in  satisfying  that  is  a
basis too.

(V, F ) k
f (k+1)V → R f (∅) = 0

k

Given  a  matroid  as  well  as  a -submodular
function :  with , the problem of
maximizing -submodular  function  with  a  matroid
constraint  (denoted  by  MkSfM for  short)  is  expressed
as follows:
 

max
S∈(k+1)V

f (S) subject to S (S) ∈ F (1)

fIf  the  objective  function  is  monotone,  we  use
mMkSfM  to  represent  MkSfM.  Otherwise,  we  use
nMkSfM to represent it.

In the following part, we introduce a special kind of
solutions of MkSfM.

S̄

T f (S̄) = f (T)
|S (S̄)| ⩾ |S (T)| S̄

Definition 3　A feasible solution  to Formula (1) is
called  a “maximal  solution” if  it  satisfies:  For  any
feasible  solution  to  Formula  (1)  with ,
we  have .  Specially,  if  is  an  optimal
solution  with  maximal  support  set  size,  then  it  is  also
called a “maximal optimal solution”.

r

Calinescu et  al.[9] proved that  in  the monotone case,
the  size  of  the  maximal  optimal  solution  of  the
mMkSfM problem is rank . Here, we will show that a
similar  result  can  be  obtained  in  the  non-monotone
case.

r |S (S̄)| = r
Lemma 2 (Sun et al.[1]) For nMkSfM, the size of any

maximal optimal solution is still , that is, .
O

|S (O)| < r e
Proof　If not, there is a maximal optimal solution 

with .  Then  the  element  satisfied  the
following two conditions should exist:

e < S (O)(1) ,
{e}∪S (O) ∈ F(2) .

f e
i j O

fO (e, i)+ fO (e, j) ⩾ 0
fO (e, i) ⩾ 0 fO (e, j) ⩾ 0

fO (e, i) ⩾ 0
f (O) e O

O+ (e, i) f (O+ (e, i)) ⩾ f (O)
O

Since  is pairwise monotone, if we add the above 
to  two  different  positions  and  of ,  the  sum  of
marginal  gains  should  be  nonnegative.  That  is,

. Thus, it is concluded that at least
one  of  and  is  true.  If

 is  correct,  we  find  that  it  does  not  reduce
 by  adding  to .  Then  there  is  still  a  feasible

solution  making .  This  is
in  contradiction  to  that  is  a  maximal  optimal
solution. ■

3　Main Result for nMkSfM

1/3

In this  part,  we mainly analyze the nMkSfM problem,
and design a deterministic algorithm and a randomized
algorithm to obtain an approximation ratio of . The
difference  between  the  two  algorithms  is  that  in  the
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ε

randomized  algorithm,  the  approximation  ratio  is
obtained  under  the  failure  probability  of ,  but  the
complexity of this algorithm is reduced.

3.1　Deterministic algorithm for nMkSfM

r
S

r S (S) ∈ B j
V (S j)

V
e S j

Calinescu  et  al.[9] designed  a  greedy algorithm for  the
mMkSfM  problem.  Based  on  this  algorithm,  we  give
the  deterministic  Algorithm  1  for  the  nMkSfM
problem. According to Lemma 2, we can know that the
algorithm  requires  a  total  of  iterations,  and  the
number  of  elements  in  the  final  output  solution  of
Algorithm 1 is  and .  In each iteration ,  we
choose  the  element  from  a  constructing  set 
rather  than  the  total  set .  It  can  make  sure  that  any
element  added  to  the  support  set  of  is  still  an
independent set. Then we put the best position for these
elements and add the one with maximal gain.

1/3
O (|V | r (a+ kb))

Theorem 2　For nMkSfM problem, we can get the
approximation  ratio  of  through  Algorithm  1,  and
the complexity of the algorithm is .

Proof　In fact, for the deterministic Algorithm 1, its
complexity  is  easy  to  obtain,  so  we  will  focus  on  the
derivation  of  the  approximation  ratio.  Our  analysis  is
based  on  the  idea  of  exchanging  elements  with  their
positions  between  algorithm  output  solution  and
optimal  solution.  Before  showing  the  following  proof,
we define several symbols.

j ∈ [r] e j and i j

n j ∈ [k] \ {i j}
i j

S0 = 0 S = Sr S j

j

S j = S j−1+ (e j, i j) O j

In  each  step ,  let  represent  the  best
element  and  position  selected  greedily  in  this  step  of
Algorithm  1,  respectively,  and  let  be  any
other  position  except  the  position .  According  to
Algorithm  1, , ,  where  denotes  the
solution output by Algorithm 1 when it reaches the -th
step.  Obviously,  there  is  a  relationship  of

.  Next,  we  construct  a  sequence 

j = 0, 1, . . . , r O0 = O Or = S
S (S j) S (O j) S j

O j L j+1 = S (O j) \S (S j)

for ,  such  that , .  Then
make  and  represent the support sets of 
and , respectively, and let .

O j B j = 0, 1, . . . , r
Now, we explain how to construct a series of vectors
 in  for , satisfying

 

O j

≻ S j, if j = 0, 1, . . . , r−1;
= S j, if j = r.

We use the following ways to exchange elements for
constructing the sequence:
 

o j =

e j, if e j ∈ L j;

any element in L j, otherwise.

Then we define
 

O j− 1
2 = O j−1− (o j, O j−1(o j)),

O j = O j− 1
2 + (e j, i j).

With  the  sequence  constructed  above,  we  begin  to
prove the approximation ratio.

It can be known from Algorithm 1,
 

f (S j)− f (S j−1) = fS j−1 (e j, i j),

e j i j

j
Since  and  are  greedily  selected  with  the  best

element and location in step  of Algorithm 1, then we
have
 

fS j−1 (e j, i j) ⩾ fS j−1 (o j, O j−1 (o j)).

S j−1 ⪯ O j− 1
2Due to , then

 

fS j−1 (o j, O j−1(o j)) ⩾ f
O j− 1

2
(o j, O j−1(o j)) (2)

f n j , i j
By  using  the  property  of  the  pairwise  monotonicity

of  and , we have
 

f
O j− 1

2
(e j, i j)+ f

O j− 1
2

(e j, n j) ⩾ 0.

Therefore, applying this relationship to the right hand
of inequality (2), we get
 

f
O j− 1

2
(o j, O j−1(o j)) ⩾ f

O j− 1
2

(o j, O j−1(o j))−

f
O j− 1

2
(e j, i j)− f

O j− 1
2

(e j, n j).

S j−1 ⪯ O j− 1
2And using  again, we can obtain

 

f
O j− 1

2
(o j, O j−1(o j)) ⩾ f

O j− 1
2

(o j, O j−1(o j))−

f
O j− 1

2
(e j, i j)− fS j−1 (e j, n j).

e j i jApplying  the  condition  that  and  are  the  best
once more, we get
 

f
O j− 1

2
(o j, O j−1(o j)) ⩾ f

O j− 1
2

(o j, O j−1(o j))−

f
O j− 1

2
(e j, i j)− fS j−1 (e j, i j).

 

Algorithm 1　Deterministic algorithm for nMkSfM

k f : (k+1)V →
R+ (V, F ) B r
Require: Non-monotone -submodular function 

, matroid  with bases  and rank 
S BEnsure: Vector  whose support set belongs to 

S0← ∅ j← 11:  and ;
j ⩽ r2: while  do

V (S j) :=
{
e ∈ V\S (S j−1) | S (S j−1)∪{e} ∈ F }3:　　Construct a set

　　　　 ;

(e, i)← argmaxe∈V(S j), i∈[k] f (S j−1 + (e, i))4:　　 ;

S j← S j−1 + (e, i)5:　　 ;
j← j+16:　　 ;

7: end while
S8: return 
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That  is,  the  right  side  of  the  above  inequality  is
equivalent to
 

f (O j−1)− f (O j− 1
2 )− f

O j− 1
2

(e j, i j)− fS j−1 (e j, i j).

After  sorting  out  all  the  above  inequalities,  we  can
get
 

2 fS j−1 (e j, i j) ⩾

f (O j−1)− f (O j− 1
2 )− f

O j− 1
2

(e j, i j) =

f (O j−1)− f (O j− 1
2 )− f (O j)+ f (O j− 1

2 ) =

f (O j−1)− f (O j).

Thus,
 

2 ( f (S j)− f (S j−1)) ⩾ f (O j−1)− f (O j).

By summing  the  two  sides  of  the  above  inequalion,
we get the following results:
 

f (O)− f (S) =
r∑

j=1

( f (O j−1)− f (O j)) ⩽

2
r∑

j=1

( f (S j)− f (S j−1)) = 2 f (S).

Finally, we draw the following conclusion:
 

f (S) ⩾
1
3

f (O). ■

O (|V | (a log r
ε1
+ kb log r

ε2
) logr)

1−ε
ε =max {ε1, ε2}

In the next subsection,  we will  design a randomized
algorithm  in  Algorithm  2.  The  complexity  of  this
randomized algorithm is ,
which is lower than that of the deterministic Algorithm
1 in this section, but it is possible to achieve the same
approximation  ratio  with  probability  at  least ,
where .

3.2　Randomized algorithm for nMkSfM

R j
1 R j

2 r j
1

r j
2

In  order  to  reduce  the  complexity  of  the  deterministic
algorithm  for  the  non-monotone  case,  we  adopt  the
uniform  random  sampling,  which  is  shown  as
Algorithm  2.  In  this  algorithm,  we  construct  two  sets

 and  by random sampling,  and their  sizes are 
and  respectively, where
 

r j
1 = |R

j
1| =min

{ |V | − j+1
r− j+1

log
(

r
ε1

)
, |V |

}
,

 

r j
2 = |R

j
2| =min

 r j
1− j+1
r− j+1

log
(

r
ε2

)
, |V(S j)|

 .
There  are  two  main  differences  between

deterministic  Algorithm  1  and  randomized  Algorithm
2.  Firstly,  the  randomized  algorithm  randomly  selects

V R j
1

R j
1
V (S j)

R j
1 \S (S j−1) V \S (S j−1)

V (S j) = {e ∈ R j
1 \S (S j−1) | S (S j−1)∪{e} ∈ F }

V (S j)
V (S j) R j

2

R j
2

some  elements  from  to  form ,  and  reduces  the
elements  available  for  selection  when  constructing
independent  sets  by  adding  as  the  set.  Then  when
constructing  independent  set ,  the  elements  in  it
are  selected  from  instead  of .
That  is, .
Secondly, when  is not empty, some elements are
randomly  selected  from  to  form .  The
appearance  of  greatly  reduces  the  number  of
elements  available  for  greedy  selection  and  improves
the  quality  of  selected  elements.  Based  on  the  above
analysis, we can draw the following conclusions.

Pr (V(S j) , ∅) ⩾ 1−ε1
Pr (R j

2∩L j , ∅) ⩾ 1−ε2
0 ⩽ j ⩽ r

Lemma  3　 We  can  get ,
likewise,  we  can  also  obtain 
for every .

0 ⩽ j ⩽ r r j
1 = |R

j
1| = |V |

e V\S (S j−1)
S (S j−1)∪{e} ∈ F Pr (V (S j) , ∅) = 1

|R j
1| < |V | j

Proof　 First,  for ,  if ,  there
must  be  an  element  in  to  make

.  Then .  Then  we
can  assume  that  for  some .  In  fact,  in  this
case, we have
 

Pr (V(S j) = ∅) =

[Pr ({e}∪S (S j−1) < F )]r j
1 =

[1−Pr ({e}∪S (S j−1) ∈ F )]r j
1 .

V (S j) r j
1− ( j−1)

e
r− ( j−1)

When  we  construct ,  there  are 
elements  that  can  be  selected,  and  there  are  at  least

 elements  that  meet  the  condition  of

 

Algorithm 2　Randomized algorithm for nMkSfM

k f : (k+1)V →
R+ (V, F ) B r

ε1 ε2

Require: Non-monotone -submodular  function 
,  matroid  with  bases ,  rank ,  and  two  failed

probabilities  and 
S S (S) ∈ BEnsure: Vector  with 

S0← ∅1: ;
j = 1 r2: for  to  do

R j
1← V

min
{
|V | − j+1
r− j+1

log
(

r
ε1

)
, |V |

}3:　　  a random subset uniformly chosen from  with

  size ;

V (S j) :=
{
e ∈ R j

1\S (S j−1) | S (S j−1)∪{e} ∈ F }
4:　　Construct 
   by using the independence oracle;

R j
2← V (S j)

min

 r j
1 − j+1

r− j+1
log

(
r
ε2

)
, |V(S j)|


5:　　  a subset picked uniformly from , whose size

  is ;

(e, i)← argmaxe∈R j
2, i∈[k] f (S j−1 + (e, i))6:　　 ;

S j← S j−1 + (e, i)7:　　 ;
8: end for

S9: return 
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{e}∪S (S j−1) ∈ F , so
 

Pr ({e}∪S (S j−1) ∈ F ) ⩾
r− ( j−1)

r j
1− ( j−1)

⩾
r− j+1
|V | − j+1

.

Thus, we have
 

Pr (V(S j) = ∅) ⩽
(
1− r− j+1
|V | − j+1

)r j
1
⩽

exp
{
− r− j+1
|V | − j+1

|V | − j+1
r− j+1

log
r
ε1

}
⩽ ε1.

V (S j) , ∅
1−ε1

Therefore,  the  probability  of  is  at  least
.

R j
2∩L j , ∅ 1−ε2

0 ⩽ j ⩽ r R j
2 V (S j) V (S j)

R j
2∩L j , ∅

Pr [R j
2∩L j , ∅] = 1 |R j

2| < |V (S j)|
R j

2 L j

p =
|L j|
|V (S j)| ⩾

r− j+1

r j
1− j+1

The following part uses the similar way to prove that
the  probability  of  is  at  least .  For

, if  and  have the same size, and 
is not an empty set, obviously there is , then

.  Otherwise  for  each
element in . If the probability of its occurrence in 

is , then we have
 

Pr [R j
2∩L j = ∅] = (1− p)r j

2 ⩽

1− r− j+1

r j
1− j+1

r j
2

⩽

exp

− r− j+1

r j
1− j+1

r j
1− j+1
r− j+1

log
r
ε2

 ⩽ ε2.
■

In  the  following  part,  we  will  give  the  proof  of
Theorem  3  based  on  Lemma  2,  which  shows  that
Algorithm 2 does not fail with high probability.

1/3

O
(
|V |

(
a log

r
ε1
+ kb log

r
ε2

)
logr

)
1−ε ε =max {ε1, ε2}

Theorem  3　 For  nMkSfM,  we  can  obtain  a -
approximation  solution  from  Algorithm  2  in

complexity of  with the
probability at least , where .

j ∈ [r]
O0 = O O1, . . . ,Or = S

O e j i j L j S j O j

S (S j) S (O j)

V (S j) R j
2∩L j

V (S j)

R j
2∩L j

o
V (S j) R j

2∩L j

Proof　For all ,  we will  construct  a  sequence
,  based  on  a  maximal  optimal

solution .  Denote  the  symbols , , , , ,
,  and  as  the  same  meanings  as  those  in

deterministic  case  (see  the  proof  of  Theorem  2).  If
 or  is  empty,  we  consider  that  the

algorithm fails. (When  is an empty set, no more
elements  can  be  selected  so  that  the  algorithm  cannot
continue, so it is considered invalid. Under the random
algorithm,  we  want  to  adopt  the  same  construction
mode as the deterministic algorithm, and when 
is empty,  cannot be constructed, then the algorithm is
considered  invalid.)  Suppose  both  and 
are  non-empty,  we have the following definitions.  We

e j ∈ R j
2∩L j o j = e j o j

R j
2∩L j

specify that if , then , otherwise,  is
any element in . And we let
 

O j− 1
2 = O j−1− (o j, O j−1(o j)),

O j = O j− 1
2 + (e j, i j).

O j

Or = Sr

Based on the construction of the sequence  above
and  just  like  the  deterministic  Algorithm  1,  if
Algorithm 2 does not fail, we have , and can get
 

2 ( f (S j)− f (S j−1)) ⩾ f (O j−1)− f (O j).

Thus,
 

3 f (S) ⩾ f (O).

S (S j−1)∪{e}
r j

1

In Line 4 of Algorithm 2, we need to judge whether
 is  an  independent  set,  and  there  are  at

most  elements,  so the number of times required for
this step is at most
 

a
r∑

j=1

r j
1 = a

r∑
j=1

|V | − j+1
r− j+1

log
r
ε1
=

a log
r
ε1

r∑
j=1

|V | − r+ j
j

⩽

a|V | log
r
ε1

r∑
j=1

1
j
⩽

a|V | log
r
ε1

logr.

k r j
2

k

kb
r∑

j=1
r j

2

Line 6 in Algorithm 2 needs to calculate the function
value of -submodular function. There are  elements
in  total.  Each  element  needs  to  be  selected  from 
positions,  so  the  maximum  number  of  times  required

for  this  step  is .  The  same  operation  as  the
previous step yields
 

kb
r∑

j=1

r j
2 ⩽ kb|V | log

r
ε2

logr.

Therefore, the maximum number of times Algorithm
2 runs is
 

a
r∑

j=1

r j
1+ kb

r∑
j=1

r j
2 ⩽ |V |

(
a log

r
ε1

logr+ kb log
r
ε2

logr
)
.

■

4　Streaming  Algorithm  for  Both  mMkfSM
and nMkfSM

In  some  practical  applications,  the  amount  of  relevant
data may be much larger than the memory capacity of
the  computer.  In  this  case,  it  will  be  very  difficult  to
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k

α ∈ (0,1)
α/2 α/3

apply  the  above  algorithm  and  analysis  to  solve  this
problem. So we try to design an algorithm with higher
efficiency to process these large amounts of data[16]. In
the following part, we design a streaming Algorithm 3
to  solve  the  problem  of  maximizing -submodular
function  under  a  matroid  constraint.  Under  some
assumption with  constant  factor ,  we obtain  a

-approximation  ratio  for  mMkfSM  and  a -
approximation ratio for nMkfSM.

α ∈ (0, 1) O
Assumption  1　 For  MkfSM  and  a  given  constant

,  there  is  a  maximal  optimization  solution 
satisfies
 

f (Õ) ⩽ (1−α) f (O) (3)

Õ ≺ Owhere .

O
This  assumption  makes  sure  that  there  is  a  certain

amount of descend when any part of  is removing.

V

V (S j)
e

S (S j−1)∪{e}
i S j−1

(e, i) S j−1 S j

S j = S j−1

Then  we  design  the  streaming  algorithm  in
Algorithm 3, which is different from Algorithm 1. Let

 be the ground set with a pretend stream ordering and
these  elements  arrive  one  by  one.  Since  only  the
information  of  the  current  and  before  elements  are
known,  so the set  cannot  be constructed.  When
an  element  arrives,  in  Line  3,  we  judge  whether

 is  an  independent  set.  If  yes,  we  find  the
best position  for this element based on  in Line 4,
then adding  into  to form .  If  not,  we will
discard this element, then .

α/2

O (|V |a+ krb) O (kr)

Theorem  4　 For  mMkfSM  and  based  on
Assumption  1,  Algorithm  3  returns  a -
approximation  solution  with  the  query  complexity  of

 and takes  memory.
Proof　 In  the  next  proof  process,  we  still  use  the

idea  of  changing  points  to  prove  the  approximation

e j i j j

S j

e j e j

S j = S j−1

S (S)
|S (S)| r

S l
S (S)

S = Sl O

O0 = O, O1, . . . , Ol Sl ⪯ Ol

ratio.  Before  proof,  let  us  make  the  following
explanation.  Assume  that  and  represent  the -th
element  entering  the  algorithm  and  the  position
selected in Algorithm 3, and  represents the renewed
solution  when  arrives.  If  does  not  meet  the
condition  for  forming  an  independent  set  in  the
algorithm,  then .  According  to  Algorithm  3,
the  support  set  must  be  a  basis,  i.e.,  it  is  a
maximal solution.  So when  =  (the rank of the
matroid), the elements not arriving cannot be added to

. We might as well set  as the number of steps used
when  reaches  a  basis,  and  finally  the  output
solution . Let  be an optimal solution satisfying
Assumption  1.  Next,  we  will  construct  a  sequence

 such  that .  Our  construction
method is divided into two cases:

e j

e j ∈ S (O j−1)
(1)  When  satisfies  the  independent  set  condition,

we  construct  it  in  the  following  way.  If ,
then
 

O j− 1
2 =

O j−1⊔S j, if O j−1
(
e j

)
, i j;

O j−1−
(
e j, O j−1

(
e j

))
, otherwise.

e j < S (O j−1)Otherwise, i.e., , let
 

O j− 1
2 = O j−1,

 

O j := O j− 1
2 + (e j, i j).

e j(2)  When  does  not  satisfy  the  independent  set
condition, we make
 

O j− 1
2 = O j = O j−1.

S j−1 ⪯ O j− 1
2

Sl ⪯ Ol

k

Next we give proof according to the different cases.
In Case (1), we can draw the conclusion of 
and  from  the  construction  of  the  above
sequence.  Applying  these  two  conclusions  and -
submodularity, we have
 

f (O j−1)− f (O j) =

f (O j−1)− f (O j− 1
2 )− ( f (O j)− f (O j− 1

2 )) ⩽

f (O j−1)− f (O j− 1
2 ) =

f
O j− 1

2
(e j, O j−1(e j)) ⩽

f
S j− 1

2
(e j, O j−1(e j)) ⩽

f
S j− 1

2
(e j, i j) =

f (S j)− f (S j−1).

k
The  first  inequality  above  is  based  on  the

monotonicity  condition  of  the -submodular  function,
the  second  inequality  above  uses  the  partial  order

 

Algorithm 3　Streaming algorithm for MkfSM
V k k f (V, F )
B

Require: ,  and -submodular  function ,  matroid 
with the bases 

S S (S) ∈ BEnsure: vector  with 

S0← ∅, j← 11: ;
e ∈ V2: for each  do

S (S j−1)∪{e} ∈ F3:　　if  then

i← argmaxi∈[k] f (S j−1 + (e, i))4:　　　 ;

S j← S j−1 + (e, i)5:　　　 ;
6:　　end if

j← j+17:　　 ;
8: end for

S9: return 
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S j−1 O j− 1
2

k
relationship  between  and ,  as  well  as  the
orthant  submodularity  of -submodular  function,  then
the  third  inequality  above  is  obtained  by  the  greedy
algorithm to choose the best position.

e jFor Case (2), since  does not meet the condition of
independent set, so we have
 

f (O j−1)− f (O j) = f (S j)− f (S j−1) = 0.

Therefore, in both cases, we have
 

f (O j−1)− f (O j) ⩽ f (S j)− f (S j−1).

Based  on  the  above  analysis,  sum  both  sides  of  the
inequalities above, we obtain
 

l∑
j=1

( f (O j−1)− f (O j)) ⩽
l∑

j=1

( f (S j)− f (S j−1)).

Thus, we finally get
 

f (O)− f (Ol) ⩽ f (Sl) (4)
Ol = Sl

f (O) f (S)

Õ ⪯ O
Sl Ol = Õ⊔Sl

Õ , O

In this  construction mode,  we cannot  get ,  so
Formula  (4)  cannot  directly  show  the  relationship
between  and . We need to further analyze it
through the following analysis based on Assumption 1.
Let  us  use  to  denote  the  set  of  elements  not
selected  into .  And  then .  Moreover,  we
have  by the construction of the above sequences.
Thus by Assumption 1, we have
 

f (Õ) ⩽ (1−α) f (O) (5)
kMoreover,  from  the  definition  of -submodular

function, we have
 

f (Ol) = f (Õ⊔Sl) ⩽ f (Õ)+ f (Sl).

Inequality  (5)  is  combined  with  above  ineqatily  to
obtain
 

f (Ol) ⩽ (1−α) f (O)+ f (Sl).

f (Ol)At  this  point,  an  upper  bound  of  is  found.
Combining inequality (4), we have
 

f (S) ⩾
α

2
f (O). ■

By  replacing  the  monotonicity  by  pairwise
monotonicity, we can get the following corollary.

α/3

O (|V |a+ krb) O(kr)

Corollary  1　 For  nMkfSM  and  based  on
Assumption  1,  Algorithm  3  returns  a -
approximation  solution  with  the  query  complexity  of

 and takes  memory.

α

Remark The  approximation  ratios  of  the  streaming
algorithm  designed  in  this  paper  are  presented  with  a
constant  factor ,  which represents  the decrease when

1/2
1/3

some elements in the optimal solution are removed. As
the decrease increases, the approximation ratios will be
better.  Moreover,  the  memory  complexity  is  nice.
However, the performance guarantee is close to  as
the best case for mMkfSM and  for nMkfSM.

5　Conclusion

k

1/3
k

k

In  this  paper,  we  have  solved  the  problem  of
maximizing the -submodular function under a matroid
constraint.  At  beginning,  we  design  a  deterministic
algorithm with approximation ratio of  for the non-
monotone -submodular  function.  Later,  we  also
design  a  randomized  algorithm  to  reduce  the
complexity  of  this  algorithm.  Finally,  we  give  a
streaming  algorithm  for  both  monotone  and  non-
monotone -submodular functions. In addition, we plan
to  improve  the  streaming  algorithm  depending  on  the
property of basis of a matroid.
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