
 

Approximation and Heuristic Algorithms for the Priority Facility
Location Problem with Outliers
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Abstract: In  this  paper,  we  propose  the  Priority  Facility  Location  Problem  with  Outliers  (PFLPO),  which  is  a

generalization of both the Facility Location Problem with Outliers (FLPO) and Priority Facility Location Problem

(PFLP). As our main contribution, we use the technique of primal-dual to provide a 3-approximation algorithm

for the PFLPO. We also give two heuristic algorithms. One of them is a greedy-based algorithm and the other is

a local search algorithm. Moreover, we compare the experimental results of all the proposed algorithms in order

to illustrate their performance.
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1　Introduction

ρ

The  Uncapacitated  Facility  Location  Problem  (UFLP)
had been extensively studied in the field of operations
research[1].  In  the  UFLP,  a  facility  location  set  and  a
client location set are given. Opening a facility at some
facility  location  incurs  a  non-negative  opening  cost,
and  connecting  a  client  from  its  location  to  some
facility location incurs a connection cost. The aim is to
open facilities  at  some facility  locations,  connect  each
client from its location to the location of some opened
facilities,  such  that  the  total  cost  (i.e.,  the  sum  of
opening  and  connection  costs)  is  minimized.  A  great
deal  of  approximation  algorithms  were  proposed  in
order to solve the UFLP. A -approximation algorithm
of a minimization problem is an algorithm that, for any
instance of the problem, could always output a feasible

ρ

ρ

ρ

solution  within  a  factor  of  of  the  optimum  in
polynomial time. For a -approximation algorithm, we
call  its approximation ratio.
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In general, we assume that the given connection costs
are  metric,  which  means  they  are  non-negative,
symmetric, and satisfy the triangle inequality. Based on
the  technique  of  Location  Problem (LP)  rounding,  the
first  constant-factor  approximation  algorithm  for  the
UFLP was designed by Shmoys et  al.[2],  which has an
approximation  ratio  of .  By  combining  the
technique  of  LP-rounding  and  dual-fitting,  Li[3] gave
the  currently  best -approximation  algorithm.
Sviridenko[4],  showed  that  unapproximable  lower
bound of the UFLP is  unless NP = P.

3

In addition to these three important results presented
above  for  the  UFLP,  many  other  approximation
algorithms were also given using the techniques of LP-
rounding[4–6], primal-dual[7], dual-fitting[8–10], and local
search[11, 12].  Among  all  the  approximation  algorithms
used to solve the UFLP, Jain and Vazirani[7] proposed
an elegant primal-dual -approximation algorithm. It is
worth  mentioning  that  their  primal-dual  algorithm  is
very  versatile  and  can  be  adapted  to  solve  many
generalizations of the UFLP.

A limitation of  the  model  of  the  UFLP is  that  some
clients with relatively large connection cost could have
a  huge  impact  on  the  total  cost.  To  overcome  this
limitation,  Charikar  et  al.[13] proposed  two
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generalizations  of  the  UFLP,  which  are  the  Facility
Location  Problem  with  Penalties  (FLPP)  and  Robust
Facility  Location  Problem  (RFLP).  The  RFLP  is
sometimes  called  the  Facility  Location  Problem  with
Outliers  (FLPO).  Compared  with  the  UFLP,  in  the
FLPP, each client has a penalty cost, and the aim is to
open facilities at some facility locations, connect some
clients  from  their  locations  to  the  locations  of  the
opened  facilities,  and  pay  the  penalty  costs  of  all  the
remaining clients, such that the total cost (i.e., the sum
of  opening,  connection  and  penalty  costs)  is
minimized.  Compared with the UFLP,  in  the FLPO, a
non-negative  integer  is  given,  the  aim  is  to  open
facilities  at  some  facility  locations,  select  at  most 
clients as outliers (i.e., the clients that do not need to be
connected), connect all the remaining clients from their
locations to the locations of the opened facilities, such
that  the  total  cost  (i.e.,  the  sum  of  opening  and
connection costs) is minimized. Based on the technique
of  primal-dual,  Charikar  et  al.[13] introduced  their -
approximation  algorithms  for  both  the  FLPP  and
FLPO.

L = {1, 2, . . . , L}
L

L
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The  Priority  Facility  Location  Problem  (PFLP)  is
also a generalization of the UFLP. Compared with the
UFLP,  in  the  PFLP,  we  are  given  a  level  set

.  Each  client  has  a  level-of-service
requirement  belonging  to ,  and  each  facility  can  be
opened  at  any  facility  location  and  at  any  level  in .
The opening cost of a facility is associated with both its
location  and  opening  level.  Assume  that  the  cost  of
opening a  facility  at  any location is  non-decreasing as
its  opening  level  increases.  If  the  level-of-service
requirement  of  a  client  is  no  more  than  the  opening
level of some opened facility, it can be connected to the
opened  facility  and  incurs  a  connection  cost.  We
assume  that  the  connection  cost  of  each  facility-client
pair is only related to their locations and not related to
their corresponding levels. The aim is also to minimize
the total  cost  (i.e.,  the sum of  opening and connection
costs).  Ravi  and  Sinha[14] proposed  the  PFLP  along
with  an  LP-rounding -approximation  algorithm.
Mahdian[15] provided  a  primal-dual -approximation
algorithm. Combining the technique of primal-dual and
greedy  augmentation  procedure,  Li  et  al.[16] presented
the currently best -approximation algorithm.

The  PFLP  also  has  the  limitation  that  some  clients
may  have  excessive  influence  on  its  objective  value.
The  only  result  to  overcome  the  limitation  was

provided by Wang et al.[17],  who proposed the Priority
Facility Location Problem with Penalties (PFLPP) and
gave two constant-factor approximation algorithms. On
the  other  hand,  the  generalization  of  the  PFLP
considering outliers has not been studied yet.
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In  this  paper,  we  propose  the  Priority  Facility
Location  Problem  with  Outliers  (PFLPO),  which  is  a
generalization of both the FLPO and PFLP. Compared
with the PFLP, in the PFLPO, a non-negative integer 
is given, and we select at most  clients as outliers. The
outliers  are  allowed not  to  be  connected.  As our  main
contribution,  we  combine  the  works  of  Charikar
et al.[13] on the FLPO and Mahdian[15] on the PFLP to
design  a  constant-factor  approximation  algorithm  for
the  PFLPO.  The  approximation  ratio  of  our  algorithm
is . We also provide two heuristic algorithms. One is a
greedy-based algorithm and the other  is  a  local  search
algorithm.  The  performance  of  all  the  proposed
algorithms are compared on synthetic data sets.

The  remainder  structure  of  our  paper  is  as  follows.
Section  2  gives  the  formal  description  of  the  PFLPO
along  with  its  integer  program,  linear  program
relaxation, and dual program. Sections 3 and 4 provide
the  approximation  algorithm  and  the  heuristic
algorithms,  respectively.  Section  5  presents  our
experimental results and some conclusions.

2　Preliminary
IPFO

F C
L = {1, 2, . . . , L} |F | = m |C| = n

q < n

L
( j, l )

j ∈ C l ∈ L
C

L
(i, s) i ∈ F

s ∈ L
F

i ∈ F s ∈ L
(i, s)

fis

l
( j, l )

(i, s)

In  a  PFLPO  instance ,  we  are  given  a  facility
location  set ,  a  client  location  set ,  and  a  level  set

.  Assume  that  and .  A
non-negative integer  is also given. Each client, in
addition to its location, is also associated with a level-
of-service  requirement  which  belongs  to .  For
simplicity,  we  use  a  binary  to  denote  a  client,
where  and  are  its  location  and  level-of-
service  requirement,  respectively.  Let  be  the  set  of
all  client  binaries.  Each  facility,  in  addition  to  its
location,  can  be  opened  at  any  level  in .  For
simplicity,  denotes  a  facility,  where  and

 are  its  location  and  opening  level,  respectively.
Let  be  the  set  of  all  facility  binaries.  Opening  a
facility  located  at  at  some  level  of  (i.e.,
opening  facility )  incurs  a  non-negative  opening
cost  of .  We  assume  that  the  cost  of  opening  a
facility at any location is non-decreasing as the opening
level increases. If the level-of-service requirement  of
a client  is no more than the opening level of some
opened facility , it can be connected to the opened
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facility  and  incurs  a  connection  cost  of .  Note  that
each connection cost is only related to the locations of
the  corresponding  facility  and  client.  Assume  that  the
connection  costs  are  non-negative  and symmetric,  and
satisfy the triangle inequality. The objective is to open
some facilities in , select at most  clients as outliers
(i.e.,  the  clients  that  do  not  need  to  be  connected),
connect  all  the  remaining  clients,  such  that  the  total
cost  (i.e.,  the sum of  opening and connection costs)  is
minimized.

IPFO 0 1
{xis, jl}(i, s)∈ F, ( j, l) ∈ C {yis}(i, s) ∈ F

{z jl}( j, l ) ∈ C xis, jl

( j, l ) (i, s) yis

(i, s)
z jl ( j, l )

IPFO

In order to provide the integer program of the given
PFLPO instance , we introduce three types of −
primal  variables , ,  and

.  The  variable  indicates  whether  client
 is  connected  to  facility .  The  variable 

indicates whether facility  is  opened. The variable
 indicates whether client  is being selected as an

outlier.  The  integer  program  of  the  given  PFLPO
instance  is as follows:
 

min
∑

(i, s) ∈ F
fisyis+

∑
(i, s) ∈ F: l⩽ s

∑
( j, l ) ∈ C

ci jxis, jl,

s. t,
∑

(i, s) ∈ F: l⩽ s

xis, jl+ z jl ⩾ 1,∀ ( j, l ) ∈ C,

xis, jl ⩽ yis, ∀ ( j, l ) ∈ C, (i, s) ∈ F,∑
( j, l ) ∈ C

z jl ⩽ q,

xis, jl ∈ {0,1}, ∀ ( j, l ) ∈ C, (i, s) ∈ F,
yis ∈ {0,1}, ∀ (i, s) ∈ F,
z jl ∈ {0,1}, ∀( j, l ) ∈ C.

( j, l ) ∈ C

( j, l ) ∈ C
(i, s) ∈ F (i, s)

q

The objective function represents the sum of opening
and  connection  costs.  The  first  constraint  ensures  that
each  client  is  either  be  connected  to  some
facility or selected as an outlier. The second constraint
ensures that if there exists a client  connected
to  some  facility ,  then  the  facility  must
be opened. The third constraint ensures that the number
of selected outliers is at most .

xis, jl ∈ {0,1}
yis ∈ {0,1} z jl ∈ {0,1}

xis, jl ⩾ 0 yis ⩾ 0
z jl ⩾ 0

If  we  replace  the  constraints  of ,
,  and  in  the  above  integer

program  with  the  constraints  of , ,  and
,  resprctively,  the  following  linear  program

relaxation can be obtained:
 

min
∑

(i, s) ∈ F
fisyis+

∑
(i, s) ∈ F: l⩽ s

∑
( j, l) ∈ C

ci jxis, jl,

s. t.,
∑

(i, s) ∈ F: l⩽ s

xis, jl+ z jl ⩾ 1,∀ ( j, l) ∈ C,

xis, jl ⩽ yis, ∀ ( j, l) ∈ C, (i, s) ∈ F,

  ∑
( j, l ) ∈ C

z jl ⩽ q,

xis, jl ⩾ 0, ∀ ( j, l ) ∈ C, (i, s) ∈ F,
yis ⩾ 0, ∀ (i, s) ∈ F,
z jl ⩾ 0, ∀ ( j, l ) ∈ C.

Note  that  the  integrality  gap  of  the  above  linear
program  relaxation  is  unbounded.  That  means,  based
on  this  relaxation,  it  is  impossible  to  design  an
approximation  algorithm  with  a  bounded
approximation ratio.

{α jl}( j, l ) ∈ C {βis, jl}(i, s) ∈ F, ( j, l) ∈ C γ

IPFO

By  introducing  three  types  of  dual  variables
, ,  and ,  we  obtain  the

following  dual  program  of  the  given  PFLPO  instance
:

 

max
∑

( j, l ) ∈ C
α jl−γq,

s. t, α jl−βis, jl ⩽ ci j, ∀ (i, s) ∈ F, ( j, l ) ∈ C, l ⩽ s,∑
( j, l ) ∈ C

βis, jl ⩽ fis, ∀ (i, s) ∈ F,

α jl ⩽ γ, ∀ ( j, l ) ∈ C,
α jl ⩾ 0, ∀ ( j, l ) ∈ C,
βis, jl ⩾ 0, ∀ (i, s) ∈ F, ( j, l ) ∈ C,
γ ⩾ 0.

α jl

( j, l ) βis, jl

( j, l ) (i, s)

We can view each dual variable  as the budget of
client ,  and  view  each  dual  variable  as  the
contribution of client  to facility .

3　Approximation Algorithm

In  this  section,  we  propose  a  constant-factor
approximation algorithm for the PFLPO.

3.1　Description of the algorithm

Iexp
PFO

IPFO

Iexp
PFO

IPFO

The proposed approximation algorithm is based on the
technique  of  primal-dual,  and  it  has  three  essential
construction  phases.  The  first  pre-construction  phase
constructs  a  modified  PFLPO instance  based  on
the  given  PFLPO  instance .  The  second  dual
construction  phase  constructs  a  dual  feasible  solution
of the dual program of instance . The third primal
construction  phase  uses  the  obtained  dual  solution  to
construct  a  primal  feasible  solution  of  the  integer
program of instance .

Phase 1:    Pre-construction phase
Iexp

PFO

IPFO

(ie, se) ∈ F
IPFO

Phase  1  constructs  a  modified  instance  to
overcome  the  obstacle  that  the  integrality  gap  of  the
natural  linear  program relaxation  of  the  given  PFLPO
instance  is unbounded. In Phase 1, we first guess
the  facility ,  which  has  the  most  expensive
opening  cost  in  an  optimal  solution  of  instance .
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(ie, se)Then, we modify the opening cost of the facility 
and all the facilities with more expensive opening costs
to  obtain  the  modified  instance.  Algorithm  1  is  the
formal description of Phase 1.

Phase 2:    Dual construction phase

{α jl}( j, l ) ∈ C

Ftem Ctem Otem

(i, s) ∈ F tis
( j, l ) ∈ C

w ( j, l ) α jl

w ( j, l )
( j, l )

{α jl}( j, l ) ∈ C {βis, jl}(i, s) ∈ F, ( j, l ) ∈ C γ

Phase  2  constructs  a  dual  feasible  solution  by
uniformly  raise  dual  variables  from  zero.
Algorithm  2  is  the  formal  description  of  Phase  2.  In
this  algorithm,  we  use , ,  and  to  denote
the  set  of  temporarily  opened  facilities,  connected
clients,  and  selected  outliers,  respectively.  For  each
facility ,  denote  by  the  time  it  is
temporarily  opened.  For  each  client ,  denote
by  the facility that causes the dual variable 
to  stop  raising,  and  we  call  the  connecting
witness  of .  The  output  of  the  dual  variables

,  and  form  a  dual
feasible solution.

Iexp
PFO

Note  that  the  dual  ascent  process  in  Step  2  of
Algorithm 2 does not violate any constraints of the dual
program of . Thus we have the following lemma.

Iexp
PFO

Lemma  1    Algorithm  2  outputs  a  dual  feasible
solution  of  the  dual  program  of  the  modified  PFLPO
instance .

Phase 3:    Primal construction phase

Ffin Cfin Ofin

(i, s) ∈ Ffin tis (i, s)
( j, l ) ∈ Cfin

In  order  to  construct  a  primal  feasible  solution  with
constant approximation ratio, Phase 3 requires that any
two  finally  opened  facilities  cannot  be  contributed  by
the  same client.  Algorithm 3  is  the  formal  description
of Phase 3. In this algorithm, we use , , and 
to denote the set of finally opened facilities, connected
clients,  and  selected  outliers,  respectively.  For  each
facility ,  recall  that  is  the  time  is
temporarily  opened.  For  each  client ,

σ ( j, l )
{xis, jl}(i, s) ∈ F, ( j, l ) ∈ C

{yis}(i, s) ∈ F {z jl}( j, l ) ∈ C

denote by  the facility to which it  is connected.
The output of the primal variables ,

,  and  form  a  primal  feasible
solution.

In  the  following  lemma,  we  show  the  feasibility  of
the obtained primal solution.

IPFO

Lemma  2    Algorithm  3  outputs  a  primal  feasible
solution  of  the  integer  program  of  the  given  PFLPO
instance .

( j, l ) ∈ Cfin

Proof    If Step 4 of Algorithm 3 can be successfully
performed,  the  obtained  solution  must  be  feasible.
Thus, we aim to prove that for each client ,

 

Algorithm 1　Pre-construction phase
IPFOInput: A given PFLPO instance .

Iexp
PFOOutput: A modified PFLPO instance .

(ie, se)

IPFO = (F, C, { fis}(i, s) ∈ F, {ci j}i ∈ F , j ∈ C)
F := {(i, s) : i ∈ F , s ∈ L} C := {( j, l ) : j ∈ C, l ∈ L}

Step 1: Guess the most expensive opened facility  in an
             optimal solution of the given PFLPO instance,
              , where
              , and .

(i, s) ∈ FStep 2: For each facility , we define

f ′is :=


0, if facility (i, s) = (ie, se);
∞, if facility (i, s) satisfies fis > fie se ;
fis, otherwise.

              

Iexp
PFO = (F,D, { f ′is}(i, s) ∈ F, {ci j}i ∈ F , j ∈ C)

　         Construct the modified PFLPO as
             .

Iexp
PFOStep 3: Output modified PFLPO instance .

 

Algorithm 2　Dual construction phase

Iexp
PFOInput: Modified PFLPO instance .

Iexp
PFO

Output: A dual feasible solution of the dual program of the
modified PFLPO instance  and some useful sets.
Step 1: Initialization.

( j, l ) ∈ C α jl := 0
(i, s) ∈ F ( j, l ) ∈ C βis, jl := 0 γ := 0 Ftem := ∅
Ctem := ∅ Otem := C t := 0 (i, s) ∈ F
tis :=∞ (id, sd)
( j, l ) ∈ C w ( j, l ) := (id, sd)

　For any client , set . For any facility
, client , set , . ,
, , and . For any facility , set

. Construct a dummy facility . For any client
, set .

Step 2: Dual ascent process.
|Otem| > q　while  do

t α jl
( j, l ) ∈ Otem

　　Raise  as well as each dual variable  satisfying
         uniformly until some of the following events
       happens. If several events happen at the same time, we
       arbitrarily break ties.

(i, s) ∈ F \Ftem
( j, l ) ∈ Otem

　　Event 1. There exist some facility  and
        client , such that

l ⩽ s and α jl = ci j.　　　

(i, s) ∈ Ftem
( j, l ) ∈ Otem

　　Event 2. There exist some facility  and client
        , such that

l ⩽ s and α jl = ci j.　　　

(i, s) ∈ F \Ftem　　Event 3. There exists some facility , such
        that ∑

( j, l ) ∈ C
βis, jl = f ′is.　　　

βis, jl := α jl − ci j βis, jl
α jl

α jl Ctem := Ctem∪{( j, l )} Otem :=Otem \ {( j,
l )} w( j, l ) := (i, s)
α jl ( j, l ) ∈ Otem βis, jl > 0

C(i, s) := {( j, l ) ∈ Otem : βis, jl > 0}. Ftem :=
Ftem ∪ {(i, s)} Ctem := Ctem∪C(i, s) Otem :=Otem\
C(i, s). tis := t w ( j, l ) := (i, s)
( j, l ) ∈ C(i, s)

　　If Event 1 happens, update . Raise 
        uniformly as  increases. If Event 2 happens, stop raise
         . Update , and 
         . Update . If Event 3 happens, stop raise
          for each client  satisfying .
        Define  Update 
         , , and 
          Update  and  for each client
         .

t α jl ( j, l ) ∈
Otem γ := t

　Stop raise  as well as each dual variable  satisfying 
     , and update .

{α jl}( j, l) ∈ C {βis, jl}(i, s) ∈ F, ( j, l ) ∈ C
γ Ftem Ctem Otem

Step 3: Output dual variables , 
and . Set , , and .
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(i, s) ∈ Ffin

l ⩽ s
there  must  exist  some  facility ,  such  that

. The proof can be split into two cases.
( j, l )

w ( j, l ) ∈ Ffin

● Case  1.    For  client ,  its  connecting  witness
.

(i, s) w ( j, l )

( j, l ) (i, s)
l ⩽ s

In this case, we use  to represent facility .
From  Step  2  of  Algorithm  2,  it  can  be  seen  that  for
client  and  its  connecting  witness ,  the
requirement of  always holds.

( j, l )
w ( j, l ) < Ffin

● Case  2.    For  client ,  its  connecting  witness
.

(i, s) w ( j, l )
(i, s) < Ffin

(i′, s′) ∈ Ffin

N(i, s)∩N(i′, s′) , ∅ s ⩽ s′ ( j, l )
(i, s) l ⩽ s

In this case, we use  to represent facility .
Since ,  from  Step  3  of  Algorithm  3,  there
must  exists  some  facility  such  that

 and . Since for client  and
its  connecting  witness ,  the  requirement  of 

l ⩽ s′always holds, we have .
Combining Cases 1 and 2 completes the proof of this

lemma. ■
3.2　Analysis of the algorithm

OPT OPTexp

IPFO Iexp
PFO

(ie, se)

IPFO OPT′ := OPT− fie se

Denote  by  and  the  total  cost  of  optimal
solutions  of  instances  and ,  respectively.
Recall  that  is  the  facility  which  has  the  most
expensive  opening  cost  in  an  optimal  solution  of
instance . Define .

Cfin C1
fin C2

fin
C1

fin ( j, l ) ∈ Cfin

(i, s) ∈ Ffin βis, jl > 0 C2
fin

( j, l ) ∈ Cfin

(i, s) ∈ Ffin βis, jl > 0
( j, l ) ∈ C1

fin αF
jl := βis, jl αC

jl := ci j

(i, s) Ffin βis, jl > 0

( j, l ) ∈ C1
fin

We  divide  the  set  into  two  sets  and ,
where  includes  each  client  that  has  a
facility  satisfying ,  and 
includes  each  client  that  has  no  facility

 satisfying .  For  each  client
,  define  and ,  where

 is the only facility in  which satisfies .
From  Step  2  of  Algorithm  2  for  each  client

, we have
 

α jl = βis, jl+ ci j = α
F
jl+α

C
jl.

( j, l ) ∈ C2
fin αF

jl := 0

αC
jl := α jl

For  each  client ,  define  and
, and we have

 

α jl = 0+α jl = α
F
jl+α

C
jl.

FCDenote by  the total opening cost of the obtained
primal feasible solution, i.e.,
 

FC =
∑

(i, s) ∈ F
fisyis.

FC
Lemma  3    Algorithm  3  outputs  a  primal  feasible

solution of total opening cost of , such that
 

FC ⩽
∑

( j, l ) ∈ Cfin

αF
jl+2 fie se .

yis = 1 (i, s) ∈ FfinProof    Since ,  if  any  only  if ,  we
have that
 

FC =
∑

(i, s) ∈ F
fisyis =

∑
(i, s) ∈ Ffin

fis (1)

fila sla ⩽ fie seFrom Step 2 of Algorithm 1 and the fact ,
we have
  ∑

(i, s) ∈ Ffin

fis ⩽

∑
(i, s) ∈ Ffin\{( f ie, se), (ila, sla)}

fis+ fie se + fila sla ⩽

∑
(i, s) ∈ Ffin\{(ie, se), (ila, sla)}

f ′is+2 fie se (2)

Step 3 of Algorithm 3 guarantees that for each client

 

Algorithm 3　Primal construction phase

Iexp
PFO

Ftem Ctem Otem

Input: A dual feasible solution of the dual program of  and
sets , , and  obtained from Algorithm 2.

IPFO

Output: A primal feasible solution of the integer program of the
given PFLPO instance .
Step 1: Initialization.

(i, s) ∈ F ( j, l ) ∈ C xis, jl := 0
(i, s) ∈ F yis := 0

( j, l ) ∈ C z jl := 0 (ila, sla)
Ftem

　For any facility , client , set .
    For any facility , set . For any client
     , set . Denote by  the last facility to
    be added to  (i.e., the last temporarily opened facility).
Step 2: Determine outliers.
|Otem| = q Ofin :=Otem ( j, l ) ∈ Ofin

z jl := 1 |Otem| < q q− |Otem|
C(ila, sla) Ola

Cfin := Ctem \Ola Ofin :=Otem∪Ola
( j, l ) ∈ Ofin z jl := 1

　If , set . For each client ,
    update . If , arbitrarily select 
    clients in , and denote by  these selected clients.
    Set , and . For each client
     , update .
Step 3: Open facilities.

Ffin := ∅ (i, s) ∈ F　Set . For each facility , define
N(i, s) := {( j, l) ∈ C : βis, jl > 0}.　　

Ftem

k := 1

　According to the opening levels of the facilities in , order
    the facilities from the one with largest level to the one with
    smallest level. Set .

k ⩽ |Ftem|　while  do
k- (i, s) Ftem

(i′, s′) Ffin

　　For the th facility  in , check whether there
        exists some facility  in , such that

N(i, s)∩N(i′, s′) , ∅.　　　
k := k+1

Ffin := Ffin∪{(i, s)} yis := 1 k := k+1
　　If there exists such facility, update . Otherwise,
        update , and , and .
Step 4: Connect clients.

( j, l ) ∈ Cfin    　For each client , find facility
(i, s) := arg min

(i′, s′) ∈ Ffin:l ⩽ s′
ci′ j,　　

σ( j, l) := (i, s) xis, jl := 1    　set , and update .
{xis, jl}(i, s) ∈ F, ( j, l ) ∈ C

{yis}(i, s) ∈ F {z jl}( j, l) ∈ C

Step 5: Output primal variables ,
, and .
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( j, l ) ∈ F (i, s) ∈ Ffin

βis, jl > 0
, there exists at most one facility ,

such that . Therefore,
  ∑

(i, s) ∈ Ffin\{(ie, se), (ila, sla)}
f ′is ⩽∑

(i, s) ∈ Ffin\{(ie, se), (ila, sla)}

∑
( j, l ) ∈ N(i, s)

βis, jl =∑
(i, s) ∈ Ffin\{(ie, se), (ila, sla)}

∑
( j, l ) ∈ N(i, s)

αF
jl ⩽∑

( j, l ) ∈ C1
fin

αF
jl =

∑
( j, l ) ∈ Cfin

αF
jl (3)

Combining Formulas (1)−(3) completes the proof of
Lemma 3. ■

CCDenote  by  the  total  connection  cost  of  the
obtained primal feasible solution, i.e.,
 

CC =
∑

(i, s) ∈ F: l ⩽ s

∑
( j, l) ∈ C

ci jxis, jl.

CC
Lemma  4    Algorithm  3  outputs  a  primal  feasible

solution of total connection cost of , such that
 

CC ⩽ 3
∑

( j, l ) ∈ Cfin

αC
jl.

xis, jl = 1 ( j, l ) ∈ Cfin

( j, l ) ∈ Cfin

Proof    Note  that  only  if .  We
consider the connection cost of each client 
according to two cases.

( j, l ) ∈ C1
fin● Case 1.    Client .

( j, l ) ∈ C1
fin

(i, s) ∈ Ffin βis, jl > 0
ci j = α

C
jl.

For  each  client ,  since  there  exists  a
facility  satisfying ,  its  connection
cost is no more than 

( j, l ) ∈ C2
fin● Case 2.    Client .

( j, l ) ∈ C2
fin (i, s)

w ( j, l ) (i, s) Ffin

( j, l )
α jl = α

C
jl. (i, s) Ffin

(i′, s′) ∈ Ffin

N(i, s)∩N(i′, s′) , ∅ s ⩽ s′ ( j′, l′)
N(i, s)∩N(i′, s′)

( j, l )

For each client , we use  to represent
its  connecting witness .  If  belongs  to ,
the  connection  cost  of  connecting  client  is  no
more  than  If  does  not  belong  to ,
there  must  exists  some  facility  such  that

 and . Let  be some client
in .  Therefore,  the  connection  cost  of
connecting client  is no more than
 

ci′ j ⩽ ci′ j′ + ci j′ + ci j ⩽ α j′l′ +α j′l′ +α jl ⩽ 3α jl = 3αC
jl.

The third inequality is due to that
 

α j′l′ ⩽min {ti′ s′ , tis} ⩽ tis ⩽ α jl.

Combining  Cases  1  and  2  completes  the  proof  of
Lemma 4. ■

Now, we are ready to give our main result.
3Theorem  1    There  is  a -approximation  algorithm

for the PFLPO.
Proof    From Lemmas 3 and 4, we have

 

FC+CC ⩽
∑

( j, l ) ∈ Cfin

αF
jl+2 fie se +3

∑
( j, l ) ∈ Cfin

αC
jl ⩽

3
∑

( j, l ) ∈ Cfin

(
αF

jl+α
C
jl

)
+2 fie se ⩽

3
∑

( j, l ) ∈ Cfin

α jl+2 fie se (4)

C = Cfin∪Ofin α jl = γ

( j, l ) ∈ Ofin |Ofin| = q
Since ,  for  each  client

, and , we have
  ∑

( j, l ) ∈ Cfin

α jl =
∑

( j, l) ∈ C
α jl−

∑
( j, l ) ∈Ofin

α jl =∑
( j, l ) ∈ C

α jl−γq ⩽ OPTexp ⩽ OPT′ (5)

IPFO Iexp
PFO

The last inequality is due to that any optimal solution
of instance  is a feasible solution of instance .

Combining Formulas (4) and (5), we obtain
 

FC+CC ⩽ 3OPT′+2 fie se ⩽ 3OPT.

We complete the proof of Theorem 1. ■

4　Heuristic Algorithms

In  this  section,  based  on  existing  basic  techniques  for
solving  facility  location  problems,  we  propose  two
heuristic algorithms, called greedy-based algorithm and
local search algorithm, for the PFLPO.

4.1　Greedy-based algorithm

Fgb

Cgb Ogb

( j, l ) ∈ Cgb σgb ( j, l )

{xgb
is, jl}(i, s) ∈ F, ( j, l ) ∈ C {ygb

is }(i, s ) ∈ F

{zgb
jl }( j, l ) ∈ C

The  proposed  greedy-based  algorithm  starts  with  a
feasible  facility  set,  which  selects  some  facility  with
the highest level that minimize the total cost. Then, we
constantly  update  the  currently  facility  set  by  finding
the  most  valuable  facility.  A  facility  is  valuable  if
adding  it  to  the  current  facility  set  would  reduces  the
total cost. Algorithm 4 is the formal description of the
greedy-based algorithm. In this algorithm, we use ,

,  and  to  denote  the  set  of  opened  facilities,
connected  clients,  and  selected  outliers,  respectively.
For  each  client ,  denote  by  the
facility  to  which  it  is  connected.  The  output  of  the
primal  variables , ,  and

 form a primal feasible solution.

4.2　Local search algorithm

Same  as  the  greedy-based  algorithm,  the  proposed
local search algorithm also starts with a feasible facility
set.  Then, we constantly update the current facility set
if  some  local  change  could  reduce  its  total  cost.
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Fls Cls

Ols

( j, l ) ∈ Cls σls ( j, l )

Algorithm  5  is  the  formal  description  of  the  local
search algorithm. In this algorithm, we use , , and

 to  denote  the  set  of  opened  facilities,  connected
clients,  and  selected  outliers,  respectively.  For  each
client ,  denote  by  the  facility  to

{xls
is, jl}(i, s) ∈ F, ( j, l) ∈ C {yls

is}(i, s) ∈ F

{zls
jl}( j, l) ∈ C

which  it  is  connected.  The  output  of  the  primal
variables , ,  and

 form a primal feasible solution.

 

Algorithm 4　Greedy-based algorithm
IPFOInput: A given PFLPO instance .

IPFO

Output: A primal feasible solution of the integer program of the
given PFLPO instance .
Step 1: Initialization.

(i, s) ∈ F ( j, l ) ∈ C xgb
is, jl := 0

(i, s) ∈ F ygb
is := 0

( j, l ) ∈ C zgb
jl := 0 Fgb := ∅ Cgb := ∅

Ogb := C (id, sd)
sd = L cid j :=∞ ( j, l ) ∈ C

F′ ⊆ F ( j, l ) ∈ C

　For any facility , client , set .
    For     any facility , set . For any client
     ,     set . Set , , and
     . Construct     a dummy facility , where
     . Set  for each client . For each
    facility set , and client      , define

(i(F′, j), s(F′, j)) := arg min
(i, s) ∈ F′∪{(id, sd)}:l ⩽ s

ci j,　

τ (F′, j) (i(F′, j), s(F′, j))
τ (F′, j) := i(F′, j) F′ ⊆ F

　and  is the location of the facility , i.e.,
     . For each     facility set , define

T (F′) :=
∑

(i, s ) ∈ F′
fis +

∑
( j, l ) ∈ Cmin

F′

cτ (F′, j) j,
　

Cmin
F′ n−q C

cτ (F′, j ) j

　where  are the first  clients in  with the smallest
    connection cost of .
Step 2: Open facilities.
　Step 2.1: Find facility

(igb, sgb) := arg min
(i, s) ∈ F:s=L

T ({(i, s)}).
　　　

Fgb := Fgb∪{(igb, sgb)}　　Update .

(i, s) ∈ F \Fgb　Step 2.2: For each facility , define

Gain (i, s) := T (Fgb)−T (Fgb∪{(i, s)}).　　　

　　Find the facility

(ih, sh) := arg max
(i, s) ∈ F\Fgb

Gain (i,s)
fis
.　　　

Gain (ih, sh) > 0 Fgb := Fgb∪{(ih, sh)}
ygb

is := 1
(i, s) ∈ Fgb

　　If , update , and
        repeat Step 2.2. Otherwise, update  for each facility
         , and go to Step 3.
Step 3: Determine outliers.

Ogb := C \Cmin
Fgb

Cmin
Fgb

n−q
C cτ (Fgb, j) j

( j, l ) ∈ Ogb zgb
jl := 1

　Update , where  are the first  clients
    in  with the smallest connection cost of . For each
    client , update .
Step 4: Connect clients.

Cgb := Cmin
Fgb

( j, l ) ∈ Cgb　Update . For each client , find facility
(i, s) := arg min

(i′, s′) ∈ Fgb:l ⩽ s′
ci′ j,

　　

σgb ( j, l ) := (i, s) xgb
is, jl := 1　set , and update .

{xgb
is, jl}(i, s)∈F, ( j, l)∈C {ygb

is }(i, s) ∈ F

{zgb
jl }( j, l) ∈ C

Step 5: Output primal variables , ,

    and .

 

Algorithm 5　Local search algorithm
IPFOInput: A given PFLPO instance .

IPFO

Output: A primal feasible solution of the integer program of the
given PFLPO instance .
Step 1 Initialization.

(i, s) ∈ F ( j, l ) ∈ C xls
is, jl := 0

(i, s) ∈ F ygb
ls := 0

( j, l ) ∈ C zls
jl := 0 Fls := ∅ Cls := ∅ Ols := C

(id, sd) sd = L
cid j :=∞ ( j, l ) ∈ C
F′ ⊆ F ( j, l ) ∈ C

　For any facility , client , set .
    For any facility , set . For any client
     , set . Set , , and .
    Construct a dummy facility , where . Set
      for each client . For each facility set
     , and client , define

(i(F′, j), s(F′, j)) := arg min
(i, s) ∈ F′∪{(id, sd)}:l⩽s

ci j,　　

τ (F′, j) (i(F′, j), s(F′, j))
τ (F′, j) := i(F′, j) F′ ⊆ F

　and  is the location of the facility , i.e.,
     . For each facility set , define

T (F′) :=
∑

(i, s) ∈ F′
fis +

∑
( j, l) ∈ Cmin

F′

cτ (F′, j) j,
　　

Cmin
F′ n−q C

cτ (F′, j) j

　where  are the first  clients in  with the smallest
    connection cost of .
Step 2: Open facilities.
　Step 2.1: Find facility

(ils, sls) := arg min
(i, s) ∈ F:s = L

T ({(i, s)}).
　　　

Fls := Fls∪{(ils, sls)}　　Update .
Fls　Step 2.2: For facility set , define

N(Fls) :=
{Fls∪{(i, s)} : (i, s) ∈ F \Fls}

∪
{Fls \ {(i, s)} : (i, s) ∈ Fls,Fls \ {(i, s)}

can be connected by at least n−q clients}∪
{Fls \ {(i, s)}∪ {(i′, s′)} : (i, s) ∈ Fls,

(i′, s′) ∈ F \Fls,Fls \ {(i, s)}∪ {(i′, s′)}
can be connected by at least n−q clients}

　　　

F′ ∈ N(Fls)
T (F′) < T (F) Fls := F′

yls
is := 1 (i, s) ∈ Fls

　　If there exists some facility set  satisfying
         , update  and repeat Step 2.2.
        Otherwise, update  for each facility , and
        go to Step 3.
Step 3: Determine outliers.

Ols := C \Cmin
Fls

Cmin
Fls

n−q
C cτ (Fls, j) j

( j, l ) ∈ Ols zls
jl := 1

　Update , where  are the first  clients
    in  with the smallest connection cost of . For each
    client , update .
Step 4: Connect clients.

Cls := Cmin
Fls

( j, l ) ∈ Cls　Update . For each client , find facility
(i, s) := arg min

(i′, s′) ∈ Fls:l⩽s′
ci′ j,　　　

σls ( j, l) := (i, s) xls
is, jl := 1　 set , and update .

{xls
is, jl}(i, s)∈F,( j, l)∈C {yls

is}(i, s) ∈ F
{zls

jl}( j, l ) ∈ C

Step 5: Output primal variables , ,
    and .
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5　Experimental Simulation

In  order  to  illustrate  the  performance  of  all  the
proposed  algorithms,  we  compare  the  experimental
results  of  them  running  on  synthetic  data  sets.  By
randomly  generating  the  PFLPO  instances  with
different  number  of  clients,  outliers  and  facilities,  the
experiments  aim to  observe  the  effect  of  each number
on the total cost. For all the generated instances, we set
the maximum level to be 3.

5.1　Effect of the number of clients

In this experiment, we fix the number of facilities at 50
and  vary  the  number  of  clients. Figure  1 shows  the
changing  of  the  total  cost  of  each  algorithm.  As
depicted  in  the  figure,  our  primal-dual  algorithm
consistently  outperforms  the  other  two  heuristic
algorithms, achieving the lowest total cost.

5.2　Effect of the number of outliers

In this experiment, we fix the number of facilities at 50
and  the  number  of  clients  at  1000.  We  introduce
outliers  by  varying  the  number  of  them. Figure  2
presents  the  changing  of  the  total  cost  of  each
algorithm.  Interestingly,  the  curves  for  the  three
algorithms intersect, indicating that the performance of
the  algorithms  may  be  influenced  by  the  presence  of
outliers.  Our  primal-dual  algorithm  incorporates  a
random  selection  mechanism  when  adding  outliers,
while  the  other  two  heuristic  algorithms  employ  a
greedy approach to  select  the  optimal  solution at  each
step.  The difference in the selection strategy may lead
to the intersections in the total cost curves.

5.3　Effect of the number of facilities

In this experiment, we fix the number of clients at 500
and the number of outliers at 50. We vary the number
of  facilities. Figure  3 illustrates  the  changing  of  the
total  cost  for  each  algorithm.  The  results  indicate  that
our primal-dual algorithm consistently outperforms the
other  two  heuristic  algorithms,  with  a  significant
advantage. It is worth mentioning that the greedy-based
algorithm may achieve better  solutions compared with
the primal-dual algorithm while the number of facilities
is not very large. This phenomenon can be attributed to
the  complexity  of  the  primal-dual  algorithm  of
selecting the opened facilities. However, as the number
of facilities increases, the greedy-based algorithm tends
to get trapped in a local optimal solution, resulting in a
larger  cost  gap.  Therefore,  the  performance  of  the
greedy-based algorithm tends to  be deteriorated as  the
number of facilities increases.

 

 
Fig. 1    Effect of number of clients.

 

 
Fig. 2    Effect of number of outliers.

 

 
Fig. 3    Effect of number of facilities.
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