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Abstract: The diversified  development  of  the  service  ecosystem,  particularly  the  rapid  growth  of  services  like

cloud and edge computing, has propelled the flourishing expansion of the service trading market. However, in

the absence of appropriate pricing guidance, service providers often devise pricing strategies solely based on

their own interests, potentially hindering the maximization of overall market profits. This challenge is even more

severe in edge computing scenarios, as different edge service providers are dispersed across various regions

and  influenced  by  multiple  factors,  making  it  challenging  to  establish  a  unified  pricing  model.  This  paper

introduces a multi-participant stochastic game model to formalize the pricing problem of multiple edge services.

Subsequently, an incentive mechanism based on Pareto improvement is proposed to drive the game towards

Pareto  optimal  direction,  achieving  optimal  profits.  Finally,  an  enhanced  PSO  algorithm  was  proposed  by

adaptively optimizing inertia factor across three stages. This optimization significantly improved the efficiency of

solving the game model and analyzed equilibrium states under various evolutionary mechanisms. Experimental

results  demonstrate  that  the  proposed  pricing  incentive  mechanism  promotes  more  effective  and  rational

pricing allocations, while also demonstrating the effectiveness of our algorithm in resolving game problems.
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1　Introduction

The forthcoming years anticipate a substantial surge in
the  web  services  market,  propelled  by  several  key
factors:  the escalating embrace of cloud/edge services,
the  burgeoning  presence  of  IoT,  and  the  mounting
demand for  automation and integration solutions.  This
industry  flourishes  amidst  intense  competition,  with  a

growing  number  of  participants  aiming  to  pioneer
innovative  web  services  that  address  the  expanding
demands  across  various  sectors  such  as  healthcare,
Internet  of  Things,  media,  finance,  and  smart  cities,
among  others[1−6].  According  to  a  report  from
MarketsandMarkets*, the global web services market is
forecasted to ascend from 2.5 billion dollars in 2020 to
6.5  billion  dollars  by  2025,  exhibiting  a  robust
compound  annual  growth  rate  (CAGR)  of  21.3%.  In
this  process,  the  significance  of  service  pricing  in
shaping the evolution of service markets has been duly
acknowledged[7].  In unfettered market settings, service
providers  might  prioritize  their  profits,  deploying
pricing  strategies  that  detrimentally  impact  others’
interests.  Regrettably,  these  tendencies  often  trigger
cutthroat  competition,  ultimately  diminishing  overall
profitability. Further complexity infiltrates edge service
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pricing  scenarios  due  to  factors  like  the  scattered
dispersion  of  edge  service  providers  (ESPs)  and
regional  disparities,  intensifying  the  intricacies  of
pricing  analysis.  Consequently,  this  paper  delves  into
elucidating  the  conundrum  of  service  pricing  within
scenarios where multiple ESPs offer similar services to
numerous  edge  service  consumers  (ESCs).  In  some
cases,  the  location  of  the  ESP  may  not  align  with  the
location  of  service  deployment.  Nevertheless,  this
misalignment  will  not  diminish  the  research  value  of
the pricing game presented in this paper.

With  the  rapid  evolution of  edge-side  infrastructure,
edge  services  have  emerged  as  a  focal  point  in  the
service  market[8, 9].  Initially,  transactions  for  edge
services  predominantly  followed  a  one-to-one  service
customization model, wherein ESPs tailored services at
the edge to meet specific user requirements. However,
there  has  been  a  gradual  transition  in  recent  years
toward a more generalized service transaction model as
ESCs  and  ESPs  have  become  increasingly  active.  For
instance, data processing services catering to intelligent
connected  vehicles  (ICV)  provided  by  internet  service
providers  (ISPs)  at  the  edge  can  be  commoditized  for
all  smart  car  vendors  while  contending  commercially
with  other  ISPs.  In  this  scenario,  advantageous
geographic positioning for ESPs enables them to offer
superior  services  to  a  larger  pool  of  ESCs,  albeit
potentially  encountering  higher  service  maintenance
costs.  Considerable  research  has  delved  into  the
intricate  realm  of  service  pricing.  Within  cloud
computing,  Wu  et  al.[10] have  proposed  an  innovative
approach  rooted  in  value-based  pricing.  This  method
not only factors in the service’s cost to a CSP but also
gauges  the  extent  to  which  a  customer  is  willing  to
invest in the service. Meanwhile, Deng et al.[11] devised
a  resource  bidding  strategy  for  the  edge  side,
employing  a  two-stage  Steinberg  game  model.  Their
strategy  aims  to  maximize  the  overall  value  for  all
entities  operating  at  the  edge.  Regarding  network
service  pricing,  Ma[12] explored  generic  congestion-
prone  network  services,  investigating  the  usage-based
pricing  strategies  adopted  by  service  providers  amid
market competition. Additionally, Asheralieva et al.[13]

formulated  a  model  for  resource  management  and
pricing  within  the  BaaS-MEC  system.  Their  model
represents  a  stochastic  Stackelberg  game  featuring
multiple  leaders  and  incorporates  incomplete
information  about  the  actions  undertaken  by
leaders/BSs  and  followers/peers.  Undoubtedly,  these

cutting-edge  works  are  informative;  however,  there
remains significant potential for optimizing the pricing
matter of multi-edge services, and the task turns out to
be non-trivial due to the following challenges.

Challenge 1: Modeling  of  the  intricate  pricing
matter.  Multi-edge  homogeneous  service  pricing  is  a
complex  issue  where  participants’ benefits  are
influenced by various factors. These factors encompass
the  distribution  of  ESPs  and  ESCs,  preferences  in
service selection of ESCs, operational costs in different
regions, and more. Pricing strategy formulation faces a
dynamically complex market environment.

Challenge 2: Incentive-driven  pricing  game
iterations.  When  participants  formulate  pricing
strategies,  in  general,  they  tend  to  maximize  their
individual  profits.  This  inclination  could  lead  to  the
game gravitating towards a Nash equilibrium-like state,
potentially  resulting  in  a  decrease  in  the  overall  profit
of the service market.

Challenge 3: Resolution  of  complex  game-theoretic
problems. The multi-participant stochastic game model
poses  a  complex  multi-objective  optimization
challenge  due  to  its  non-differentiable  optimization
function.  Consequently,  closed-form  equilibrium
solutions  are  unattainable,  rendering  the  use  of
analytical methods challenging for accurate solutions.

To effectively tackle the aforementioned challenges,
this  paper  presents  a  comprehensive  framework  to
address  the  multi-edge  service  pricing  problem,
encompassing a game modeling approach, an incentive
mechanism,  and  a  model-solving  methodology.  To
tackle  Challenge  1,  we  formalized  a  model  for  the
participating  entities  in  the  game  and  devised
credibility  assessment  and  admission  rules.  Then,  we
transformed  the  multi-edge  service  pricing  problem
into  a  multi-participant  stochastic  game  model  and
conducted  an  equilibrium  existence  proof.  To  tackle
Challenge  2,  our  proposed  service  pricing  incentive
mechanism  based  on  Pareto  improvement,  aims  to
elevate  overall  profits.  To  tackle  Challenge  3,  we
present  a  three-stage  enhanced  Particle  Swarm
Optimization algorithm named TIAO-PSO in the final
stage.  By  conducting  adaptive  optimization  of  the
inertia factor based on search effectiveness across three
stages, TIAO-PSO endeavors to determine equilibrium
points  before  and  after  the  application  of  incentive
mechanisms  through  a  comprehensive  global  search
approach.

The  primary  contributions  of  this  paper  are  as
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follows:
• We defined utility functions for  game participants

and  designed  pre-game  ESP  and  service  credibility
assessment and admission rules.
• We  establish  a  comprehensive  model  that

elucidates  the  interplay  among  ESPs  operating  in
diverse  regions  while  pricing  homogeneous  edge
services.
• Our proposed incentive mechanism utilizes Pareto

improvement  to  steer  the  multi-edge  service  pricing
game  towards  a  Pareto  optimal  state,  thereby
maximizing overall profits.
• The  introduction  of  TIAO-PSO,  an  enhanced

Particle  Swarm  Optimization  algorithm,  designed  to
solve the intricate game model, facilitates a solution of
equilibrium under various iterative strategies.
• Comparative  experiments  are  conducted  to

demonstrate the effectiveness of the proposed incentive
mechanism and game-solving algorithm.

The  preliminary  results  of  this  work[14] have  been
published  at  the  IEEE  International  Conference  on
Web  Services  (ICWS).  The  current  study  has
undergone significant improvements and expansions in
several  crucial  aspects:  (1)  At  the  problem  modeling
stage,  we  extended  the  formal  definition  of  strategy,
designed a credible evaluation and admission rules for
ESPs  and  services,  thereby  reducing  the  impact  of
malicious  behaviors  on  the  service  market.  (2)  At  the
stage  of  constructing  the  multi-participant  stochastic
game  model,  we  bolstered  the  theoretical  integrity  by
providing additional proofs regarding the existence and
necessity  of  game  equilibrium.  (3)  At  the  stage  of
equilibrium  resolution,  we  augmented  the  model-
solving algorithm based on the method proposed in the
conference  paper,  further  accelerating  the  iterative
speed  through  an  adaptive  optimization  mechanism.
(4)  We included  an  evaluation  of  the  iterative  process
in our set of experimental metrics to better observe the
trends in game iteration changes. (5) All sections have
been  revised  and  expanded  with  additional  details  to
present a more comprehensive and refined discourse.

The remainder of this paper is structured as follows:
Section  2  summarizes  research  on  service  pricing
problems  in  different  scenarios.  Section  3  provides
preliminary  to  achieve  a  better  background
understanding.  In  Section  4,  We  defined  utility
functions for game participants and designed pre-game
ESP  and  service  credibility  assessment  and  admission
rules.  Section  5  formalizes  the  multi-edge  service

pricing  problem  based  on  stochastic  game  theory  and
designs a pricing incentive mechanism based on Pareto
improvement.  In  Section  6,  an  enhanced  PSO
algorithm  is  proposed  to  solve  and  analyze  the  game
model.  In  Section  7,  comparative  experiments  are
conducted to evaluate the effectiveness of the proposed
methods. Finally, in Section 8 we summarize the main
contributions  of  this  paper  and  outline  future  research
directions.

2　Related Work

In  recent  years,  with  the  robust  growth  of  the  service
market,  service  pricing  has  gradually  emerged  as  a
focal  point  in  research.  Studies  on  service  pricing
typically  fall  into  three  categories:  those  concerning
issues  within  cloud  computing  scenarios,  edge
computing scenarios, and other specialized contexts.

In  the  context  of  cloud  computing,  service  pricing
necessitates  service  providers  to  contemplate  various
facets,  including  costs,  competition,  diverse  user
requirements,  economic  advantages,  as  well  as  the
scalability  and  adaptability  of  services.  Paul  et  al.[15]

presented  an  analytical  framework  addressing  the
pricing  of  cloud  service  offerings,  considering  the
operational  costs  accrued  by  the  CSP  to  meet  a  given
demand, the quality of service (QoS) provided, and the
pricing  strategies  of  other  CSPs.  Chatterjee  et  al.[16]

introduced  a  dynamic  and  optimal  pricing  scheme
tailored  for  provisioning  Sensors-as-a-Service  within
sensor-cloud  infrastructure.  Nan  et  al.[17] delved  into
the  study  of  optimal  pricing  strategies  for  a  cloud
service provider in a scenario involving incumbent and
entrant  entities,  factoring  in  user  upgrade  costs  and
switching costs.  Additionally,  Wu et  al.[10] proposed a
novel  approach  rooted  in  value-based  pricing,  which
not only accounts for the service cost but also considers
the customer’s willingness to pay.

∞

In  the  context  of  edge  computing,  service  pricing
intricacies  are  intricately  linked  to  the  resource
constraints  of  edge  devices.  Li  et  al.[18] delved  into
service  selection  within  mobile  cloud  architecture,
employing M/M/  queue and M/M/1 queue models to
characterize PSP and ESP. Lyu et  al.[19] introduced an
innovative  dynamic  pricing  scheme  for  edge
computing  services  employing  a  two-layer
reinforcement  learning approach,  comprising a  pricing
layer  and  a  resource  allocation  layer.  Deng  et  al.[11]

used  a  two-stage  Steinberg  game  model,  devise  a
resource  bidding  strategy  at  the  edge  to  maximize
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value  for  all  involved  parties  in  the  edge  ecosystem.
Additionally,  Roostaei  et  al.[20] implemented  a  game-
based  distributed  scheme  to  jointly  and  dynamically
allocate  and  price  resources  essential  for  effective
offloading  in  a  two-tier  NOMA-based  mobile  system.

Other  service  pricing  scenarios  include  specific
offerings  such  as  block-chain  services,  mobile  data
services,  network  services,  and  composite  services,
among others.  Zhang et  al.[21] delved into the study of
mobile  users’ data  usage  behavior,  factoring  in  the
social  network  effect  and  congestion  effect,  thereby
exploring  pricing  strategies  for  wireless  providers  in
competitive  environments.  For  generalized  service
composition,  Wu  et  al.[22] proposed  Vickrey-Clarke-
Groves  auction-based  dynamic  pricing  strategies.
Concerning  network  service  pricing,  Ma[12] examines
usage-based pricing of service providers amidst market
competition,  focusing  on  generic  congestion-prone
network  services.  Additionally,  Asheralieva  et  al.[13]

modeled  resource  management  and  pricing  within  the
BaaS-MEC  system  through  a  stochastic  Stackelberg
game framework, accounting for multiple leaders with
incomplete  information  about  actions  of  leaders/BSs
and followers/peers. Additionally, tasks such as service
discovery and recommendations are often based on the
evaluation of service value[23, 24].

However,  prevailing  research  on  service  pricing
across diverse scenarios predominantly emphasizes the
interaction  between  service  providers  and  consumers.
Regrettably,  it  neglects  the  competitive  pricing
dynamics  among  ESPs  within  edge  scenarios,  thus
lacking  an  effective  mechanism  to  optimize  this
competitive relation.

3　Preliminary
Game theory is  a  mathematical  theory that  studies  the
behavioral  strategies  of  decision-makers  in  situations
of  mutual  influence  and  interdependence.  It  involves
researching  conflicts,  cooperation,  competition,  and
interactions  among  participants,  attempting  to  predict
the  actions  they  might  take  and  decisions  they  might
make. It aids in analyzing the optimal choices decision-
makers  might  make  in  different  scenarios  and
investigates  optimal  strategies  and potential  outcomes.
In this section, we’ll provide a brief formal explanation
of  two  game  concepts  relevant  to  this  paper  to  better
acquaint readers with subsequent content.

3.1　Stochastic game

A stochastic game, often referred to as a Markov game,

m

represents  a  form  of  dynamic  game.  Differing  from
strategic-form  game  and  evolutionary  game,  a
stochastic  game  integrates  the  variable  state  at  each
stage to delineate the ongoing scenario confronting all
participants.  Typically,  a  stochastic  game  MG
involving  participants  can  be  represented  as  a  five-
tuple.
 

MG = {H,S , {Ai}i∈m, {ri}i∈m,P} (1)

H S
Ai ri

P

where  represents  the  number  of  game  iterations, 
represents the set of states for all participants,  and 
represent  the  strategy sets  and reward function for  the
i-th  participant  respectively,  and  represents  for  the
set of transition probabilities.

S

In each stage of a stochastic game, the whole system
occupies  a  state  from  the  set  of  states.  Subsequently,
each  participant,  based  on  the  current  system  state,
selects an action from its feasible action space as their
strategy.  Once  all  participants  have  executed  their
actions, on one hand, depending on the current system
state  and  the  actions  taken  by  all  participants,  the
system  undergoes  a  probabilistic  transition  from  the
current state to another in the subsequent stage. On the
other  hand,  each  participant  receives  an  immediate
reward  as  a  consequence  of  their  actions  and  the
system’s  state  transition.  Specifically,  when  the  state
set  is a singleton, the random game degenerates into
a repeated standard game. Thus, from this perspective,
the  random  game  extends  the  standard  game  into
dynamic  multi-stage  and  dynamic  multi-scenario
settings.  When  the  set  of  participants  contains  only
one,  the  random  game  degenerates  into  a  standard
Markov  decision  process.  Consequently,  from  this
standpoint,  the  random  game  further  extends  the
Markov decision process from a single-agent system to
a  multi-agent  system.  These  two  analogies  will  better
facilitate  our  understanding  of  the  role  that  multi-
participant  stochastic  game will  play  in  the  context  of
multi-edge service pricing.

3.2　Pareto improvement and Pareto optimality

N
i S = {s1, s2, ..., sN} si

i
u(s)

A  Pareto  improvement  refers  to  finding  a  strategy
combination in a game where the profit for at least one
participant  increases  without  reducing  the  profits  for
any  other  participants.  Consider  a  multi-participant
game involving  participants,  where each participant
 has a strategy set . Each  represents

the strategy chosen by . Every participant has a utility
function ,  representing  their  utility  under  strategy

  Shengye Pang et al.:  Maximizing Overall Service Profit: Multi-Edge Service Pricing as a Stochastic Game Model 1875

 



s
s′

combination .  A  Pareto  improvement  occurs  if  there
exists another strategy combination :

i u′i (s′) > u_i(s)(1) Exist at least one participant , ;
j u′j(s′) ⩾ u_ j(s).(2) For the other participant , 

In  essence,  if  a  strategy  change  enables  at  least  one
participant to achieve a better utility without causing a
decrease  or  maintenance  of  utility  for  other
participants, it qualifies as a Pareto improvement.

s′When no other strategy combination  can enhance
the  utility  for  at  least  one  participant  without  harming
the  utility  of  other  participants,  the  scenario  reaches  a
Pareto optimality state. At this point, no room exists for
further  Pareto  improvements,  signifying  the  optimal
distribution  of  utility,  where  altering  strategies  cannot
benefit any participants without causing harm to others.

4　Problem Formulation

In  this  section,  we  initially  present  a  motivating
example  that  illustrates  the  challenges  of  service
pricing  games  encountered  by  various  edge  service
providers.  To  precisely  depict  this  dynamic,  we
proceed  to  model  the  participants  involved  in  this
game.

4.1　Motivating example

In Fig.  1,  we  endeavor  to  illustrate  the  complexity  of
the  multi-edge  service  pricing  issue  using  a  scenario
involving  three  regions,  three  edge  service  providers,
and  two  edge  service  consumers,  focusing  on  service

localization. We take the example of ESP1 situated in a
locality where the ESC demand is higher, consequently
incurring  escalated  maintenance  costs,  encompassing
labor,  utilities  (water  and  electricity),  and  rent.  Inter-
regional  service  invocations  introduce  distance-based
response  latency,  while  distinct  ESCs  exhibit  varying
sensitivity  levels  to  latency  across  different  business
functions.  For  instance,  if  ESP1 sets  higher  pricing
compared  to  ESP2,  ESC1,  which  develops  autopilot
business, would still choose es1 due to the nature of its
business being sensitive to latency and its proximity to
the deployment location of es1. However, ESC2, which
is  engaged  in  the  food  delivery  business,  chooses  es2
instead because it offers cost savings while minimizing
potential  business  losses.  While  uninterrupted  low
latency  is  critical  to  the  former,  the  latter  can  still
function effectively even with a slightly longer service
response. Benefiting from the pricing strategy of ESP1,
ESP2 has  gained  a  greater  volume  of  service
invocations.  Consequently,  ESP2 might  contemplate
raising  prices  to  augment  revenue,  while  striving  to
retain  customers  or  minimize  customer  attrition.
However,  this  decision  could  potentially  impact  the
choices  of  users  invoking  es2 in  Region  3,  thereby
influencing the pricing strategy of ESP3. ESCs need to
conduct  a  comprehensive  evaluation  of  costs  and
profits  associated  with  low-latency  services  at  higher
prices  to  make  informed  decisions.  In  essence,  each
pricing  adjustment  by  each  ESP  is  not  an  isolated

 

 
Fig. 1    Motivating scenario of homogeneous edge services provided by multi-ESPs.
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action; rather,  it  can have a ripple effect  on the global
service  pricing  and  invocation  selection  akin  to  the
butterfly  effect.  As  the  scale  of  ESPs  expands,  the
situation  becomes  even  more  intricate.  Additionally,
individual and global returns lack inherent correlation,
further complicating the dynamics of the game.

Game  theory  is  a  mathematical  theory  that  studies
decision-making  and  predicts  outcomes.  In  computer
science,  it  is  often  applied  to  design  algorithms  and
solve  complex  decision-making  problems[29-31].  To
accurately depict this game, it is essential to construct a
multi-participant stochastic game model for multi-edge
service pricing and analyze its evolutionary patterns. It
is  important  to  note  in  advance  that  we  assume  all
ESCs are  rational,  meaning they  opt  for  edge  services
that maximize their own profits.

4.2　Participant model

In this paper, the pricing game primarily occurs among
ESPs  that  offer  homogeneous  services,  while  the
invocation  choices  of  different  ESCs  constitute  the
utility  function  of  the  ESP.  Hence,  we  will  first
construct models for ESPs and ESCs.
4.2.1　Modeling ESP

ESP = {esp1,

esp2, ...,espn} n
PR = {pr1,pr2, ...,prn}

PIT = {pit1,pit2, ...,pitn}
Z = {z1,z2, ...,zn}

In our proposed scenario,  ESPs represent  edge service
providers  situated in  distinct  regions offering identical
functional  edge  services,  denoted  as 

,  where  signifies  the  number  of  ESPs’
regions.  Let  denote  the  pricing,

 represent  the  total  invocation
count  of  services  from each ESP,  and 
indicate  the  location  vector  of  each  region.  The  ESP
model can be formulated as follows.

ESP_R = {esp_r1,

esp_r2, ...,esp_rn} esp_rn

n
espm

esp_rm =
∑n

i=1 esc_rmi esp_rmi

espm i esp_rmi

The  primary  revenue  source  for  ESPs  comes  from
fees  paid  by  ESCs,  denoted  as 

,  where  represents  the  revenue
of  the  ESP  located  in  region .  The  total  revenue
obtained  by  from  all  regions  can  be  defined  as

,  where  signifies  the
revenue  obtained  by  from  region .  The 
can be calculated as follows:
 

esp_rmi = pitmi ∗prm (2)

and
 

pitmi =
∑

Countesci_m (3)

Countesci_m

i espm

where  represents  the  number  of  times  the
ESC  from  region  invokes  service  from .
Therefore, ESP revenue can be finally expressed as 

ESP_R =
{ n∑

i=1

(∑
Countesci_1

)
∗pr1,

n∑
i=1

(∑
Countesci_2

)
∗pr2, ...,

n∑
i=1

(∑
Countesci_n

)
∗prn

} (4)

ESP_C

While the cost of the ESP could be influenced by the
frequency  of  service  invocations  in  practice,  it  isn’t  a
primary  factor  in  our  model.  As  such,  the  daily
maintenance cost of the ESP is regarded as a constant,
predominantly determined by labor, utilities (water and
electricity), and rental payments, denoted as .
 

ESP_C = {esp_c1,esp_c2, ...,esp_cn} (5)
 

esp_c1 = lab1+uti1+ ren1 ∝ z1 (6)

ESP_P
Define the difference between ESP revenue and ESP

cost in a period as ESP profit, donated as .
 

ESP_P = ESP_R−ESP_C (7)

4.2.2　Modeling ESC

ESC = {esc1,

esc2, ...,escn} escn

n

escn = {escn1,escn2, ...,

escnm}

In  the  homogeneous  service  pricing  game scenario,  to
streamline  the  model,  we  consider  each  ESC  as
exclusively  engaging  with  a  single  edge  service,
simplifying  the  interactions.  When  an  ESC  utilizes
multiple  services,  we  handle  it  as  multiple  ESCs  for
calculations.  This  approach  is  solely  aimed  at
simplifying the problem’s complexity and will not alter
the  final  result.  We  denote  ESC  as 

, with  representing the set of ESCs in
region . The influence of distance on service response
time is  more  prominent  across  different  regions  rather
than  within  the  same  region.  This  is  attributed  to
network latency,  a  key contributor  to  service  response
delays,  which  escalates  with  greater  distances.  In  this
paper,  service  response  time  is  assumed  to  be
consistent  within  the  same  region,  whereas  across
regions,  it  is  calculated  based  on  the  respective
coordinates  of  each  region.  The  ESCs  within  a  region
can  be  represented  as  a  set: 

,  each  sharing  the  identical  location  vector
specific  to  their  region.  During  the  service  invocation
process,  ESCs  choose  the  most  suitable  edge  service
provider  considering  factors  like  service  pricing,  the
geographical  proximity  of  the  provider,  and  the
demand  for  high-quality  services  in  a  particular
business domain.

In  general,  the  delay  in  service  response  tends  to
increase  with  the  distance  between  ESC  and  ESP,
influenced by network transmission characteristics.  As
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the  physical  distance  between  ESP  and  ESC  grows,
data  transmission  encounters  multiple  routing  devices,
elevating the likelihood of network congestion in real-
world  network  settings.  Notably,  network  conditions
widely  vary  across  different  geographical  regions.  In
our  experimental  segment,  we  extensively  tested
services  across  30  regions,  deploying  test  nodes  and
collecting data to derive the probability distribution of
inter-regional  latency.  When  specific  datasets  were
unavailable,  we  introduced  a  quadratic  equation  to
approximate  the  link  between  invocation  distance  and
response  latency.  This  equation  accounts  for
transmission  and  forwarding  delays,  regional
disparities,  and  potential  network  congestion.  The
relationship  between  service  response  latency  and
distance can be expressed as a function:
 

RL = λ1X2+λ2X+λ3 (8)

X Zn

espn escn λ1 λ2 λ3

where  RL  represents  the  response  latency  due  to
distance,  represents the distance calculated by  of

 and ,  The  parameters , ,  and  are  set
based  on  the  network  conditions.  These  factors  are
taken into account to establish the ESC model.

To  enhance  the  credibility  of  our  proposed  method,
in the experimental section of this paper,  we deployed
the  test  service  across  multiple  nodes  spanning  30
regions. Extensive testing was conducted to derive the
probability  distribution  of  service  response  delays
among these regions.

escnm

espi

The  ESC  cost  includes  both  the  service  invocation
payment  and  any  potential  business  losses  resulting
from  response  latency.  Assuming  that  selects

 as the edge service, the cost of service invocation
can be formulated as follows:
 

escnm_c = escnm_pay+ escnm_lose (9)
 

escnm_pay = piti_nm ∗pri (10)

and
 

escnm_loss = α∗RD (11)

piti_nm escnm

espi α

ESP_C escnm

escnm_r

where  represents  the  number  of  times 
invokes  the  service  from ,  and  the  parameter  is
used to adjust the impact of service response latency on
business losses. Similar to , the revenue of 
is treated as a constant denoted by .

escnm

escnm_p

Hence,  define  the  difference  between  the  revenue
and cost of  in a given period as profit, donated as

.

 

escnm_p = escnm_r− escnm_c (12)

4.2.3　Modeling pricing strategy

ESPm

stratm {prm,prm′}
prm ESPm

prm′ ESPm

In  the  current  scenario  of  multi-edge  service  pricing,
service  providers  initiate  changes  in  pricing  strategies
that prompt updates in the market state. For , the
strategy  can be represented as ,  where

 represents  the  current  price  of  for  services,
and  represents  the  adjusted  price  after 
modifies  its  service  strategy.  Consequently,  ESCs will
reassess  based  on  the  strategies  of  ESPs,  selecting  the
ESP that maximizes their own profits, denoted as
 

espm = argmax(escnm_p) (13)

distr(ESP) = {c1,c2, ...,cn}

cn

ESPn

argmax(escnm_p)

Therefore,  represents  the
distribution of service invocations from different ESPs,
where  signifies the count of ESCs invoking services
provided  by .  This  distribution  stems  from  the
statistics  derived  from .  The  eventual
profit  generated  from  the  strategy  alteration  of  ESPs
can be expressed as
 

ESP_Pm = distr(ESP)m ∗ stratm (14)

state

The  analysis  of  multi-edge  service  pricing  problem
fundamentally  involves  identifying  strategies  that  can
lead  to  a  particular ,  often  a  strategy  associated
with  some  form  of  equilibrium.  Therefore,  the
strategies to be solved can be represented as
 

strat = state(Strat) (15)

where  state(Strat)  represents  the  strategy  that  enables
the service transaction market to reach a specific state.

Figure  2 illustrates  three  models:  ESP,  ESC,  and
strategy,  along  with  their  fundamental  elements  and
interactions.  Initially,  ESP  initiates  pricing  strategy
adjustments  in  response  to  the  current  state  of  the
transaction  market.  Subsequently,  this  adjustment
fundamentally  alters  the  service  unit  price,  thereby
affecting  ESP’s  revenue  and  ESC’s  cost.  Following
this,  ESC, driven by maximizing profit,  adapts service
 

 
Fig. 2    Interaction  between  ESP  and  ESC  through  pricing
strategy.
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ESC_R

ESC_C

ESP_P

selections.  This  adjustment  influences  through
changes in service quality of service (QoS) and affects

 through  alterations  in  service  unit  price.  This
change ultimately reflects in the revenue of the relevant
ESPs,  culminating  in  an  iterative  process  to  arrive  at
the final .

4.3　Credibility assessment and admission rule

To facilitate  the  normal  conduct  of  multi-edge  service
pricing  games  within  the  market  environment,  it  is
essential to conduct credibility assessment of ESPs and
services  based  on  pricing  behavior  and  service
operational  performance.  By  designing  admission
rules,  we  aim  to  eliminate  potential  factors  that  could
adversely interfere with pricing games.

Cs ∈ [0,1]

q
wk k

∆t t

C

In  service  pricing  games,  besides  the  factors  related
to  distance,  ESCs  typically  consider  the  service  level
agreement  (SLA)  when  choosing  a  service.  The  SLA
defines  the  service  provider’s  expected  service  level,
performance  metrics,  and  quality  standards,  often
encompassing  specific  indicators  like  service
availability,  response  times,  and  fault  handling.
Consequently,  the  credibility  of  a  service  is  primarily
assessed  by  observing  whether  its  actual  execution
aligns  with  the  commitments  outlined  in  its  claimed
SLA.  Let  represent  the  level  of  credibility
we have in a  service.  Specifically,  we assume that  the
QoS of  a  service  is  characterized  by  metrics,  where

 represents  the  weight  of  the th  metric.  After  a
period of time , and assuming that it is the th period
since  the  beginning,  observing  whether  the  metrics  in
QoS meet the requirements specified in the SLA. Let 
denote  the  set  of  metrics  that  are  satisfied,  and  we
calculate  the  trustworthiness  of  the  service  for  this
period as follows:
 

Cs,t =

∑
k∈T

wk∑q

k=1
wk

(16)

t
Then the overall trustworthiness that aggregates trust

values of  periods is defined as
 

Cs =

∑t

k=1
wtiTs,k∑t

k=1
wtk

(17)

wtk

wtk

where  denotes  the  weight  of  the k-th  time  period.
Since time-based attenuation is a fundamental property
that  trust  should  meet,  can  be  computed  with  a
time-attenuation function:

 

wtk =
1− (1−λ)k∑k

v=1

[
1− (1−λ)v] (18)

λ ∈ [0,1]where  is an adjustable positive constant in the
system, and can be tuned accordingly.

Abnormal behaviors of an ESP, such as engaging in
malicious  pricing  for  unfair  competition  or  falsely
advertising SLAs for services, can significantly impact
the  pricing  game  process.  Therefore,  conducting
trustworthy assessments  of  ESPs is  crucial.  Generally,
the  credibility  of  an  ESP  can  be  evaluated  from  two
perspectives:  malicious  behavior  and the services  they
offer.

c

C c

ni

To  a  large  extent,  the  reputation  of  an  ESP  is
reflected in the level of credibility in its services. Let 
represent  the total  number of  services provided by the
ESP,  and  be  the  collection  among  these  services
that  are  deemed trustworthy.  The number  of  times the
i-th  service  is  invoked  is  denoted  as .  The  overall
credibility  of  the  ESP’s  services  is  calculated  as
follows.
 

a(t) =

1− t
t0

if t ⩽ t0,

0 if x > t0
(19)

 

Ce =max{0,Ce,s−
∑

i∈MB

a(ti)ptype of i} (20)

Ce,s

ptype of i

ptype of i

where MB represents the list of harmful behaviors that
ESP may exhibit,  represents the initial  trust  value
of ESP and  denotes the severity of punishment
for  a  specific  type  of  malicious  behavior.  It  is
important  to  note  that  the  specific  design  of  MB  and

 is  beyond the scope of  this  study and will  not
be  further  discussed.  Additionally,  in  subsequent
modeling of game problems, an ESP offering multiple
services  will  be  regarded  as  multiple  distinct  ESPs  to
reduce model complexity.

εs/εe

In the multi-edge service transaction market, we only
permit  services  and  ESPs  with  a  credit  score  higher
than  the  specified  threshold  to  participate  in  the
pricing  game.  The  ineligibility  of  a  particular  service
will  not  render  its  affiliated  ESP  ineligible;  however,
the ineligibility of an ESP will result in the disablement
of all associated services.

4.4　Architecture

In  this  paper,  we  introduce  an  incentive-driven
architecture  for  service  pricing  game  and  resolution,
aimed  at  addressing  the  multi-edge  service  pricing
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problem, showcasing a profit optimization scheme.
Initially,  we  illustrate  the  service  pricing  scenario,

delineating  the  utility  functions  of  key  participants
ESP  and  ESC,  and  describe  the  interaction  between
ESP  and  ESC  by  defining  pricing  strategy.
Subsequently,  we  formulate  the  multi-edge  service
pricing problem as a multi-participant stochastic game
model.  We then devise  an incentive  mechanism based
on  Pareto  improvement,  fostering  the  evolution  of  the
game  towards  a  Pareto-optimal  state.  Finally,  an
enhancement  to  the  PSO  algorithm  is  proposed  for
equilibrium  resolution  within  the  game  model.  This
architectural  framework  provides  a  comprehensive
strategy  to  address  the  complex  issue  of  multi-edge
service  pricing.  By  integrating  closed-loop  game-
theoretic  models  and  solution  approach,  the  aim  is  to
optimize  profits  while  ensuring  equitable  participation
among stakeholders, as depicted in Fig. 3.

5　Service  Pricing  as  an  Incentive-Driven
Multi-Participant Stochastic Game

s
S

Hence, based on the motivating example presented, the
multi-edge  service  pricing  problem  proposed  in  this
paper can be modeled as a multi-participant stochastic
game,  as  shown  in Fig.  3 (Step  2).  Among  them,
multiple  edge  service  providers  of  homogeneous
services  can  be  viewed  as  multiple  participants  in  the
game. The current pricing strategy can be regarded as a
state ,  while  all  other  possible  pricing constitutes  the
state space . The adjustment of service prices by ESP

A
r

based on pricing strategy forms the action space , and
the reward  is the profit gained by ESP after adjusting
the  prices  from  ESC  in  Fig.  4.  An  essential  aspect  of
this  model  lies  in  the  assumption  that  each  ESP
operates  as  a  perfectly  rational  entity,  adjusting  its
pricing strategy according to the prevailing game state
in  order  to  maximize  its  utility  function.  Moreover,
ESCs  contribute  to  this  process  by  offering
environmental  feedback,  making  rational  decisions
regarding  service  invocation.  This  iterative  process
persists  until  either  convergence  is  achieved  or  the
maximum number of iterations is surpassed.

espn

The utility  function of  the game is  equivalent  to  the
profit of the ESP. For a given , the optimal strategy
satisfies
 

prn = argmax

 n∑
i=1

(∑
Countesci_n

)
∗prn− esp_cn

 ,
subject to Countesci_n ∈

[
0,Countesci

]
,

prn ∈
[
prmin,prmax

]
,

esp_cn ∈
[
0,esp_cmax

]
(21)

Countesci

i prmin prmax

where  represents the total number of ESCs in
region , while  and  represent the reasonable
lower and upper limits of the edge service price.

In  this  game,  each  participant  strives  to  make
decisions  that  will  enhance  their  interests.  If  each
participant,  given  the  decisions  made  by  other
participants,  has  maximized  their  interests,  the  game
will  reach  a  Nash  equilibrium.  Assuming  that

 

 
Fig. 3    Incentive-driven architecture for service pricing game and resolution.
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PR = {pr1, pr2, . . . , prn}
prn

espn

 is  the  strategy  combination
adopted by all ESPs in the game, where  represents
the service pricing of .

PR∗

prk espk

Lemma  1　  is  a  sufficient  and  necessary
condition  for  the  equilibrium  solution  of  the  game  if
and only if, for strategy  of ,
 

ESP_Pk(PR∗⊙prk) ⩽ ESP_Pk(PR∗) (22)

PR∗⊙prk ESPk

PR∗
where  represents  that  only  changes  its
strategy  in ,  while  the  strategies  of  other  ESPs
remain unchanged.

s ∈ S
i ∈ N pri ∈ PRi

Proof Given  a  mixed  strategy  state ,  for  each
, , define

 

φi,pri(s) =max{0,ESP_Pi(s⊙pri)−ESP_Pi(s)} (23)

espi

s′ s
f (s) = s′

which  indicates  the  intention  of  to  replace  the
strategy.  The  mapping  function  from  to  can  be
defined as , where
 

s′i (pri) =
si
(
pri

)
+φi,pri (s)

1+
∑

pr′i∈PRi
φi,pri (s)

, (24)

φi,pri(s) S

s
f f (s) = s′

s
φ

s f
s f

pr′i
s ESP_Pi,a′i

(s) < ESP_Pi(s)
φ φi,a′i

(s) = 0
s f

Because  each  is  continuous  and  is
convex, the inference of Brouwer’s fixed point theorem
indicates that there must exist at least one fixed point 
in ,  for  which  the  equation  holds.
Specifically,  if  the  state  is  a  Nash  equilibrium,  then
all  would be equal to zero, and it can be proven that

 is a fixed point of the function . Conversely, for any
fixed point  of the function , since the expectation is
linear, there must exist at least one strategy  in state

 that  satisfies .  According  to
the definition of , it can be concluded that .
Since  is a fixed point of the function , it follows that

s′i (pr′i ) = si(pr′i ).

i pr′i ∈ PRi φi,pr′i
(s) = 0

s

Based on reference Eq. (25), it can be concluded that
for  each  and , .  That  means  no
ESP can improve its expected utility by switching to a
pure  strategy.  Therefore,  according  to  Lemma  1,  the
state  is a Nash equilibrium. ■

prisoner’s dilemma

In  non-cooperative  multi-participant  stochastic
games,  each  participant  typically  adopts  a  self-centric
strategy, aiming to maximize their individual interests,
irrespective  of  others’ strategies.  The  resulting  Nash
equilibria  are  commonly  embraced  by  all  participants,
as  no  one  finds  it  advantageous  to  alter  their  strategy.
While these equilibria embody a consensus reached by
all  participants  within  the  prevailing  circumstances,
they  do  not  consistently  yield  optimal  profits  for  the
entire  game.  Indeed,  Nash  equilibria  frequently  yield
diminished profits  for certain participants or the entire
system. This limitation stems from their focus solely on
locally  optimal  strategies,  disregarding  the  potential
gains  from  global  collaboration.  Consequently,  the
overarching  benefits  of  cooperation  might  be
undervalued. Using the frequently cited example of the

  in  game  theory  research,  two
suspects,  after committing a crime, are arrested by the
police  and  placed  in  separate  rooms  for  interrogation.
The  police,  lacking  concrete  evidence,  are  aware  of
both individuals’ guilt. Each suspect is informed of the
following  consequences:  if  both  deny  involvement,
each  will  be  sentenced  to  one  year  in  prison;  if  both
confess,  they will  each receive an eight-year sentence;
if  one  confesses  while  the  other  denies  involvement,
the one who confesses will  be set  free while the other
will  receive  a  ten-year  sentence.  Therefore,  each

 

 
Fig. 4    Multi-edge service pricing as an incentive-driven multi-participant stochastic game.
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A
B

prisoner  faces  the  choice  of  confessing  or  denying
involvement. However, irrespective of the accomplice’s
decision,  the  optimal  choice  for  each  prisoner  is  to
confess: if the accomplice denies involvement and one
confesses,  they  are  set  free,  but  if  they  deny
involvement, they receive a one-year sentence, making
confession preferable;  if  the accomplice confesses and
one  also  confesses,  they  both  receive  an  eight-year
sentence, which is better than the ten-year sentence for
denial.  The  payoff  matrix  for  Prisoner  and  Prisoner

 is  shown  in Table  1.  Consequently,  both  suspects
choose  to  confess,  resulting  in  an  eight-year  sentence
each. Opting to deny involvement would lead to a one-
year  sentence  for  both,  clearly  indicating  the  superior
outcome.

{a1,a2, ...,an}

j
a′j ∈ A j

Pareto  improvement  refers  to  finding a  strategy in  a
game  where  at  least  one  participant’s  profit  increases
without  reducing  any  other  participant’s  profit.  In  a
game,  a  strategy  combination  is
considered  a  Pareto  improvement  if  and  only  if  there
exists  a  player ,  for  whom  a  particular  alternative
strategy  is available, satisfying
 

u j(a′j,a¬ j) ⩾ u j(a j,a¬ j) (25)

a¬ j

j a j

j
a′j

where  represents  the  strategy  combination  of  all
participants  except ,  and  is  the  strategy  currently
chosen  by  participant .  This  inequality  indicates  that
the participant’s profit after changing the strategy to 
is greater than or equal to their profit under the current
strategy.

Hence,  this  paper  introduces  an  incentive-driven
pricing  mechanism  rooted  in  Pareto  improvement,
enabling  the  game  to  achieve  Pareto  optimality,
maximizing  overall  profits  optimally,  as  depicted  in
Fig. 3 (Step 3). Pareto improvement denotes a scenario
where  game  participants  modify  their  strategies,
leading  to  at  least  one  participant’s  profit  increment
without  compromising others’ interests.  Consequently,
the ensuing constraint can be appended to Eq. (21):
 

prn = argmax

 n∑
i=1

(∑
Countesci_n

)
∗prn− esp_cn

 ,
Subject to esp_r¬n− esp_r′¬n ⩾ 0

(26)

esp_r
′
¬n esp_r¬n

ESPn

where  and  represent the profit of other
ESPs before and after the price change of .

Lemma  2　 In  a  multi-participant  stochastic  game
under  the  mixed  strategy,  there  exists  at  least  one
Pareto Optimality solution.

F(x) = ( f1(x), f2(x), ..., fk(x)) x
fi(x)

k

Proof    Given  a  multi-objective  optimization
problem: ,  where  is  the
decision  vector,  is  the  function  of  the i-th
optimization  objective,  and  is  the  number  of
optimization objectives.

{a1,a2, ...,an}
xa1 xa2 xa2 xa3

xa1 xan

Assuming that there are no non-dominated solutions,
all  solutions  are  dominated  by  other  solutions.  This
means that we can find a set of  such that

 dominates  and  dominates .  However,
this  means  that  dominates ,  which  is
contradictory  to  the  nature  of  multi-objective
optimization  problems.  Because  in  multi-objective
optimization  problems,  there  cannot  be  a  solution  that
makes  all  objective  functions  get  the  minimum  or
maximum.  Therefore,  a  Pareto  optimal  solution  must
exist. ■

prnLemma 3　If there is no solution for a  in Eq. (26),
then the multi-edge service pricing game is in a Pareto-
optimal state.

prn

Proof    In game theory, a Pareto-optimal state refers
to  a  situation  where  there  is  no  improvement  possible
for  at  least  one  individual  without  causing  harm  to
others. To prove that if there is no solution for a  in
Eq. (26), then the multi-edge service pricing game is in
a  Pareto-optimal  state,  we  can  utilize  proof  by
contradiction.

prn

prn

From  Eq.  (26),  it  can  be  concluded  that  can
improve  the  profit  of  at  least  one  ESP  while  not
decreasing the profits of other ESPs. Hence,  being
a  solution  to  the  Eq.  (26)  is  equivalent  to  being  an
effective  Pareto  improvement.  Assuming  there  is  no
Pareto-improving  solution  at  a  given  state,  yet  the
global state is not Pareto-optimal, meaning there exists
an  improvement  benefiting  at  least  one  individual
without harming others. According to the definition of
Pareto  optimality,  this  contradicts  the  assumption  that
there are no Pareto improving solutions. ■
6　Enhanced  Heuristic  Algorithm  for

Stochastic Game Solving

The multi-participant stochastic game model described
above  poses  a  complex  multi-objective  optimization
challenge  due  to  its  non-differentiable  optimization
function.  Consequently,  closed-form  equilibrium

 

Table 1    Prisoner’s dilemma payoff matrix.

Prisoner A
Prisoner B

Confess Deny
Confess (−8, −8) (0, −10)

Deny (−10, 0) (−1, −1)

    1882 Tsinghua Science and Technology, December 2024, 29(6): 1872−1889

 



solutions  are  unattainable,  rendering  the  use  of
analytical  methods  challenging  for  accurate  solutions.
The  Nash  Q-learning  algorithm,  introduced  by  Hu
et al.[25], offered theoretical promise for addressing the
outlined  game  problems  by  extending  the  Q-learning
algorithm  to  non-cooperative  multi-agent  domains.  In
the  context  of  causal  inference  and  probabilistic
graphical  models,  some  research  attempts  to  utilize
probabilistic graphical models to model the interactions
and  influences  within  game  theory[26].  However,  its
computational  demands  present  a  significant  obstacle,
especially  in  large-scale  agent  scenarios  akin  to  those
discussed  in  our  study.  In  this  paper,  we  introduce  an
enhanced  algorithm  called  three-stage  inertia  weight
adaptive  optimization  PSO  (TIAO-PSO),  which
capitalizes on a staged adaptive optimization technique
employing  an  inertia  factor.  Through  iterative  particle
swarm  optimization,  our  algorithm  effectively
converges towards game equilibrium solutions.

The  classical  PSO algorithm draws  inspiration  from
the  stochastic  foraging  behavior  of  birds[27].  In  this
algorithm,  each  particle  embodies  a  potential  solution
to  the  problem,  characterized  by  its  position,  velocity,
and  corresponding  fitness  value,  serving  as  a  quality
metric.  Navigating  within  the  feasible  solution  space,
each  particle’s  movement —both  direction  and
distance—is dictated by its velocity, influenced by both
individual  experience  and  collective  swarm  behavior.
Post position update, the fitness value is computed, and
individual  as  well  as  global  extremes  are  tracked  and
recorded.  With  each iteration,  we update  the  positions
of both individual  and global  best  points,  persisting in
iterations  until  an  optimal  solution  is  reached.  In  the
process of pricing game of ESPs, at any given moment,
the  pricing  strategies  of  all  ESPs  correspond  to  the
positions  of  all  particles  in  space,  and  the  particle
search  process  corresponds  to  the  iterative  process  of
service  pricing.  Therefore,  the  PSO  algorithm  is
suitable for solving the equilibrium state of the game.

n
h

X = [x1, x2, ..., xh]

xi = [xi1, xi2, ..., xin]

xi

The quantity  of ESP represents the dimensionality
of the search space in the algorithm, where  particles
constitute  a  particle  swarm  denoted  as

.  The i-th  particle’s  position  in  the n-
dimensional  space  is  denoted  by  a  corresponding n-
dimensional  vector ,  which  also
represents a possible solution to the game. The fitness
value  of  each  particle  can  be  calculated  using  the
defined objective function. The i-th particle’s velocity,

vi = [vi1,vi2, ...,vin]

exi = [exi1,

exi2, ...,exin] exg = [exg1,exg2, ...,exgn]

denoted by , represents its respective
direction  and  magnitude.  Individual  and  population
extremum  are  respectively  denoted  as 

 and .
During each iteration, the particle updates its position

and  velocity  based  on  both  individual  and  global
extremum, which can be calculated as
 

vk+1
in = ωvk

in+µ1r1(exk
in− xk

in)+µ2r2(exk
gn− xk

in) (27)
 

xk+1
in = xk

in+ vk
in (28)

ω k
vin xin

exin

exgn µ1 µ2

r1,r2 ∈ [0,1]

[−Xmax,Xmax] [−vmax,vmax]

where  represents the inertia weight,  represents the
current number of iterations,  and  represents the
velocity  component  and  position  component,
respectively.  represents  the  individual  extremum,
and  represents the global extremum.  and  are
acceleration  constants,  are  random
number. To regulate the search path of the particle, its
velocity  and  position  are  limited  to  the  interval

 and . The fitness function for
each particle is defined as
 

f (Ẍ) =
n∑

i=1

max{ESP_Pi(Ẋ⊙pri)−ESP_Pi(Ẋ),0} (29)

f (Ẍ) = 0
Ẋ

According to the game we construct,  if and
only if  is a Pareto optimality solution.

ω

ω

ω

ω

The  PSO  algorithm  is  greatly  influenced  by  the
parameter , which significantly impacts the precision
and  convergence  speed  of  iterations.  Specifically,
higher  values  of  often  diminish  the  accuracy  and
convergence  speed  of  the  search  process.  Conversely,
lower values of  might cause the search to get trapped
in  local  optima,  resulting  in “immaturity”.  The  inertia
weight linearly decreasing particle swarm optimization
(ILPSO)  algorithm  has  shown  promising  performance
in  addressing  this  issue[28].  However,  a  linearly
decreasing  setting  for  might  not  be  optimal  for  our
complex  game  model  construction  as  it  could
potentially slow down the iterative convergence speed.

To tackle this challenge, this study introduces TIAO-
PSO  algorithm,  building  upon  the  foundations  of  the
ILPSO  algorithm,  as  illustrated  in Fig.  5.  Tailoring
specific  strategies  to  adjust  the  inertia  factor  in
response  to  the  distinct  characteristics  of  the  three
stages during the iterative process of the model, we aim
to achieve efficient and precise convergence.

ω

ω

Across  three  stages,  our  approach  optimizes  the 
parameter  to  refine  the  particle  swarm  optimization
process.  In  Stage  1,  a  higher  initial -value  promotes
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ω

ω

ω

ω

an  extensive  global  search  among  particles,  gradually
decreasing  with  each  iteration  to  encourage  broader
exploration.  Transitioning  to  Stage  2,  our  strategy
incorporates  an  adaptive  selection  mechanism
informed  by  particle  fitness  feedback.  Notably,  if  a
particle  demonstrates  improved  fitness  in  the  prior
iteration,  we  augment  its -value  for  the  subsequent
iteration.  This  fine-tuning  mechanism  amplifies
individual  particle  fitness,  enhancing  the  overall
effectiveness  of  the  search  process.  Finally,  Stage  3
employs  a  lower -value  to  facilitate  a  more  precise
local  search,  expediting  convergence.  This  strategic
reduction  in  enhances  the  swarm’s  focus  on
exploiting  local  areas,  accelerating  convergence
without compromising accuracy.

ωTherefore, the weight factor  can be calculated as
 

ω =


η∗ωmax−

η∗ k ∗ (ωmax−ωmin)
kmax

, (ω2,ω1);(
1− k

kmax

)
∗ωmax+

k
kmax

∗ωmin, k ∈ else
(30)

 

η =
Ave f (x)

fi(x)
(31)

η

ω2 ω1

ω

where  means  that  well-behaved  particles  will  have
higher inertia in the next iteration,  and  represent
the baseline value of  at the beginning and end of the
second  stage.  Algorithm  1  describes  the  solution
process of the edge service pricing game based on the
proposed algorithm.

7　Experimental Result

In this section, we introduce a dataset constructed using
practical  test  and  simulation  data,  accompanied  by
corresponding  parameter  configurations.  Through  this
dataset,  we  scrutinize  the  impact  of  implementing  an

incentive mechanism on individual as well as collective
profits  within  the  pricing  game.  Furthermore,  we
conduct a comparative analysis among the TIAO-PSO
algorithm,  classic  PSO,  and  ILPSO  algorithms,
showcasing  the  superior  performance  of  the  proposed
algorithm in addressing the edge service pricing game
problem.

7.1　Experimental setting

To substantiate the practical  viability of  our approach,
we have  collected  actual  statistical  data  encompassing
utility  costs,  IT  industry  population  metrics,  and
geographic coordinates for 30 regions. Complementing

 

 
Fig. 5    Three-stage inertia weight adaptive optimization PSO.

 

Algorithm 1　Game equilibrium searching algorithm
n,nm,Zn,esp_cn,α∗RD,ω, Iterationk n nmRequire: , where , 

n　denotes the number of regions and ESCs in region ,
　respectively
Ensure: Pricing strategies at the Pareto Optimality point

Xi, xim ∈ [prmin,prmax]　Initial each particle vector 
　while Pareto Optimality not found do
　　Calculate the fitness value of each particle according to
　　Eq. (29);

exi exg　　Update , ;
Iterationk stages　　if  in  then

exi exg　　　Update  and 

vk
in xk

in stages　　　Update , according to Eq. (33) in 
　　end if

Xi　　Update particle vector 
Iterationk Iterationk　　 = +1

Iterationk = Itemax　　if  then
　　　break while
　　end if
　end while

Xi　return 
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this,  we  positioned  multiple  test  nodes  across  these
regions,  facilitating  real-world  tests.  This  deployment
allowed  us  to  acquire  the  latency  probability
distribution  for  inter-regional  service  invocations.
From the perspective of scale, the dataset contains data
from 30 ESPs and 2250 ESCs, along with 36 000 cross-
region  invocation  test  records. Figure  6 illustrates  the
relationship between service invocation popularity and
cost  across  ten  typical  regions,  indicating  a
predominantly  positive  correlation  between  the  two
factors.

ω

Itemax µ

Itemax

ω

Our  algorithm’s  performance  is  managed  through
various  parameters,  encompassing  the  edge  service
pricing  interval  (strategy  space),  swarm  size,  the
permissible range for inertia factor  values, maximum
iteration  count ,  and  acceleration  constants .
Augmenting  the  particle  size  enhances  global  search
capabilities  while  maintaining  manageable
computational  overheads.  Properly  configuring  the
strategy  space  prevents  model  entrapment  in  non-
converging  states.  Setting  a  maximum  iteration  count

 prevents  unnecessary  resource  expenditure  by
ensuring  algorithm  termination.  The  acceleration
constants  optimize  particle  search  directions,  whereas
the  value  significantly  influences  our  approach’s
overall  performance.  Refer  to Table  2 for  a  detailed
presentation  of  the  pivotal  parameters  utilized  in  our
experiments.

7.2　Profit analysis

As  a  case  study, Fig.  7 delineates  the  impact  of
incentives on overall  profit.  Given the non-uniqueness
of equilibrium states in game theory[29−32], multiple sets
of  repeated  experiments  were  conducted.  The  lines  in
the figure represent the average overall profit, while the
shaded  region  indicates  the  profit  fluctuation.  Across
varying ESP scales, ranging from 5 to 25, the proposed

incentive  mechanism  consistently  generates  higher
overall  profits  compared  to  unregulated  pricing.  This
outcome strongly substantiates the effectiveness of the
proposed incentive  mechanism in  achieving optimized
profits.

Furthermore,  in Table  3,  we  calculate  the  Anarchist
Losses  of  the  pricing  game  without  incentives.  These
losses  signify  potential  adverse  consequences  or
disadvantages  stemming  from  an  unregulated  pricing
game.  Due  to  the  non-uniqueness  of  solutions  in  both
Pareto optimality and Nash equilibrium, extreme cases
exist  where  the  Nash  equilibrium  coincides  with  the
Pareto  optimality  solution.  Consequently,  the  data  in
the  table  reflects  a  unstable  loss,  but  typically  leaning
towards positive values.

 

 
Fig. 6    Service invocation popularity and cost distribution.

 

Table 2    Parameter setting.
Parameter Value

Edge service ceiling price 0.01/100 invocation
Edge service floor price 0.1/100 invocation

Swarm size [50 300]
ωmaxMaximum of inertia factor 0.8
ωminMinimum of inertia factor 0.2

ItemaxMaximum iteration num. 1000
µ1 µ2Acceleration constants , random(1, 2)
αLatency impact factor 10−4

esp_cmaxMaximum cost of ESP 50
vmaxMaximum particle velocity 0.003

 

 
Fig. 7    Comparison  of  overall  profits  with  different  ESP
scales.

 

Table 3    Anarchist losses of different ESP scales.
Number of ESPs 5 10 15 20 25

Profits without incentive 138 319 410 628 731
Profits with incentive 247 485 682 997 1146

Anarchist loss 0.400 0.342 0.398 0.370 0.362
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Figure  8 presents  a  comparative  analysis  of
individual  average  profits  post  multiple  convergence
rounds  with  an  ESP  scale  of  10.  The  visual
representation  distinctly  illustrates  the  dynamic  shifts
in  profits  among  the  participating  ESPs.  Notably,  the
profits of eight ESPs showcased an evident surge under
the  new  game  equilibrium,  portraying  substantial
enhancement.  Conversely,  a  marginal  decrease  in
profits was observed among only two ESPs within this
equilibrium  state.  This  indicates  that  incentive
mechanisms  generally  ensure  an  increase  in  overall
profits and the majority of individual profits rather than
all individual profits. In the current experimental setup,
the rate of increase in individual profits stands at 80%.
Addressing  the  fairness  aspect,  a  potential  avenue  lies
in  designing  a  compensatory  mechanism  to  offset  the
losses  incurred  by  these  two  ESPs.  However,  it  is
pertinent  to  note  that  this  discussion  of  compensation
mechanisms remains beyond the scope of this paper.

7.3　Iteration evaluation

To  monitor  the  evolving  trends  in  the  iterative

AI = {ai1,ai2, ...,aik}

RI = {ri1, ri2, ..., rik}

aik rik

equilibrium  of  pricing  games,  we  have  introduced  an
iterative  evaluation  process  incorporating  two  key
observation  metrics:  absolute  increment  (AI)  and
relative  increment  (RI).  Regarding  the  metrics,

 portrays the variance in the overall
game  profit  in  comparison  to  the  initial  profit,
primarily  reflecting  the  cumulative  trend  of  profit
generated  throughout  the  game  until  the  current
moment.  Meanwhile,  showcases
changes in the overall game profit concerning the profit
from  the  previous  iteration,  emphasizing  more
localized  and  phased  trends  in  alterations  during  the
iterative  process.  Hence,  and  can  be  computed
as
 

aik = esp_pk − esp_p1 (32)
 

rik = esp_pk − esp_pk−1 (33)

esp_pkwhere  represents  the  profit  that  the  target
provider  can  obtain  in  the k-th  round  of  pricing  game
iteration.

We  extracted  segments  comprising  10  rounds  of
iteration  each  from  both  Nash  iteration  and  Pareto
iteration  processes. Figure  10 illustrates  the  trends  in
profit  changes  for  these  two  types  of  iterations.  From
the  figure,  it  is  evident  that  in  the  Nash  iteration
process,  the  overall  profit  does  not  consistently
increase with each iteration,  and the final  profit  might
not necessarily surpass the initial state. This is inherent
to the nature of Nash equilibrium – aiming for a stable
state rather than the optimal one. On the other hand, in
the  Pareto  iteration  process,  it  is  noticeable  that  the
overall profit in each iteration consistently exceeds the
previous one, ensuring the final profit is higher than the

 

 
Fig. 8    Comparison of individual profit.

 

(a) (b) (c) 
Fig. 9    Performance comparison between PSO, ILPSO, and TIAO-PSO. (a) Number of iterations under different ESP scale,
(b) convergence rate under different ESP scale, and (c) number of iterations under relaxed Nash equilibrium criteria.
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initial  one.  This  aligns  with  the  fundamental  principle
of Pareto improvement – striving for a balanced state at
the peak profit.

7.4　Performance evaluation

Due  to  the  increased  complexity  involved  in  attaining
Nash  equilibrium  states  as  opposed  to  finding  Pareto
optimal states, we conducted a comparative analysis of
three algorithms concerning their convergence efficacy
in  solving  Nash  equilibrium  problems  across  varying
ESP  scales. Figure  9 portrays  the  convergence
dynamics exhibited by these algorithms at diverse ESP
scales.  Within Figs.  9a and 9b,  the x-axis signifies the
ESP  scale,  the  first y-axis  represents  the  number  of
iterations  necessary  for  the  game  model  to  converge,
and  the  second y-axis  showcases  the  average
convergence  rate  observed  over  multiple  experiments,
indicating  the  proportion  of  games  that  eventually
reached  equilibrium  states.  Navigating  high-
dimensional  spaces  often  encounters  convergence
hurdles.  Hence,  in  our  experiments,  we  constrained
pricing  strategy  values  to  two  decimal  places  and
limited  each  particle  to  ten  strategy  options  to  ensure
adherence  to  acceptable  iteration  constraints.  The
figure  highlights  that  as  the  ESP  scale  expands,
connoting  a  broader  search  space,  the  iteration  count
required  for  convergence  also  escalates,  concurrently
leading to a gradual decline in the convergence rate. In
such  scenarios,  the  proposed  TIAO-PSO  algorithm
demonstrates  superior  performance  in  terms  of  both
requisite  iteration  counts  and  achieved  convergence
rates.

The precise determination of Nash equilibrium often
imposes  substantial  computational  burdens,  especially
in the context of identifying Nash points within multi-
participant  stochastic  games —  an  inherently  complex

ESP_P

task.  In  practical  scenarios,  game  participants
frequently only require a rough strategy determined by
an  approximate  Nash  equilibrium.  In Fig.  9c,  we
witness  the  convergence  dynamics  of  a  pricing  game
involving  10  ESPs  as  we  relax  the  criteria  for  Nash
equilibrium.  In  this  scenario,  if  an  ESP  modifies  its
strategy,  maintaining ’s  growth  rate  within  the
expansion  rate  ensures  its  alignment  with  Nash
equilibrium.  To  avert  premature  convergence  in  the
model,  we  expand  the  strategy  space  into  50
dimensions.  The  figure  notably  portrays  a  marked
reduction  in  iteration  counts  as  the  Nash  criterion
becomes  less  stringent.  Furthermore,  even  amid  an
expanded  search  space,  the  algorithm  consistently
outperforms the strict Nash criterion.

8　Conclusion and Future Work

ω

In  this  paper,  we  have  enhanced  the  modeling
representation of participants in the multi-edge service
pricing  problem,  formulating  this  issue  as  a  multi-
participant stochastic game model centered around ESP
profits  as  utility  functions.  To  address  the  issue  of
unregulated  pricing  games  leading  to  a  decline  in
overall  profits,  we  propose  an  incentive  mechanism
based on Pareto improvement. This mechanism aims to
achieve  optimal  overall  profits  and  includes  an
additional  proof  of  the  existence  of  Pareto-optimal
solutions.  Considering  the  complexity  of  iterative
gaming models, we have enhanced the PSO algorithm.
This  enhancement  involves  optimizing  the  value  of 
in  three  distinct  phases,  aimed  at  expediting  the
equilibrium  state  resolution  process.  Finally,  we
conducted  experimental  validation  using  a  dataset
constructed  from  cross-region  service  invocation  tests
and  expanded  experiment  scale  to  observe  potential

 

 
Fig. 10    Trend of overall profit change throughout the iterations of the game with/without incentive.
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scenarios  of  non-convergence.  The  numerical  results
substantiate the effectiveness of the proposed method.

Apart  from  the  cases  discussed  in  this  paper,  future
research  will  notably  focus  on  pricing  issues
concerning collaboration among multiple edge services
to  accomplish  tasks  at  the  edge.  One  key  challenge
involves  assessing  the  contribution  of  each  edge
service  to  the  task  at  hand.  A common approach  is  to
address multi-participant  cooperative pricing problems
based  on  the  Shapley  value,  whereby  the  analysis
involves  assessing  each  participant’s  contribution  to
the  overall  coalition  outcome  and  subsequently
allocating  profits  accordingly.  This  method  can  offer
insights  into  fair  pricing  strategies  and  foster
collaboration among participants.
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